International Journal of Mathematics Trends and Technology Volume 72 Issue 1, 28-89, January 2026
ISSN: 2231-5373/ https://doi.org/10.14445/22315373/IIMTT-V7211P105 © 2026 Seventh Sense Research Group®

Original Article

New Algebraic Proofs on the Correctness of Collatz
Conjecture basing on New Unified Formulas along with
Computational Results which Provide Insights on Prime

Numbers

Yassine Larbaoui

Corresponding Author : y.larbaoui@uhp.ac.ma

Received: 19 November 2025 Revised: 28 December 2025 Accepted: 14 January 2026 Published: 29 January 2026

Abstract - This paper presents new mathematical proofs on the correctness of the Collatz conjecture based on new unified
formulas re-expressing this conjecture in a scalable algebraic form. We are proposing new precise formulas that enable
expressing all natural numbers in the Collatz conjecture according to a unified methodology that allows scaling calculations
on infinite numbers, and then we use these unified formulas to prove that all natural numbers are converging to the number
one when we perform Collatz operations on them. In addition, we are presenting computational codes based on these algebraic
formulas to provide computational results that guide the development of proofs. As a result, this paper is presenting twenty-
seven new theorems along detailed proofs, where the first seven theorems are proposing new unified formulas to re-express
the values of numbers according to unified algebraic forms, whereas the other theorems are using these new formulas to
demonstrate that all natural numbers are converging to the number “1” when we forward Collatz operations on them; whereas
demonstrating that there is no divergency over these operations. We also use these formulas to demonstrate that all natural
numbers create loops in infinity that may cause Collatz calculations to circulate in a ring of numbers. Furthermore, we
demonstrate that the only ring of natural numbers that creates a loop for the Collatz conjecture is where we go from “1” to
“4”, then calculations converge back to the number one. All theorems presented in this paper are developed according to an
engineering methodology based on structuring unified formulas to re-express Collatz calculations along step-by-step proofs,
which allow us to develop a breakthrough demonstrating the correctness of the Collatz conjecture, while providing new
insights into the characteristics of prime numbers and their distribution.

Keywords - Collatz conjecture, New algebraic proofs, New theorems, New unified formulas, Computational codes, Prime
numbers characteristics.

1. Introduction
In 1930, the Collatz conjecture was introduced by German mathematician Lothar Collatz [1], and it studies natural numbers
according to consecutive sequences. This conjecture is also referred to as the “Syracus Problem” [2].

The Collatz conjecture determines two specific operations to conduct on a natural number n,, depending on the condition,
whether it is even or odd, which allows us to calculate a consecutive number n,.

Basically, the Collatz conjecture states that if the natural number n; is even (pair), then the consecutive number n, will be

equal %, whereas n, will be equal Gn;—ﬂ) if n, is odd (impair) [3].

The Collatz conjecture also states that if we repeat these operations by starting from any natural number, calculations will
eventually converge to the number “1”, and operations will go from “1” to the number “4”, then they will loop back to “1” [4].
In the 20" century, there were many published attempts by mathematicians trying to verify the statements of the Collatz
conjecture by conducting its proposed operations on high natural numbers [5], and see if calculations are actually converging
to the number “1”, especially after the introduction of computation technologies starting from 1946.
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Starting from 1946, when the first computer was introduced [6-7], mathematicians had more access to computational
amounts of digits.

resources that allowed them to automate calculations, whereas conducting operations on larger variables containing extensive

(almost) all natural numbers with values less than 232 [8-10].

During the second half of the 20th century, between 1946 and 2000, mathematicians were able to use computational
resources on the Collatz conjecture to verify its statements, which allowed them to validate that it is keeping its accuracy for

Starting from the beginning of the 21st century, mathematicians had access to more powerful computers and programming

languages that allowed extending operations on extremely large values, which also enabled them to verify that the statements
of the Collatz conjecture are actually keeping their accuracy on natural numbers reaching up to 26* [10-11].

These advanced computational resources also allowed us to graphically map trees showing interconnections among natural
numbers based on the Collatz conjecture, which links natural numbers according to extensive branches as shown in Figure 1,
where all reached natural numbers are converging to the number “1”.

