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Abstract - The arithmetic derivative, introduced by Barbeau (1961), is an integer-valued analogue of the usual derivative. For 

a nonempty set 𝑆 of primes, the arithmetic subderivative 𝐷𝑆 differentiates an integer only with respect to the primes in 𝑆, treating 

primes outside 𝑆 as constants. The present work studies arithmetic differential equations on the integers defined by 𝐷𝑆 and its 

iterates. Criteria are obtained for the vanishing of iterates 𝐷𝑆
𝑘(𝑛), in terms of the S-support of intermediate values; in particular, 

𝐷𝑆
2(𝑛) = 0 occurs exactly when 𝐷𝑆(𝑛) is free of primes from S. Fixed points of 𝐷𝑆 are also determined: a positive integer n 

satisfies 𝐷𝑆(𝑛) = 𝑛 precisely when 𝛴𝑝∈𝑆𝜈𝑝(𝑛)/𝑝 = 1, which forces 𝑛 = 𝑝𝑝𝑚, where 𝑝 ∈ 𝑆 and 𝑚 has no prime factor in 𝑆. 

Examples are included to illustrate both terminating and non-terminating trajectories for different choices of 𝑆. 
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1. Introduction  
Barbeau introduced the arithmetic derivative 𝐷 on the positive integers by prescribing 𝐷(𝑝) = 1 for each prime 𝑝 and 

extending the function via the Leibniz rule. This construction yields, for instance, the prime-power formula 

 

D(𝑝𝑘) = k𝑝𝑘−1 (𝑝 prime , 𝑘 ≥ 1), 
and the identity 

𝐷(𝑛) = 𝑛 ∑
𝜈𝑝(𝑛)

𝑝
𝑝∈𝑆

 

 

in terms of the prime factorization of 𝑛. The arithmetic derivative has since been examined from several viewpoints, including 

structural properties and associated antiderivative problems (see [1–3]). 

 

Differentiation with respect to selected primes leads to operators that interpolate between the full derivative and a partial 

derivative. The arithmetic partial derivative with respect to a prime 𝑝 treats 𝑝 as the “variable” and all other primes as constants 

[3,7]. Merikoski, Haukkanen, and Tossavainen introduced arithmetic subderivatives relative to subsets 𝑆 of primes and studied 

them within the broader class of Leibniz-additive arithmetic functions [4]. Related directions include arithmetic analogues of 

partial differential equations [5], discontinuity/continuity behavior of subderivatives on the integers [6], and higher-order 

behavior of arithmetic partial derivations and antidifferentiation [7]. 

 

Much of the existing literature emphasizes one-step identities or analytic properties. By contrast, iterating a subderivative 

produces a discrete dynamical system on the positive integers whose long-term behavior depends on the chosen prime set 𝑆. A 

detailed description of finite termination (i.e., the existence of 𝑘 such that the 𝑘-fold iterate equals 0) and of fixed points for 

general 𝑆 appears limited. The present work addresses this gap by giving explicit criteria for when the 𝑘-fold iterate vanishes, 

 

𝐷𝑆
𝑘(𝑛) = 0, 

 

and by classifying all fixed points of 𝐷𝑆. Dependence on 𝑆 is also described, and examples highlight both terminating and non-

terminating trajectories. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The arithmetic derivative, arithmetic subderivatives, and related operators have been investigated in a variety of directions 

in the literature (see, for example, [3-7]). The present work focuses specifically on the iterative dynamics of the arithmetic 

subderivative 𝐷𝑆  on ℕ for an arbitrary nonempty set 𝑆 of primes. In this setting, the paper (i) gives a general criterion 

characterizing when an iterate 𝐷𝑆
𝑘(𝑛) becomes zero, namely when 𝐷𝑆

(𝑘−1)(𝑛) is free of primes from 𝑆 (Theorems 3.1-3.2), (ii) 

derives an explicit necessary restriction on prime exponents in n that rules out termination for many integers (Corollary 3.3), and 

(iii) provides an explicit description of all fixed points of 𝐷𝑆 in terms of the prime factorization of 𝑛, together with a comparison 

result for inclusions of prime sets (Theorem 3.4 and Proposition 3.5). The examples illustrate how these phenomena depend on 

the choice of 𝑆, including terminating trajectories, fixed points, and non-terminating growth. 

