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Abstract - The arithmetic derivative, introduced by Barbeau (1961), is an integer-valued analogue of the usual derivative. For
a nonempty set S of primes, the arithmetic subderivative Ds differentiates an integer only with respect to the primes in S, treating
primes outside S as constants. The present work studies arithmetic differential equations on the integers defined by Ds and its
iterates. Criteria are obtained for the vanishing of iterates DX (n), in terms of the S-support of intermediate values; in particular,
DZ(n) = 0 occurs exactly when Ds(n) is free of primes from S. Fixed points of Dg are also determined: a positive integer n
satisfies Dg(n) = n precisely when X,esv,(n)/p = 1, which forces n = pPm, where p € S and m has no prime factor in S.
Examples are included to illustrate both terminating and non-terminating trajectories for different choices of S.
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1. Introduction
Barbeau introduced the arithmetic derivative D on the positive integers by prescribing D(p) = 1 for each prime p and

extending the function via the Leibniz rule. This construction yields, for instance, the prime-power formula

D(p*) = kp*~! (p prime , k > 1),

D(n) = nzvp;n)

pES

and the identity

in terms of the prime factorization of n. The arithmetic derivative has since been examined from several viewpoints, including
structural properties and associated antiderivative problems (see [1-3]).

Differentiation with respect to selected primes leads to operators that interpolate between the full derivative and a partial
derivative. The arithmetic partial derivative with respect to a prime p treats p as the “variable” and all other primes as constants
[3,7]. Merikoski, Haukkanen, and Tossavainen introduced arithmetic subderivatives relative to subsets S of primes and studied
them within the broader class of Leibniz-additive arithmetic functions [4]. Related directions include arithmetic analogues of
partial differential equations [5], discontinuity/continuity behavior of subderivatives on the integers [6], and higher-order
behavior of arithmetic partial derivations and antidifferentiation [7].

Much of the existing literature emphasizes one-step identities or analytic properties. By contrast, iterating a subderivative
produces a discrete dynamical system on the positive integers whose long-term behavior depends on the chosen prime set S. A
detailed description of finite termination (i.e., the existence of k such that the k-fold iterate equals 0) and of fixed points for
general S appears limited. The present work addresses this gap by giving explicit criteria for when the k-fold iterate vanishes,

D¥(n) =0,

and by classifying all fixed points of Dg. Dependence on S is also described, and examples highlight both terminating and non-
terminating trajectories.
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The arithmetic derivative, arithmetic subderivatives, and related operators have been investigated in a variety of directions
in the literature (see, for example, [3-7]). The present work focuses specifically on the iterative dynamics of the arithmetic
subderivative Dg on N for an arbitrary nonempty set S of primes. In this setting, the paper (i) gives a general criterion

characterizing when an iterate D¥ (n) becomes zero, namely when Dék_l)(n) is free of primes from S (Theorems 3.1-3.2), (ii)
derives an explicit necessary restriction on prime exponents in n that rules out termination for many integers (Corollary 3.3), and
(iii) provides an explicit description of all fixed points of Ds in terms of the prime factorization of n, together with a comparison
result for inclusions of prime sets (Theorem 3.4 and Proposition 3.5). The examples illustrate how these phenomena depend on
the choice of S, including terminating trajectories, fixed points, and non-terminating growth.

2. Preliminaries
Let P denote the set of all prime numbers. Every positive integer n has a unique prime factorization.

pln
In this factorization, only finitely many exponents v, (n) are nonzero. The support of n is
supp(n) =p € P:v,(n) > 0.
ForasetS & P, the S-support of n is S N supp(n), i.e., the primes from S that divide n.

Definition 2.1. Let S € P be a nonempty set of primes. For n € N (positive integers), the arithmetic subderivative with
respect to S, denoted Dg(n), is defined by
v, (n
Ds(n) =n Z —p( )
pPES, pin p
The sum is taken over primes p € S that divide n; if S N supp(n) = @, then the sum is empty and Dg(n) = 0. Primes
outside S are treated as constants, so Dg(p) = 0 for primes p & S, while Dg(p) = 1 for primes p € S. In particular, for a
prime power p® one has Dg(p®) = ep® ! whenp € S and Ds(p®) = O whenp € S.
The arithmetic subderivative satisfies the usual product rule. For positive integers m and n, one has

Ds(mn) = mDs(n) + nDg(m).