Even though computation is allowing to verify that the given statements in Collatz conjecture are continuing to be true on

extensive large numbers [10], there have been no algebraic proof that absolutely demonstrate the convergency of all natural
numbers (including infinity numbers) to the number “1” when we keep repeating the given operations in Collatz conjecture
whereas starting these operations on any even number or odd number [12-13].

Due to the absence of a conclusive algebraic proof before publishing this paper, the Collatz conjecture has been considered
as an unsolved problem in number theory [14-15].
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Fig. 1 The tree and loop of natural numbers according to conducted calculations in Collatz conjecture
The shown tree maps in Figure 1 present branching patterns among natural numbers where all Collatz operations eventually

converge to the number “1”, then creating a loop between the numbers “1” and “4”. These converging patterns are inspiring us
to develop unified formulas re-expressing the Collatz conjecture according to algebraic forms that we can use to structure
algebraic proofs on the convergence of infinite natural numbers toward “1”.

In addition, the shown relations among numbers in Figure 1 are inspiring to analyze the distribution of prime numbers on

these tree branches, while identifying common criteria among them according to the Collatz conjecture.

Furthermore, the Collatz conjecture and the shown branches in Figure 1 are encouraging to re-express natural numbers

according to a distributed architecture presented as a sum of terms, then using this architecture to analyze odd numbers,
especially prime numbers, instead of relying only on factorization for number analysis.

Developing a distributed architecture to represent natural numbers is reflected in the published work in [16], [17], and [18].
These published papers propose distributed structures to represent all roots of fourth-degree, fifth-degree, and sixth-degree
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polynomials, which allow for determining some common criteria among distributed terms, like being able to be neutralized
and simplified when they are multiplied by each other.

Furthermore, the published work in [16], [17], and [18] introduces the axis of patterns revealing and calculations
converging toward building algebraic proofs based on precise unified formulas.

Engineering a distributed architecture to represent natural numbers, especially odd numbers and primes, will allow
analyzing these numbers from different views, such as the number of distributed terms in each natural number and the distance
between every two consecutive terms. In addition, this distributed architecture will allow analyzing odd numbers and prime
numbers according to an exponential plan based on the narrowed group {2¥, 3/}Instead of conducting analysis in a linear plan
built on identifying possible factors of each odd number to determine whether it is prime or not.

Furthermore, engineering a distributed architecture to represent natural numbers, whereas deducing common
characteristics among primes will open the way to verify prospective infinity prime numbers by using parallel computation to
calculate all included terms in parallel, which can minimize the computation time exponentially.

The strategy of the presented work in this paper is to use an engineering methodology to develop the proofs on the Collatz
conjecture from scratch by building unified formulas and theorems, which will allow the logic and formulas in this paper to be
solidly built on each other step-by-step according to a scalable engineered structure.

Therefore, this paper presents twenty-seven theorems based on new unified formulas re-expressing the statements of the
Collatz conjecture according to distributed algebraic forms, which allow proving the correctness of the Collatz conjecture,
while providing new insights and analytic methodologies on odd numbers and prime numbers.

The first seven theorems in this paper present new unified formulas along with detailed proofs, which allow re-expressing
the statements of the Collatz conjecture according to scalable algebraic forms based on distributed architectures of terms. These
terms rely only on the group {2%, 3/} to build distributed architectures, which are to be presented as sums of exponential terms.
The eighth and ninth theorems in this paper demonstrate the reciprocity of the proposed formulas, which allow us to prove that
any natural number ng expressed according to these proposed formulas, this number will converge to “1” when we keep
repeating the operations of the Collatz conjecture, whereas starting these operations on n.

The tenth theorem in this paper is relying on the proposed unified formulas in precedent theorems in order to demonstrate
along a detailed proof that the Collatz loop where we go from the number “1” to the number “4” and then going back to the
number “17, is the only Collatz loop of its kind in the group of natural numbers N.

The presented theorems in this paper, from Theorem 11 up to Theorem 18, use previous unified formulas to demonstrate
step-by-step that there is no Collatz loop composed of “m” elements in the group of natural numbers N, except the demonstrated
loop in Theorem 10.