 

2. Preliminaries   
Let 𝒫 denote the set of all prime numbers. Every positive integer 𝑛 has a unique prime factorization. 

 

𝑛 = ∏ 𝑝𝜈𝑝(𝑛)

𝑝|𝑛

. 

 

In this factorization, only finitely many exponents 𝜈𝑝(𝑛) are nonzero. The support of n is 

 

𝑠𝑢𝑝𝑝(𝑛) = 𝑝 ∈ 𝒫: 𝜈𝑝(𝑛) > 0. 

 

For a set 𝑆 ⊆  𝒫, the 𝑆-support of 𝑛 is 𝑆 ∩ 𝑠𝑢𝑝𝑝(𝑛), i.e., the primes from 𝑆 that divide 𝑛. 

 

Definition 2.1. Let 𝑆 ⊆  𝒫 be a nonempty set of primes. For 𝑛 ∈  ℕ (positive integers), the arithmetic subderivative with 

respect to 𝑆, denoted 𝐷𝑆(𝑛), is defined by 

𝐷𝑆(𝑛) = 𝑛 ∑
𝜈𝑝(𝑛)

𝑝
  𝑝∈𝑆,   𝑝∣𝑛

 

 

The sum is taken over primes 𝑝 ∈  𝑆 that divide 𝑛; if 𝑆 ∩ 𝑠𝑢𝑝𝑝(𝑛) = ∅, then the sum is empty and 𝐷𝑆(𝑛) = 0. Primes 

outside 𝑆 are treated as constants, so 𝐷𝑆(𝑝) = 0 for primes 𝑝 ∉  𝑆, while 𝐷𝑆(𝑝) = 1 for primes 𝑝 ∈  𝑆. In particular, for a 

prime power 𝑝𝑒 one has 𝐷𝑆(𝑝𝑒) = 𝑒𝑝𝑒−1 when 𝑝 ∈  𝑆 and 𝐷𝑆(𝑝𝑒) = 0 when 𝑝 ∉  𝑆. 

 

The arithmetic subderivative satisfies the usual product rule. For positive integers 𝑚 and 𝑛, one has 

 

𝐷𝑆(𝑚𝑛) = 𝑚𝐷𝑆(𝑛) + 𝑛𝐷𝑆(𝑚). 
 

This rule follows immediately from the valuation identity 𝜈𝑝(𝑚𝑛) = 𝜈𝑝(𝑚) + 𝜈𝑝(𝑛). It also places 𝐷𝑆 in the class of 

Leibniz-additive arithmetic functions studied in [4]. In particular, 𝐷𝑆 is completely determined by its values on prime powers. 

For later reference, an explicit formula for 𝐷𝑆(𝑛) is recorded in terms of the prime factorization of 𝑛. If 

 

𝑛 = ∏ 𝑝(𝑒𝑝)
( 𝑝∣∣𝑛 )  with  𝑒𝑝 = 𝜈𝑝(𝑛) 

then 

 

𝐷𝑆(𝑛) = ∑  𝑒𝑝 
𝑛

𝑝
𝑝∈𝑆

 

 

Indeed, for each p ∈ S, differentiating 𝑝𝑒𝑝  contributes 𝑒𝑝𝑝𝑒𝑝−1, and multiplying by the other factors of 𝑛 gives 𝑒𝑝(𝑛/𝑝). 