This rule follows immediately from the valuation identity v, (mn) = v,(m) + v, (n). It also places Ds in the class of
Leibniz-additive arithmetic functions studied in [4]. In particular, D is completely determined by its values on prime powers.
For later reference, an explicit formula for Dg(n) is recorded in terms of the prime factorization of n. If

n= H(pm)p(el’) with e, = v,(n)

Ds(n) = Z ep%

PES

then

Indeed, for each p € S, differentiating p contributes e, p~", and multiplying by the other factors of n gives e, (n/p).
Two extreme special cases are worth noting:

+ If S = P (the set of all primes), then Dy (n) coincides with the classical arithmetic derivative D(n) (as defined by Barbeau
[1]). For example, D(6) = 2D(3) +3D(2) =21+ 3 -1 = 5. In general,

D@ = ) v, () - (n/p)

pin

22



Champak Talukdar & Helen K. Saikia/IJMTT, 72(1), 21-27, 2026

* If S = p is a singleton, then D,,(n) is the arithmetic partial derivative with respect to p [3]. In this case,

D,(n) =n- (vp(n)/p).

For instance, forn = 12 one has D,(12) = 12 - (2/2) = 12 (since v,(12) = 2), whereas D3(12) = 12 - (1/3) = 4. Note
that the full derivative D(12) = 16 is different, illustrating that partial subderivatives capture growth from one prime at a time.

If desired, the definition can be extended to 0 by setting Ds(0) = 0 (consistent with the product rule), and to negative integers
by Dg(—n) = —Ds(n). Unless stated otherwise, attention is restricted to n € N.

3. Main Results

This section collects the main results. First, criteria are given for higher-order vanishing under iteration of D (that is, when
repeated application yields 0). Second, fixed points of Dg are classified. Proofs are supplied for each theorem, and illustrative
examples appear in the subsequent section.

For an integer n, the S-support of n means S N supp(n), i.e., the set of prime divisors of n that lie in S. Note that Dg(n) = 0
if and only if the S-support of n is empty. For k > 0, D¥(n) denotes the k-fold iterate of Dy, with D2(n) = nand D¥(n) =

Ds (Dgf-l(n)) fork > 1.

Theorem 3.1. For any positive integer n and any nonempty set S S P of primes,
D(n) = 0 & Dy(n)

has no prime factor in S.
Equivalently, D2(n) = 0 if and only if the S-support of Ds(n) is empty.

Proof. By definition, Dg(x) = x - XpesVy(x)/p for x € N. Hence Dg(x) = 0 holds if and only if v,(x) = 0 forallp € S, i.e., if
and only if x has no prime factor from S. Applying this observation to x = Ds(n) gives DZ(n) = Ds(Ds(n)) = 0 exactly when
Ds(n)has empty S-support.

Remark

Theorem 3.1 provides a simple condition: the second iterate vanishes exactly when Ds(n) itself has no prime in S. The
argument extends naturally to higher iterates:

Theorem 3.2. Let k = 1 be a fixed positive integer and let n € N. The following are equivalent:

1. D¥m) =o.

2. D¥~1(n) has no prime factor in S.

3. The S-support of D¥~1(n) is empty; equivalently, S N supp (D}""l(n)) = 0.

In particular, D¥(n) = 0 if and only if after k — 1 iterations the subderivative produces an integer free of primes from S.
Moreover, if DJ(n) = 0 for some j = 1, then DI*(n) = 0 for every integer m > j.

Proof. The argument proceeds by induction on k. Recall that forn € N,
Dg(x) = x - ZpES, plx (Vp(x)/p)-

Hence Dg(x) = 0 if and only if the sum is empty, i.e., no prime p € S divides x; equivalently, x is S-free (its S-support is
empty).

Base case (k = 1). Since D(n) = Ds(n) and D?(n) = n, it follows that
D¢ (n) = 0 © n has no prime factor in S,

which is exactly statement (2) for k = 1.
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Induction step. Assume the equivalence holds for a fixed k = 1. Consider k + 1. By the definition of iterates,
DI (n) = D (DE()).
Applying the base-case criterion to the integer x = D¥(n), it yields
D¥*1(n) = 0 & D¥(n) has no prime factor in S,

which is precisely statement (2) with k replaced by k + 1. Hence, the equivalence holds for all k = 1. The equivalence between
(2) and (3) is immediate from the definition of S-support.

Corollary 3.3. If D&(n) = 0 for some finite k, then for every prime p € S dividing n, the exponent of p in n satisfies v,(n) <
p. Equivalently, no prime in S divides n to a power = p.