The presented theorems in this paper, from Theorem 20 up to Theorem 27, use the previously unified formulas to
demonstrate that every odd number and every even number, except zero, eventually converge to the number “1” when we keep
repeating the operations of the Collatz conjecture. Furthermore, these theorems rely on this convergence to present all odd
numbers and even numbers according to unified algebraic formulas.

In the final sections, this paper provides new insights into odd numbers and prime characteristics according to proposed
unified formulas, while revealing patterns of prime distribution, which forward the results of this paper to reach the harmonics
of Riemann, the zeta function, and the Riemann hypothesis.

This paper also presents programmed codes in Python and Java along with their outputs, which we developed to compute
the proposed formulas in this paper and to visualize computational results, in order to be used in the presented proofs and to
guide the development of theorems.

As a result, the contents of this paper are structured as follows: Section 2 presents the used methods and analytic logic of
development, starting from re-expressing the statements of the Collatz conjecture toward providing algebraic proofs about their
correctness. Section 3, presenting seven theorems proposing unified formulas re-expressing the statements of the Collatz
conjecture along detailed proofs. Section 4 presents new theorems demonstrating the reciprocity of proposed formulas and the
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reciprocity of Theorem 6 and Theorem 7. Section 5, presenting nine new theorems demonstrating that there is no loop that can
contradict the Collatz conjecture. Section 6, presenting four theorems demonstrating the convergence of odd numbers and even
numbers toward “1” when we keep repeating the operations of the Collatz conjecture. Section 7, presenting three theorems
proving the correctness of the Collatz conjecture, which allow re-expressing all odd numbers and even numbers, except zero,
according to unified formulas. Section 8 presents new insights about characteristics of prime numbers and how to verify them,
while highlighting common patterns of prime distribution based on the proposed unified formulas in this paper. Finally, section
9 is for the conclusion.

2. Methods

Instead of using only a research methodology and relying on forward calculations, we are building the results of this paper
according to an engineering methodology where we develop formulas, theorems, and proofs according to a scalable logic step-
by-step. Therefore, we architect the structure of new unified formulas that will allow us to build algebraic proofs and concretize
a general logic considering all possible scenarios and all expected inputs and parameters, which will allow us to build the proofs
in precise details step-by-step.

Considering that Collatz conjecture is stating two different operations conducted on natural numbers depending on their
nature whether they are even or odd, we need to re-express these two operations according to one unified form that we can
scale on all natural numbers and that link between two consecutive odd numbers, in order to minimize the size of numbers
group and to zoom on the characteristics of prime numbers.

After determining one unified form to re-express the Collatz conjecture in order to link two consecutive odd numbers, we
need to scale this form on tree-branches containing odd numbers, where we can express each odd number by using a different
odd number in the same tree-branch.

In order to demonstrate algebraically that the statements of the Collatz conjecture are correct, we need to prove that there
is no loop among natural numbers where Collatz operations can circulate infinitely, except the loop where we go from the
number “1” to the number “4” and then go back to “1”. In addition, we need to prove that when we commence using the
operations of the Collatz conjecture on any natural number S, calculations will not diverge to infinity and they will actually
converge to a value T inferior to S.

Furthermore, we need to use the new unified formulas in this paper to demonstrate that every natural number S can be
expressed as a function of a number 7 on the same tree-branch where the value of T is inferior to S. Then, proving that when
we keep repeating the operations of the Collatz conjecture, starting these operations on any natural number 7, calculations will
eventually converge to the number “1”.

Since the proposed unified formulas in this paper are based on distributed architectures of exponential terms, we will use
them to analyze the characteristics of prime numbers according to the number of distributed terms in them and according to the
exponential distances among contained terms. In addition, we will use these new formulas to study the distribution of prime
numbers according to trees of numbers, which will highlight new insights away from relying on factorization.

The proposed formulas in this paper will allow proving the correctness of the Collatz conjecture, and also will allow
highlighting specific criteria deduced from the structure of these formulas to be used in identifying whether an odd number is
prime or not, while guiding statistics analysis on prime distribution.