Two extreme special cases are worth noting: 

• If 𝑆 =  𝒫 (the set of all primes), then 𝐷𝒫(𝑛) coincides with the classical arithmetic derivative 𝐷(𝑛) (as defined by Barbeau 

[1]). For example, 𝐷(6) = 2𝐷(3) + 3𝐷(2) = 2 · 1 + 3 · 1 = 5. In general,  

 

𝐷(𝑛) = ∑ 𝜈𝑝(𝑛) · (𝑛/𝑝)

𝑝|𝑛 .
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• If 𝑆 = 𝑝 is a singleton, then 𝐷𝑝(𝑛) is the arithmetic partial derivative with respect to 𝑝 [3]. In this case, 

 

𝐷𝑝(𝑛) = 𝑛 · (𝜈𝑝(𝑛)/𝑝). 

 

For instance, for 𝑛 =  12 one has 𝐷2(12) = 12 · (2/2) = 12 (since 𝜈2(12) = 2), whereas 𝐷3(12) = 12 · (1/3) = 4. Note 

that the full derivative 𝐷(12) = 16 is different, illustrating that partial subderivatives capture growth from one prime at a time. 

 

If desired, the definition can be extended to 0 by setting 𝐷𝑆(0) = 0 (consistent with the product rule), and to negative integers 

by 𝐷𝑆(−𝑛) = −𝐷𝑆(𝑛). Unless stated otherwise, attention is restricted to 𝑛 ∈ ℕ. 

 

3. Main Results  
This section collects the main results. First, criteria are given for higher-order vanishing under iteration of 𝐷𝑆 (that is, when 

repeated application yields 0). Second, fixed points of 𝐷𝑆 are classified. Proofs are supplied for each theorem, and illustrative 

examples appear in the subsequent section. 

 

For an integer 𝑛, the S-support of n means 𝑆 ∩ 𝑠𝑢𝑝𝑝(𝑛), i.e., the set of prime divisors of 𝑛 that lie in 𝑆. Note that 𝐷𝑆(𝑛) = 0 

if and only if the 𝑆-support of n is empty. For 𝑘 ≥ 0, 𝐷𝑆
𝑘(𝑛) denotes the k-fold iterate of 𝐷𝑆, with 𝐷𝑆

0(𝑛) = 𝑛 and 𝐷𝑆
𝑘(𝑛) =

𝐷𝑆 (𝐷𝑆
𝑘−1(𝑛)) for 𝑘 ≥ 1. 

 

 Theorem 3.1. For any positive integer 𝑛 and any nonempty set 𝑆 ⊆  𝒫 of primes, 

𝐷𝑆
2(𝑛) = 0 ⟺ 𝐷𝑆(𝑛)  

 

 has no prime factor in 𝑆. 

Equivalently, 𝐷𝑆
2(𝑛) = 0 if and only if the S-support of 𝐷𝑆(𝑛) is empty. 

 

Proof. By definition, 𝐷𝑆(𝑥) = 𝑥 · 𝛴𝑝∈𝑆𝜈𝑝(𝑥)/𝑝 for 𝑥 ∈ ℕ. Hence 𝐷𝑆(𝑥) = 0 holds if and only if 𝜈𝑝(𝑥) = 0 for all 𝑝 ∈ 𝑆, i.e., if 

and only if x has no prime factor from S. Applying this observation to 𝑥 = 𝐷𝑆(𝑛) gives 𝐷𝑆
2(𝑛) = 𝐷𝑆(𝐷𝑆(𝑛)) = 0 exactly when 

𝐷𝑆(𝑛)has empty S-support. 

 

 Remark 

 Theorem 3.1 provides a simple condition: the second iterate vanishes exactly when 𝐷𝑆(𝑛) itself has no prime in S. The 

argument extends naturally to higher iterates: 

 

Theorem 3.2. Let 𝑘 ≥  1 be a fixed positive integer and let 𝑛 ∈ ℕ. The following are equivalent: 

1. 𝐷𝑆
𝑘(𝑛) = 0. 