Proof. Suppose p € S divides n with a = v,(n) = p. Write n = p*m withp + m.

In the definition Ds(n) = n ¥ qes,qn Vg (1) /q, the term with g = p contributes a - p*~*m, while each term with g # p is divisible
by p®(since it equals p® - (m/q) - v4(n) for some q|m). Hence Ds(n) is divisible by p®~*.If a > p then a — 1 > p; if a = p,
then the coefficient a supplies an additional factor p. In either case v, (DS (n)) => p. Repeating this argument shows

Vp (D; (n)) > p for all j > 1, so no iterate becomes S-free. By Theorem 3.2, the iterates therefore cannot terminate at 0. The

contrapositive gives the stated necessary condition.
This gives a quick check to rule out many integers from ever having their subderivative sequence terminate.

For example, if n = 2* = 16 and S = 2, then v,(n) = 4 <« 2 and indeed one computes D, (16) = 32,D,(32) = 80, etc., a
sequence that grows and never reaches zero.

On the other hand, if n = 9 = 3% and S = 3, then v3(9) = 2 < 3, and one checks D3(9) = 6,D5(6) = 2, and D;(2) = 0. Thus
D3(9) = 0.

Equivalently, for every prime p € S that divides n, the exponent v, (n) must satisfy v,(n) < p. In plain terms, no prime
from S should appear in n raised to a power greater than or equal to itself, or else the iterates of Ds will never reach zero.

Next, the fixed points of Dy are classified. By a fixed point, one means a positive integer n such that Dg(n) = n. Solving
Dg(n) = n is akin to finding eigenfunctions of the subderivative operator with eigenvalue 1. In the arithmetic setting, the set of
fixed points is infinite and is described explicitly in terms of the prime factorization of n.

Theorem 3.4. Let S © P be a fixed nonempty set of primes. A positive integer n satisfies Dg(n) = n if and only if

PES
In particular, any fixed point n must be of the form,
n=p? -m,
where p € S is some prime, and m is an arbitrary positive integer whose prime factors lie outside S. Moreover, for each prime
p €S, the pure power pP (with no other factors) is itself a fixed point of Ds. These are the minimal fixed-point solutions
corresponding to each prime in S.

Proof. Let n € N satisfy Dg(n) = n. Since Dg(n) = n - Zpesv,y(n)/p, cancellation of n gives Zpesvpy(n)/p = 1. Let T =5n
supp(n) and set Pr = [[,er p. Multiplying by Py yields X,crv,(n) - (Pr/p) = Pr. Fix r € T and reduce this identity modulo r.
Every term with p # r is divisible by r, and P; = 0(modr), so v,(n) - (Pr/r) = 0(modr). Because gcd(Pr/r,r) =1, it
follows that r|v,.(n). Hence each v, (n) /7 is a nonnegative integer, and the sum v, (n)/p equals 1 only if exactly one term
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equals 1 and the rest are 0. Therefore, there exists p € S with v,(n) = p and v4(n) = 0 for all q € S\{p}, which is equivalent
to n = pPm with m having no prime factor in S. Conversely, if n = pPm with p € S and m S-free, then X,e5v,(n)/q = p/p =
1 and hence Dg(n) = n, as required.

Remark. The fixed points of Dg on N are precisely those integers of the form p? - m, where p € S and m is an S-free positive
integer. These are the minimal fixed-point solutions corresponding to each prime in S. In the special case S = P (the set of all
primes), this reduces to the classical fixed-point family {p?: p prime}; for example, 22 = 4,33 = 27, and 5° = 3125 are all

fixed under the full arithmetic derivative D, while primes themselves (e. g.., 2,3, 5) are not fixed points, since D(p) = 1 # p.

Proposition 3.5. Let T € S be nonempty. If n € N is a fixed point of Ds, then either (i) n is also a fixed point of Dy, or (ii)
D7 (n) = 0. More precisely, writing the fixed point as n = pPm (Theorem 3.4), one has Dy (n) = n whenp € T and Dy(n) = 0
when p € T. Conversely, a fixed point of Dy need not be a fixed point of Ds.

Proof. By Theorem 3.4, any positive fixed point of Dg has the form n = pPm with p € S and m S-free. If p € T, then
Zqervq(M)/q =p/p = 1 and therefore Dr(n) =n. If p € T, then v,(n) = 0 for all ¢ € T and hence Dr(n) = 0. For the
converse, choose p € T and a prime q € S\T and set n = pPq. Then n is fixed for D; (only p contributes), but Dg(n) =n -
(1+1/q) > n, so nisnot fixed for Ds.