As a result, the engineered logic in this paper is as follows:

1. Developing a unified formula re-expressing the operations of the Collatz conjecture on consecutive numbers.

2. Developing a unified formula expressing a tree-branch of consecutive numbers linked by Collatz operations.

3. Developing a unified formula expressing potential loops of Collatz operations and allowing for the calculation of the value
of the first number in any potential loop.

4. Developing a fourth formula generalizing the third formula by expressing the value of any natural number inside a potential
loop created by Collatz operations.

5. Developing a fifth formula expressing an odd number S as a function of another odd number 7, where starting the
operations of the Collatz conjecture on S eventually converges to 7 after repeating these operations.

6. Developing a sixth formula scaling the fifth one by expressing an odd number S in function of the odd number “7=1",
where starting the operations of the Collatz conjecture on S eventually converging to the number “1”.
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7. Developing a seventh formula generalizing the sixth formula by expressing neighbors of the odd number S, whether these
neighbors are even or odd.

8. Developing reciprocal theorems based on the sixth formula and the seventh formula, in order to be used in the
demonstration of the convergence of the operations of the Collatz conjecture to the number “1”.

9. Using the third formula to demonstrate that there is only one Collatz loop starting from a number n, and going back to the
same number nq, and this loop is concretized when n, = 1.

10. Using the third and fourth proposed formulas to demonstrate that there is no Collatz loop consisting of “m” elements where
Collatz operations can circulate among them, except the loop where calculations start from "n, = 1" and then going back
to ny.

11. Using the eighth and ninth proposed formulas to demonstrate that when we start Collatz operations on any odd number S,
calculations will not diverge to infinity, and they will actually converge to a value T inferior to S, which allows us to
express all odd numbers according to a unified formula.

12. Using the eighth and ninth proposed formulas to demonstrate that when we start Collatz operations on any even number
S, calculations will not diverge to infinity, and they will actually converge to a value T inferior to S. Therefore, we will be
able to express all even numbers according to a unified formula.

13. Using the eighth and ninth proposed formulas to demonstrate that when starting the operations of the Collatz conjecture
on any natural number S different from zero, these operations will eventually converge to the number “1”, which allows
us to express all natural numbers according to one unified formula.

14. Using the distributed architecture of the proposed formulas and their included parts to identify whether an odd number is
prime or not.

15. Using the distributed architecture of proposed formulas to highlight specific patterns that will guide statistics analysis on
the distribution of prime numbers in the tree of natural numbers (Figure 1) after interconnecting them by Collatz operations,
in order to deduce new approximation formulas counting prime numbers with high precision.

16. Using Python and Java programming languages to develop codes based on proposed formulas, in order to generate
visualized graphics of computational results, which will guide the development of theorems and proofs.

3. New Unified Formulas Re-expressing the Collatz Conjecture

In this section, we are presenting seven new theorems proposing new unified formulas along detailed proofs step-by-step,
in order to re-express the given statements and operations in the Collatz conjecture according to a scalable algebraic logic.

3.1. First Unified Formula

This subsection presents a new theorem proposing the first unified formula re-expressing the statements and operations of
the Collatz conjecture to interconnect only odd numbers, since when we have an even number, we keep dividing by “2” until
obtaining an odd number.

Theorem 1
We can re-express the operations of the Collatz conjecture by applying them only to the group of odd numbers, in order
to connect each pair of consecutive odd numbers n, and n, in a Collatz branch as shown in (Equation 1).

_ 3ng+1
n, = K

| k € [1,+oo[ and n; € {N — {0}} and n; MOD[2] = 1 (1)

Proof of Theorem 1
The Collatz conjecture states two different algebraic operations to be conducted on any natural number (n, # 0) depending
on its nature, whether it is odd or even.

If a natural number (n, # 0) It is odd, we multiply it by three, then we add one to the output as shown in Figure 2, in order
to obtain a resulting even number "M" where M = 3n, + 1.

If a natural number "M" is even, we divide it by “2” as shown in Figure 2, and if the output of the division is also even, we
divide it again by “2”. As a result, we keep dividing the output by “2” until we obtain the output as an odd number n,, which

allows expressing the even number "M" as follows: M = 2¥n, | k € [1, +oo].