2. 𝐷𝑆
𝑘−1(𝑛) has no prime factor in S. 

3. The S-support of 𝐷𝑆
𝑘−1(𝑛) is empty; equivalently, 𝑆 ∩ 𝑠𝑢𝑝𝑝 (𝐷𝑆

𝑘−1(𝑛)) = ∅. 

 

In particular, 𝐷𝑆
𝑘(𝑛) = 0 if and only if after 𝑘 −  1 iterations the subderivative produces an integer free of primes from S. 

Moreover, if 𝐷𝑆
𝑗(𝑛) = 0 for some 𝑗 ≥  1, then 𝐷𝑆

𝑚(𝑛) = 0 for every integer 𝑚 ≥  𝑗. 

 

Proof. The argument proceeds by induction on 𝑘. Recall that for 𝑛 ∈ ℕ, 

 

𝐷𝑆(𝑥) = 𝑥 · ∑ (𝜈𝑝(𝑥)/𝑝)𝑝∈𝑆,   𝑝|𝑥 . 

 

Hence 𝐷𝑆(𝑥) = 0 if and only if the sum is empty, i.e., no prime 𝑝 ∈  𝑆 divides 𝑥; equivalently, 𝑥 is 𝑆-free (its 𝑆-support is 

empty). 

 

Base case (𝒌 =  𝟏). Since 𝐷𝑆
1(𝑛) = 𝐷𝑆(𝑛) and 𝐷𝑆

0(𝑛) = 𝑛, it follows that 

 

𝐷𝑆
1(𝑛) = 0 ⇔ 𝑛 has no prime factor in 𝑆, 

 

which is exactly statement (2) for 𝑘 =  1. 
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Induction step. Assume the equivalence holds for a fixed 𝑘 ≥  1. Consider 𝑘 +  1. By the definition of iterates, 

 

𝐷𝑆
𝑘+1(𝑛) = 𝐷𝑆 (𝐷𝑆

𝑘(𝑛)). 

 

Applying the base-case criterion to the integer 𝑥 = 𝐷𝑆
𝑘(𝑛), it yields 

 

𝐷𝑆
𝑘+1(𝑛) = 0 ⇔ 𝐷𝑆

𝑘(𝑛) has no prime factor in 𝑆, 

 

which is precisely statement (2) with k replaced by 𝑘 +  1. Hence, the equivalence holds for all 𝑘 ≥  1. The equivalence between 

(2) and (3) is immediate from the definition of S-support. 

 

Corollary 3.3. If 𝐷𝑆
𝑘(𝑛) = 0 for some finite 𝑘, then for every prime 𝑝 ∈  𝑆 dividing 𝑛, the exponent of 𝑝 in 𝑛 satisfies 𝑣𝑝(𝑛) <

𝑝. Equivalently, no prime in 𝑆 divides 𝑛 to a power ≥  𝑝. 

 

Proof. Suppose 𝑝 ∈  𝑆 divides 𝑛 with 𝑎 = 𝑣𝑝(𝑛) ≥ 𝑝. Write 𝑛 = 𝑝𝑎𝑚 with 𝑝 ∤  𝑚.  

 

In the definition 𝐷𝑆(𝑛) = 𝑛 ∑ 𝑣𝑞(𝑛)/𝑞𝑞∈𝑆,𝑞|𝑛 , the term with 𝑞 = 𝑝 contributes 𝑎 · 𝑝𝑎−1𝑚, while each term with 𝑞 ≠ 𝑝 is divisible 

by 𝑝𝑎(since it equals 𝑝𝑎 · (𝑚/𝑞) · 𝑣𝑞(𝑛) for some 𝑞|𝑚). Hence 𝐷𝑆(𝑛) is divisible by 𝑝𝑎−1. If 𝑎 > 𝑝 then 𝑎 − 1 ≥ 𝑝; if 𝑎 = 𝑝, 

then the coefficient 𝑎 supplies an additional factor 𝑝. In either case 𝑣𝑝(𝐷𝑆(𝑛)) ≥ 𝑝. Repeating this argument shows 

𝑣𝑝 (𝐷𝑆
𝑗(𝑛)) ≥ 𝑝 for all 𝑗 ≥ 1, so no iterate becomes 𝑆-free. By Theorem 3.2, the iterates therefore cannot terminate at 0. The 

contrapositive gives the stated necessary condition. 