4. Examples

Several examples illustrate Theorems 3.1-3.2, Corollary 3.3, and Theorem 3.4

Example 4.1 Let S = 3. The integer 27 = 33 satisfies Dg(27) = 27, so it is a fixed point, and its trajectory under iteration is
constant.

3
Dsy(27) =27 -5 = 27.

Hence D¥(27) = 27 for all k > 1, in agreement with the fixed-point description in Theorem 3.4.

For n = 9 = 32, the trajectory terminates after three steps:
2 1
D3(9) =9 3=6 Diy(6) =67

Thus D3(9) = 0. Note that v3(9) = 2 < 3, consistent with Corollary 3.3.
Similarly, forn = 18 = 2 - 32 one obtains:

2 1

so again D2(18) = 0. In these terminating cases, the prime 3 appears with exponent 2, whereas exponent 3 produces a fixed
point.

Example 4.2. Let S = {2,3}. Forn = 210 = 2-3-5 -7, one has Dg(210) = 175 and then D;(175) = 0, so D?(210) = 0.
Indeed,
D,5(210) = 210(1/2 + 1/3) = 210 - (5/6) = 175.

Here 175 = 52 - 7 is S-free, so the second step vanishes as predicted by Theorem 3.2. The exponents v,(210) = v3(210) = 1
also satisfies Corollary 3.3.

By contrast, starting from n = 32 = 25, the iterates do not terminate; the first few values are:

D,3(32) = 32-(5/2) = 80,

D, 3(80) =80 - (2/1) = 160,

D, 3(160) = 160 - (5/2) = 400.

In fact, one checks inductively that for all k > 0,

D2¥(32) =32-5F and D3**1(32) = 80 - 5.

In particular, every iterate remains divisible by 2, so no iterate becomes S-free and hence. D¥(32) # 0 for all k.
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Example 4.3 Theorem 3.4 is illustrated in the following cases:
o IfS = {2}, the fixed point condition is Vzén)
part of n is 22 = 4, and n can be 4m where m is odd. So the fixed points of D,y are exactly the integers of the form 4m

with m odd. Indeed, D{Z}(4m) =4m- % = 4m. For example, 4, 12, 20, 28, 36, ... are all fixed under D{z}.

= 1. This forces v,(n) = 2, and no factor of 2 appears elsewhere. Thus, the 2-

e IfS = {3}, the fixed point condition is V3§n)

coprime to 3 can multiply it. So the fixed points for D3y are 27m with gcd(m, 3) = 1. For instance,
27,54,81,135,162, ... are fixed by Dy3;. (E.g. D(3(54) = 54 - % = 54 since v5(54) = 3.)

= 1, so v3(n) = 3. Thus, the 3-part of n is 33 = 27, and any integer m

o IfS ={2,3}, a fixed point must satisfy VZT(n) + ng(n) = 1. The only solutions in nonnegative integers are either v,(n) =

2,v3(n) = 0 or v,(n) = 0,v3(n) = 3. Thus n is either 22 - m (with m having no factor 3) or 3% - m (with m having no
factor 2). For example, n = 20 = 22 - 5 is fixed since Dy;5,(20) = 20 G + 0) = 20,and n = 135 = 33 - 5 is fixed since

Dg;3,(135) = 135 (0 + Z) = 135. On the other hand, 12 is not fixed because v2(212) + V3(312) =1 +§ # 1, and indeed
o IfS = {25}, then v2(m) + ¥s® _ 1. This yields either v,(n) = 2 or vg(n) = 5. Hence, fixed points are of the form 4m
2 5 y 5 p

(with no factor 5 in m) or 5°m’ (with no factor 2 in m'). For example, n = 12 = 4 - 3 is fixed for S = {2,5} (since
Dg;5,(12) = 12), and n = 3125 = 5° is fixed (indeed Dy, 5,(3125) = 3125 -§= 3125).

As another observation, if n = pPm is a fixed point of Dg (Theorem 3.4) and q € S is a different prime, then Dg(nq) = nq -
(14 1/q) > nq. Thus, introducing additional primes from S strictly increases the value of Dg, and equality Dg(n) = n occurs
only in the fixed-point families described above.