Therefore, we deduce the possibility of expressing every two consecutive odd numbers n; and n, in the Collatz conjecture as
follows: 3n; + 1 = 2¥n,. As a result, the proposed statements and the proposed formula (Equation 1) in Theorem 1 are correct.
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3.2. Second Unified Formula
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Fig. 2 Illustration of re-expressing the operations of Collatz conjecture to interconnect two different odd numbers

This subsection presents a new theorem proposing a second unified formula re-expressing the statements of the Collatz
conjecture by expressing only sequences of consecutive odd numbers in a Collatz branch, which is based on extending the first
proposed theorem in this paper.

Theorem 2

Supposing a sequence of odd numbers {n, n,, ns,n, ..., ny,} that create a Collatz branch, where the numerical process to
pass from one odd number of this sequence to the following one is as stated by the operations of the Collatz conjecture, which
are re-expressed in Theorem 1. The unified mathematical formula to calculate any number ng of this sequence in function of
n, where (2 < s) is as shown in (Equation 2).

Jj=s—i-2
i . g K¢;
n1*35—1+2§;3_2[3‘*221=0 O

ng = | Ko = 0 and K(s1) € {N —{0}} )

O
Proof of Theorem 2

In the case of having a sequence of two odd numbers {n,, n,} that create a Collatz branch, where the numerical process to
pass from one odd number of this sequence to the following one is as described in (Equation 1) (Theorem 1); we express the
value of n, as follows: 3n, + 1 = 2K1n,. Therefore, we can express this value of n, as shown in (Equation 3).

. | gimeiz
3<2—1>n1+2523'2[3u221=0 0

_ (3'ng+2k0)  (3ny+20)  (3ny+1) 3
szfg_lk(n T okotki T p0+k1 T k1 ( )

n, =

As a result, the proposed formula in (Equation 2) (Theorem 2) is correct for the case of having a sequence of two
consecutive odd numbers {n,,n,} in a Collatz branch where k, = 0.

In the case of having a sequence of consecutive three odd numbers {n,, n,, ns} that create a Collatz branch, where the
numerical process to pass from one number of this sequence to the following one is as described in (Equation 1) (Theorem 1);
we express the values of n, and n, as follows: 3n; + 1 = 2¥1n, and 3n, + 1 = 2*2n,.

3ni+1

After replacing the value of n, by (nz =<5 ) in order to identify the expression of (n3 = el

2k2

) in terms of n;, we

k1
obtain the following result: n; = %. Therefore, we can express this value of n; as shown in (Equation 4).
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As a result, the proposed formula in (Equation 2) (Theorem 2) is correct for the case of having a sequence of three odd
numbers {n,, n,, n;} creating a Collatz branch where k, = 0.

In the case of having a sequence of four odd numbers {n,, n,, n;,n,} that create a Collatz branch, where the numerical
process to pass from one number of this sequence to the following one is as described in (Equation 1) (Theorem 1); we express
the values of n,, n; and ny, as follows: 3n; + 1 = 2¥1n, and 3n, + 1 = 2%2n; and 3n; + 1 = 2k3n,.

3ny+
2k2

After replacing the value of n, by (n2 = ) in order to identify the expression of (n3 = ) in terms of ny, we

nq
2k1
9ng+3+2K1

Gtk ) in order to identify the expression of

k1
Then, we replace the value of n; by (n3 = Mats+?

obtain the result: n; = = itk

2714 +9+3x2K1 4 2(k1+k2)
2(k1+kz+k3)

(n4 = 321:1) in terms of ny, which allows us to determine the expression of n, as follows: n, =
Therefore, we can express this value of n, as shown in (Equation 5), where k, = 0.

=4—i-2

31.*22] 0 0
33n1+30*2(k0+k1+k2) +3142k0+k1 432,0k0

b S Tt ©)

3¢y +Z‘ 4-2

As a result, the proposed formula in (Equation 2) (Theorem 2) is correct for the case of having a sequence of four odd
numbers {n,, n,, ns, n,} creating a Collatz branch.