 

This gives a quick check to rule out many integers from ever having their subderivative sequence terminate. 

 

For example, if 𝑛 = 24 = 16 and 𝑆 = 2, then 𝑣2(𝑛) = 4 ≮ 2 and indeed one computes 𝐷2(16) = 32, 𝐷2(32) = 80, etc., a 

sequence that grows and never reaches zero. 

 

On the other hand, if 𝑛 = 9 = 32 and 𝑆 = 3, then 𝑣3(9) = 2 < 3, and one checks 𝐷3(9) = 6, 𝐷3(6) = 2, and 𝐷3(2) = 0. Thus 

𝐷3
3(9) = 0. 

 

Equivalently, for every prime 𝑝 ∈ 𝑆 that divides 𝑛, the exponent 𝑣𝑝(𝑛) must satisfy 𝑣𝑝(𝑛) < 𝑝. In plain terms, no prime 

from 𝑆 should appear in 𝑛 raised to a power greater than or equal to itself, or else the iterates of 𝐷𝑆 will never reach zero. 

 

Next, the fixed points of 𝐷𝑆 are classified. By a fixed point, one means a positive integer n such that 𝐷𝑆(𝑛) = 𝑛. Solving 

𝐷𝑆(𝑛) = 𝑛 is akin to finding eigenfunctions of the subderivative operator with eigenvalue 1. In the arithmetic setting, the set of 

fixed points is infinite and is described explicitly in terms of the prime factorization of 𝑛.  

 

Theorem 3.4. Let 𝑆 ⊆  𝒫  be a fixed nonempty set of primes. A positive integer 𝑛 satisfies 𝐷𝑆(𝑛) = 𝑛 if and only if 

 

∑
ν𝑝(𝑛)

𝑝
𝑝∈𝑆

= 1. 

In particular, any fixed point 𝑛 must be of the form, 

𝑛 = 𝑝𝑝 ⋅ 𝑚, 
where 𝑝 ∈ 𝑆 is some prime, and 𝑚 is an arbitrary positive integer whose prime factors lie outside 𝑆. Moreover, for each prime 

𝑝 ∈ 𝑆, the pure power 𝑝𝑝 (with no other factors) is itself a fixed point of 𝐷𝑆. These are the minimal fixed-point solutions 

corresponding to each prime in 𝑆. 

 

Proof. Let 𝑛 ∈ ℕ satisfy 𝐷𝑆(𝑛) = 𝑛. Since 𝐷𝑆(𝑛) = 𝑛 · 𝛴𝑝∈𝑆𝜈𝑝(𝑛)/𝑝, cancellation of 𝑛 gives 𝛴𝑝∈𝑆𝜈𝑝(𝑛)/𝑝 = 1. Let 𝑇 = 𝑆 ∩

𝑠𝑢𝑝𝑝(𝑛) and set 𝑃𝑇 = ∏ 𝑝𝑝∈𝑇 . Multiplying by 𝑃𝑇  yields 𝛴𝑝∈𝑇𝜈𝑝(𝑛) · (𝑃𝑇/𝑝) = 𝑃𝑇 . Fix 𝑟 ∈ 𝑇 and reduce this identity modulo 𝑟. 