5. Discussion

The termination and fixed-point results obtained here place the iteration of Dg on N into a dynamical framework: Theorem
3.2 gives an exact termination criterion, Corollary 3.3 provides a practical obstruction, and Theorem 3.4 together with Proposition
3.5 classifies fixed points and their dependence on S. Unlike work emphasizing primarily one-step identities or operator-level
properties of subderivatives (see [3—7]), the present results are formulated explicitly for iterates D¥. The framework uniformly
includes the classical arithmetic derivative (S = P) and arithmetic partial derivatives (|S| = 1). The examples show that
trajectories can terminate, stabilize, or grow depending on S. Future directions include periodic points, quantitative growth for
non-terminating trajectories, and finer comparisons across different prime sets.

6. Conclusion

This work studied arithmetic differential equations on the integers induced by the arithmetic subderivative Dg. A criterion
for the vanishing of iterates DX (n) was established in terms of the S-support of intermediate values, and a necessary condition
on prime exponents was recorded (Corollary 3.3). Fixed points of Dg were classified completely, leading to the explicit families
n = pPm with an S-free cofactor. The examples show that iteration can lead to termination, fixed points, or persistent growth
depending on S and on the initial integer. Further directions include periodic points (D¥(n) = n for k > 1) and quantitative
growth estimates for non-terminating trajectories.

Contflicts of Interest
The authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgments
The authors thank the anonymous reviewers for their valuable comments and suggestions that improved the presentation of
this manuscript.

References

[1] E.J. Barbeau, “Remarks on an Arithmetic Derivative,” Canadian Mathematical Bulletin, vol. 4, pp. 117-122, 1961. [CrossRef] [Google
Scholar] [Publisher Link]

[2] Victor Ufnarovski, and Bo Ahlander, “How to Differentiate a Number,” Journal of Integer Sequences, vol. 6, pp. 1-24, 2003. [Google
Scholar] [Publisher Link]

26


http://doi.org/10.4153/CMB-1961-013-0
https://scholar.google.com/scholar?q=Remarks+on+an+arithmetic+derivative+Barbeau
https://scholar.google.com/scholar?q=Remarks+on+an+arithmetic+derivative+Barbeau
https://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/remarks-on-an-arithmetic-derivative/1FD7F09AD3972692FC97BB23A21D0BD8
https://scholar.google.com/scholar?q=How+to+differentiate+a+number+Ufnarovski+Ahlander
https://scholar.google.com/scholar?q=How+to+differentiate+a+number+Ufnarovski+Ahlander
https://cs.uwaterloo.ca/journals/JIS/VOL6/Ufnarovski/ufnarovski.html

Champak Talukdar & Helen K. Saikia/IJMTT, 72(1), 21-27, 2026

[3] Jurij Kovi¢, “The Arithmetic Derivative and Antiderivative,” Journal of Integer Sequences, vol. 15, pp. 1-16, 2012. [Google Scholar]
[Publisher Link]

[4] Jorma K. Merikoskia, Pentti Haukkanena, and Timo Tossavainenb, “Arithmetic Subderivatives and Leibniz-Additive Functions,” Annals
of Mathematics and Computer Science, vol. 50, pp. 145-157, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[5] P.Haukkanen, J.K. Merikoski, and T. Tossavainen, “On Arithmetic Partial Differential Equations,” Journal of Integer Sequences, vol. 19,
2016. [Google Scholar]

[6] P. Haukkanen, J.K. Merikoski, and T. Tossavainen, “Arithmetic Subderivatives: Discontinuity and Continuity,” Journal of Integer
Sequences, vol. 22,2019. [Google Scholar]

[7] B. Emmons, and X. Xiao, “The Arithmetic Partial Derivative,” Journal of Integer Sequences, vol. 25,2022. [Google Scholar]

27


https://scholar.google.com/scholar?q=The+arithmetic+derivative+and+antiderivative+Kovi%C4%8D
https://cs.uwaterloo.ca/journals/JIS/VOL15/Kovic/kovic4.pdf
http://doi.org/10.33039/ami.2019.03.003
https://scholar.google.com/scholar?q=Arithmetic+subderivatives+and+Leibniz-additive+functions
https://publikacio.uni-eszterhazy.hu/3712/
https://scholar.google.com/scholar?q=On+arithmetic+partial+differential+equations+Haukkanen
https://scholar.google.com/scholar?q=Arithmetic+subderivatives+Discontinuity+and+continuity
https://scholar.google.com/scholar?q=The+arithmetic+partial+derivative+Emmons+Xiao