The next step in this proof is using recurrence (induction). Therefore, we suppose that the proposed formula in (Equation
2) (Theorem 2) is correct for a sequence of "m" odd numbers {n,, n,, ns, n, ..., n,,} that create a Collatz branch, where the
numerical process to pass from one number of this sequence to the following one is as described in (Equation 1) (Theorem 1).
Then, we add another odd number 7, , 1) to this sequence, and we try to verify whether the proposed formula in (Equation 2)

(Theorem 2) does extend itself correctly by expressing the value of 7,41y in terms of n;.

Let us suppose that we have a sequence of (m + 1) odd numbers {n,, n,,n3,ny4 ..., Ny, Non+1)} that creates a Collatz branch
as shown in Figure 3, where the numerical process to pass from one odd number of this sequence to the following one is as
described in (Equation 1) (Theorem 1). Then, we suppose that the proposed formula in (Equation 2) is correct for each element
n, from this sequence where (2 < s < m). Therefore, we suppose that the calculated expression in (Equation 6) for n,, by
using the proposed formula in (Equation 2) (Theorem 2) is correct.

Ma= ﬁ3N1+1}—2’” N{mj= (3N(m- 1]+1};2krm-ij
"1 Nz | N3 | ==scmrenennnns 'Ntmﬂ ) - N;m; j- '"lm+1:
N3= (3Nz+1):2K2 N;m+4]=:3N;m]+1}+2krm?

Fig. 3 Illustration of Collatz branch consisting of (m+1) odd numbers interconnected according to the re-expressed operations of
Clollatz conjecture

nyx3M-14yizms 2[3 *2Zj )
= = . € —_
Nm zzl:z)n_lK(l) | KO 0 and K(Lzl) {N {0}} (6)
Finally, we replace n,, in the equation (n(m+1) = 3’271;(”—1:1) by its shown expression in (Equation 6), in order to express

the odd number 1,4y in function of n;, which gives us the shown result in (Equation 7).
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3%3™ ny +3 % TiZp? [3i | zzﬁ?_l_z’@] + 255 K

n = ——
(m+1) 2K(m) + ZZ%;SH Ky
Jj=m—i-1
3mn1+z§:6"'1[si*22f=o ko
= Ne41) = | Ko = 0 and K1) € {N — {0}} (7)

1=
221=gn K

As a result, we deduce that Theorem 2 is true, because its proposed statements and proposed formula in (Equation 2) are
correct by recurrence (induction).

3.3. Third Unified Formula

This subsection presents a new theorem proposing a third unified formula re-expressing the statements of the Collatz
conjecture by expressing only sequences of consecutive odd numbers that can create a loop forwarding calculations back to the
starting number, which we describe as the Collatz loop. This subsection is based on the proposed formulas in Theorem 1 and
Theorem 2.

A Collatz loop is a sequence of integer numbers where Collatz operations circulate from one to another of these numbers
without breaking out of the loop.

In order to define a new unified formula for calculating the first number n,; of any potential sequence of numbers
{ny,n,, ng,ny ..., n,,} that can create a Collatz loop, we need first to identify a common structure of calculation among small
sequences of Collatz loops that may consist of two, three, or four numbers. Then, generalizing this structure on larger sequences
of numbers that may build extensive Collatz loops, which can be proven afterward by induction (recurrence).

Theorem 3

Supposing a sequence of consecutive odd numbers {n,, n,, ns, n, ..., n,,} that creates a Collatz loop, where the numerical
process to pass from one odd number of this sequence to the following one is as described in (Equation 8); the unified
mathematical formula to calculate the first number n; sequence of this is as shown in (Equation 9).

3n, +1 =2kn,; 3n, + 1 = 2k2n,; 3n; +1 = 2%3n,; ...; 3n,_, +1 =2km-1n_; 3n, +1 = 2kmp, (8)

Jj=m-i-1

zéf?‘l[si*zzjeo "m]

n = | ko = 0 and ksq) € {N — {0}} 9)

2ZIZ8 k@) _3m
Proof of Theorem 3

We are using the proof by recurrence (induction). Therefore, the first stage is to treat the second smallest Collatz loop,
which consisted of two odd numbers {n,,n,}, where we can pass from one to another between them by using the operations
shown in (Equation 10).