Every term with 𝑝 ≠ 𝑟 is divisible by 𝑟, and 𝑃𝑇 ≡ 0(𝑚𝑜𝑑𝑟), so 𝜈𝑟(𝑛) · (𝑃𝑇/𝑟) ≡ 0(𝑚𝑜𝑑𝑟). Because 𝑔𝑐𝑑(𝑃𝑇/𝑟, 𝑟) = 1, it 

follows that 𝑟|𝑣𝑟(𝑛). Hence each 𝜈𝑟(𝑛)/𝑟 is a nonnegative integer, and the sum 𝛴𝑝∈𝑇𝜈𝑝(𝑛)/𝑝 equals 1 only if exactly one term 
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equals 1 and the rest are 0. Therefore, there exists 𝑝 ∈ 𝑆 with 𝜈𝑝(𝑛) = 𝑝 and 𝜈𝑞(𝑛) = 0 for all q ∈ 𝑆\{p}, which is equivalent 

to 𝑛 = 𝑝𝑝𝑚 with 𝑚 having no prime factor in 𝑆. Conversely, if 𝑛 = 𝑝𝑝𝑚 with 𝑝 ∈ 𝑆 and 𝑚 𝑆-free, then 𝛴𝑞∈𝑆𝜈𝑞(𝑛)/𝑞 = 𝑝/𝑝 =

1 and hence 𝐷𝑆(𝑛) = 𝑛, as required. 

 

Remark. The fixed points of 𝐷𝑆 on ℕ are precisely those integers of the form 𝑝𝑝 ⋅ 𝑚, where  𝑝 ∈ 𝑆  and  𝑚 is an  𝑆-free positive 

integer. These are the minimal fixed-point solutions corresponding to each prime in  𝑆. In the special case  𝑆 = 𝒫 (the set of all 

primes), this reduces to the classical fixed-point family {𝑝𝑝: 𝑝 prime}; for example, 22 = 4, 33 = 27, and  55 = 3125 are all 

fixed under the full arithmetic derivative 𝐷, while primes themselves (𝑒. 𝑔. . , 2, 3, 5) are not fixed points, since 𝐷(𝑝) = 1 ≠ 𝑝.  
 

Proposition 3.5. Let 𝑇 ⊆ 𝑆 be nonempty. If 𝑛 ∈ ℕ is a fixed point of 𝐷𝑆, then either (i) 𝑛 is also a fixed point of 𝐷𝑇 , or (ii) 

𝐷𝑇(𝑛) = 0. More precisely, writing the fixed point as 𝑛 = 𝑝𝑝𝑚 (Theorem 3.4), one has 𝐷𝑇(𝑛) = 𝑛 when 𝑝 ∈ 𝑇 and 𝐷𝑇(𝑛) = 0 

when 𝑝 ∉ 𝑇. Conversely, a fixed point of 𝐷𝑇  need not be a fixed point of 𝐷𝑆. 

 

Proof. By Theorem 3.4, any positive fixed point of 𝐷𝑆 has the form 𝑛 = 𝑝𝑝𝑚 with 𝑝 ∈ 𝑆 and 𝑚 𝑆-free. If 𝑝 ∈ 𝑇, then 

𝛴𝑞∈𝑇𝜈𝑞(𝑛)/𝑞 = 𝑝/𝑝 = 1 and therefore 𝐷𝑇(𝑛) = 𝑛. If 𝑝 ∉ 𝑇, then 𝜈𝑞(𝑛) = 0 for all 𝑞 ∈ 𝑇 and hence 𝐷𝑇(𝑛) = 0. For the 

converse, choose 𝑝 ∈ 𝑇 and a prime 𝑞 ∈ 𝑆\𝑇 and set 𝑛 = 𝑝𝑝𝑞. Then 𝑛 is fixed for 𝐷𝑇  (only 𝑝 contributes), but 𝐷𝑆(𝑛) = 𝑛 ·
(1 + 1/𝑞) > 𝑛, so 𝑛 is not fixed for 𝐷𝑆. 