3n1 + 1= 2k1n2; 3n2 + 1= 2k2n1 (10)

The first step of this stage is calculating n, in function of n, at the second iteration, where 3n, + 1 = 2¥2n,. The
resulting expression at this first step is as shown in (Equation 11).

2kan,—1
ny = 2270

(In
The second step is replacing n, by the shown expression in (Equation 11), in order to determine the value of n, in the
first iteration, where 3n; + 1 = 2¥1n,. The resulting expression at this second step is as shown in (Equation 12).

_ (ngx2katkz_pki_3)

n
1 9

(12)
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The third step of this stage is calculating the general value of n, by using (Equation 12). As a result, the final expression
of ny for any Collatz loop that may consist of only two odd numbers is as shown in (Equation 13), which respects the proposed
unified formula for Collatz loops in (Equation 9) (Theorem 3).

2ko+k143
ng = W | kO = 0and k(izl) € {N — {0}} (13)
The second stage is to treat the third smallest Collatz loop, which consists of three odd numbers {n,, n,, n;}. We can pass

from one to another among these three odd numbers by using the described operations in (Equation 14).
37’11 + 1= zklnz; 3n2 + 1= 2k2n3; 3‘)’13 + 1= 2k3n1 (14)

The first step of this second stage is calculating n5 in function of n, at the third iteration, where 3n; + 1 = 2*3n,. The
resulting expression at this first step of stage 2 is as shown in (Equation 15).
_ (2k3ny-1)

n
3 3

(15)

The second step at this stage is calculating n, in function of n, at the second iteration, where (3n, + 1 = 2¥2n;) by
replacing n; with its shown value in (Equation 15). The resulting expression at this second step (stage 2) is as shown in
(Equation 16).

_ (2kstkan, —oka_3)

n
2 9

(16)

The third step (second stage) is replacing n, by the shown expression in (Equation 16) in order to determine the value of
n, in the first iteration, where (3n; + 1 = 2¥1n,). The resulting expression at this third step (stage 2) is as shown in
(Equation 17).

n. = (2k3+k2+k1n1_2k2+k1_3*2}(1_9)
1=

pv a7
The fourth step of this second stage is calculating the general value of n; by using (Equation 17). As a result, the final
expression of n; for any possible Collatz loop that may consist of only three odd numbers is as shown in (Equation 18), which
respects the proposed unified formula for Collatz loops in (Equation 9) (Theorem 3).
i=2{ 41,20 kG
(k2 +ki 432k 40) Zi:0[3 w27j=0 U
2k1+k2+k3_27 -

n = | ko = 0 and k(sq) € {N —{0}} (18)

S0k g3
The third stage is treating the fourth smallest Collatz loop, which consists of four odd numbers {n,, n,,n;,n,}. We can
pass from one to another among these four odd numbers by using the described operations in (Equation 19).

3n, + 1 =2Kn,; 3n, + 1 = 2k2n,; 3n, +1 = 2%3n,; 3n, +1 = 2k4n, (19)

The first step of this third stage is calculating n, in function of n, at the fourth iteration, where (3n, + 1 = 2%+n,). The
resulting expression at this first step (stage 3) is as shown in (Equation 20).

_ (@*ny-1)

n
4 3

(20)
The second step at this stage is calculating n5 in function of n, at the third iteration, where (3n; + 1 = 2%3n,) by replacing
n, with its shown value in (Equation 20). The resulting expression at this second step (stage 3) is as shown in (Equation 21).

(2katkspn, —2k3_3)

n =
3 9

2]

The third step at this stage is calculating n, in function of n, at the second iteration, where (3n, + 1 = 2¥2n;) by replacing
n3 with its shown value in (Equation 21). The resulting expression at this third step (stage 3) is as shown in (Equation 22).
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n = (2k4+k3+k2n1_2k3+k2_3*2k2_9)
2 =

(22)

27

The fourth step (third stage) is to replace n, by the shown expression in (Equation 22) in order to determine the value of
n, in the first iteration, where (3n; + 1 = 2¥1n,). The resulting expression at this fourth step is as shown in (Equation 23).