 

4. Examples 
Several examples illustrate Theorems 3.1–3.2, Corollary 3.3, and Theorem 3.4 

 

Example 4.1 Let 𝑆 = 3. The integer 27 = 33 satisfies 𝐷𝑆(27) = 27, so it is a fixed point, and its trajectory under iteration is 

constant. 

𝐷{3}(27) = 27 ⋅
3

3
= 27. 

 

Hence 𝐷𝑆
𝑘(27) = 27 for all 𝑘 ≥ 1, in agreement with the fixed-point description in Theorem 3.4. 

 

For 𝑛 = 9 = 32, the trajectory terminates after three steps: 

𝐷{3}(9) = 9 ⋅
2

3
= 6,  𝐷{3}(6) = 6 ⋅

1

3
= 2,  𝐷{3}(2) = 2 ⋅ 0 = 0 

 

Thus 𝐷𝑆
3(9) = 0. Note that 𝜈3(9) = 2 < 3, consistent with Corollary 3.3. 

Similarly, for 𝑛 = 18 = 2 · 32 one obtains: 

𝐷{3}(18) = 18 ⋅
2

3
= 12,  𝐷{3}(12) = 12 ⋅

1

3
= 4,  𝐷{3}(4) = 0. 

 

so again 𝐷𝑆
3(18) = 0. In these terminating cases, the prime 3 appears with exponent 2, whereas exponent 3 produces a fixed 

point. 

 

Example 4.2. Let 𝑆 = {2,3}. For 𝑛 =  210 =  2 · 3 · 5 · 7, one has 𝐷𝑆(210) = 175 and then 𝐷𝑆(175) = 0, so 𝐷𝑆
2(210) = 0. 

Indeed, 

𝐷2,3(210) = 210(1/2 + 1/3) = 210 · (5/6) = 175. 
 

Here 175 = 52 · 7 is S-free, so the second step vanishes as predicted by Theorem 3.2. The exponents 𝑣2(210) = 𝑣3(210) = 1 

also satisfies Corollary 3.3. 

By contrast, starting from 𝑛 = 32 = 25,  the iterates do not terminate; the first few values are: 

𝐷2,3(32) = 32 · (5/2) = 80, 

𝐷2,3(80) = 80 · (2/1) = 160, 

𝐷2,3(160) = 160 · (5/2) = 400. 

In fact, one checks inductively that for all 𝑘 ≥  0, 

𝐷𝑆
2𝑘(32) = 32 · 5𝑘     and  𝐷𝑆

2𝑘+1(32) = 80 · 5𝑘. 

In particular, every iterate remains divisible by 2, so no iterate becomes S-free and hence. 𝐷𝑆
𝑘(32) ≠ 0 for all 𝑘. 
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Example 4.3 Theorem 3.4 is illustrated in the following cases: 

• If 𝑆 = {2}, the fixed point condition is 
ν2(𝑛)

2
= 1. This forces ν2(𝑛) = 2, and no factor of 2 appears elsewhere. Thus, the 2-

part of 𝑛 is 22 = 4, and 𝑛 can be 4𝑚 where 𝑚 is odd. So the fixed points of 𝐷{2} are exactly the integers of the form 4𝑚 

with 𝑚 odd. Indeed, 𝐷{2}(4𝑚) = 4𝑚 ⋅
2

2
= 4𝑚. For example, 4, 12, 20, 28, 36, … are all fixed under 𝐷{2}. 

• If 𝑆 = {3}, the fixed point condition is 
ν3(𝑛)

3
= 1, so ν3(𝑛) = 3. Thus, the 3-part of 𝑛 is 33 = 27, and any integer m 

coprime to 3 can multiply it. So the fixed points for 𝐷{3} are 27𝑚 with gcd(𝑚, 3) = 1. For instance, 

27, 54, 81, 135, 162, … are fixed by 𝐷{3}. (E.g. 𝐷{3}(54) = 54 ⋅
3

3
= 54 since ν3(54) = 3.) 

• If 𝑆 = {2,3}, a fixed point must satisfy 
ν2(𝑛)

2
+

ν3(𝑛)

3
= 1. The only solutions in nonnegative integers are either ν2(𝑛) =

2, ν3(𝑛) = 0 𝑜𝑟 ν2(𝑛) = 0, ν3(𝑛) = 3. Thus 𝑛 is either 22 ⋅ 𝑚 (with m having no factor 3) or 33 ⋅ 𝑚 (with m having no 

factor 2). For example, 𝑛 = 20 = 22 ⋅ 5 is fixed since 𝐷{2,3}(20) = 20 (
2

2
+ 0) = 20, and 𝑛 = 135 = 33 ⋅ 5 is fixed since 

𝐷{2,3}(135) = 135 (0 +
3

3
) = 135. On the other hand, 12 is not fixed because 

ν2(12)

2
+

ν3(12)

3
= 1 +

1

3
≠ 1, and indeed 

𝐷{2,3}(12) = 16 ≠ 12. 

• If 𝑆 = {2,5}, then 
ν2(𝑛)

2
+

ν5(𝑛)

5
= 1. This yields either ν2(𝑛) = 2 or ν5(𝑛) = 5. Hence, fixed points are of the form 4𝑚 

(with no factor 5 in m) or 55𝑚′ (with no factor 2 in m'). For example, 𝑛 = 12 = 4 ⋅ 3 is fixed for 𝑆 = {2,5} (since 

𝐷{2,5}(12) = 12), and 𝑛 = 3125 = 55 is fixed (indeed 𝐷{2,5}(3125) = 3125 ⋅
5

5
= 3125). 

 

As another observation, if 𝑛 = 𝑝𝑝𝑚 is a fixed point of 𝐷𝑆 (Theorem 3.4) and 𝑞 ∈ 𝑆 is a different prime, then 𝐷𝑆(𝑛𝑞) = 𝑛𝑞 ·
(1 + 1/𝑞) > 𝑛𝑞. Thus, introducing additional primes from 𝑆 strictly increases the value of 𝐷𝑆, and equality 𝐷𝑆(𝑛) = 𝑛 occurs 

only in the fixed-point families described above. 

 

5. Discussion 
The termination and fixed-point results obtained here place the iteration of 𝐷𝑆 on ℕ into a dynamical framework: Theorem 

3.2 gives an exact termination criterion, Corollary 3.3 provides a practical obstruction, and Theorem 3.4 together with Proposition 

3.5 classifies fixed points and their dependence on 𝑆. Unlike work emphasizing primarily one-step identities or operator-level 

properties of subderivatives (see [3–7]), the present results are formulated explicitly for iterates 𝐷𝑆
𝑘 . The framework uniformly 

includes the classical arithmetic derivative (𝑆 =  𝒫) and arithmetic partial derivatives (|𝑆|  =  1). The examples show that 

trajectories can terminate, stabilize, or grow depending on 𝑆. Future directions include periodic points, quantitative growth for 

non-terminating trajectories, and finer comparisons across different prime sets. 

 

6. Conclusion  
This work studied arithmetic differential equations on the integers induced by the arithmetic subderivative 𝐷𝑆. A criterion 

for the vanishing of iterates 𝐷𝑆
𝑘(𝑛) was established in terms of the 𝑆-support of intermediate values, and a necessary condition 

on prime exponents was recorded (Corollary 3.3). Fixed points of 𝐷𝑆 were classified completely, leading to the explicit families 

𝑛 = 𝑝𝑝𝑚 with an 𝑆-free cofactor. The examples show that iteration can lead to termination, fixed points, or persistent growth 

depending on 𝑆 and on the initial integer. Further directions include periodic points (𝐷𝑆
𝑘(𝑛) = 𝑛 for 𝑘 > 1) and quantitative 

growth estimates for non-terminating trajectories. 
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