n = (2k4+k3+k2+k1n1_2k3+k2+k1_3*2k2+k1_9*2k1_27)
1=

” (23)
The fifth step of this third stage is calculating the general value of n; by using (Equation 23). As a result, the final

expression of n; for any Collatz loop that may consist of exactly four odd numbers is as shown in (Equation 24), which respects

our proposed unified formula for Collatz loops in (Equation 9) (Theorem 3).

j=3—1

, J .
513 3i.5%)=0 "(n}

_ (2kstkatkyyzipkatkigupk1427)
nl - 2k1+k2+k3+k4_81 -

| ko = 0 and k1) € {N — {0} (24)

=4
2Zi=0k() _34

At the previous stages one, two, and three of this proof, we were able to obtain downsizing expressions from the shown
formula in (Equation 9) by scaling calculations on the finite values of (m = 2), (m = 3) and (mn = 4) where our proposed
unified formula in (Equation 9) (Theorem 3) was correct. Therefore, the next stage, stage four, is about proving that the
proposed unified formula in Theorem 3 (Equation 9) is correct for a sequence of (m + 1) odd numbers.

However, we need to rely on a transitional algebraic form of the unified formula shown in (Equation 9) to make calculations
extendable and distinguishable from n,, to n,,,,. Therefore, we will rely on the shown expression in (Equation 25), which is
deduced from Theorem 2.

. | gjmmeic2,
3m—1n1+22f6n'2[3l*221'=0 k(l)]

(25)

Ny = T=m-1
2Zizo k@

We rely on the proposed expression in (Equation 25) for a sequence of "m" odd numbers. Then, we add another odd
number n,,; to this sequence in order to create a Collatz loop consisted of (m + 1) numbers, which give us the final iterations
shown in (Equation 26):

3Ny + 1= 2Mm s npygy and 3 x nepyqy + 1 = 2Kmen wony (26)

By using the shown expressions in (Equation 26) and (Equation 25), we deduce the shown result in (Equation 27):

, o gfEmoic
3Mny +Z§§B"_1[3l*zzi=0 k(l)]

N(m+1) = B and 3 * ngpygy + 1 = 2040wy @7
As a final step, we use the shown expressions in (Equation 27) to calculate the value of n,, which is presented in
(Equation 28):

Jj=m-i Jj=m-—i
3m+1n1+z£z?[3i*zzf‘=° "U’)] 5;31[31-*22]-:0 "(D]
n, = - =>n, = = ko = 0and k(-1 € {N — {0 28
1 22%;‘611+1k(l) 1 22%;m+1k(l)_3m+1 | 0 (iz1) { {}} ( )

As a result, the proposed unified formula in (Equation 9) (Theorem 3) to calculate the first number n,; from a sequence of
odd numbers {ny, n,,nz, ny, ..., N, } that can create a Collatz loop is correct for (m € {N — {0}}).

3.4. Fourth Unified Formula

This subsection presents a new theorem proposing a fourth unified formula scaling the third proposed formula in
Theorem 3 by extending it to calculate any odd number that may be included in a Collatz loop.
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Theorem 4

Supposing a sequence of consecutive odd numbers {n,, n,,ns, n, ..., n,,} that are included in a potential Collatz loop,
where the numerical process to pass from one odd number among them to the following one is as described in (Equation 29).
The unified mathematical formula to calculate any odd number n;,, in this sequence (where 0 < | < m — 1), it is as shown in
(Equation 30).

The used operator ROT{™( ) in (Equation 30) is rotating the order of shown numbers in the sequence (Equation 29) to
the left by "S" steps, whereas "m" is expressing the number of numbers in the sequence. This rotating operator is expressed as
shown in (Equation 31).

3n, +1=2"ny; 3n, 4+ 1 =2Fng; 3ny +1 =2%n,;..; 3n,,_, + 1 = 2km-1n_; 3n, + 1 = 2kmp, 29)
sizm- 20 RoT (k)
Ny = | 0<l<m—1andk,=0and k(s € {N - {0}} (30)

22%23” k() _gm
ROT™(k¢jy) = { kjri—ms if G +1>m) (31)
ko=0, if(j =0)
Proof of Theorem 4
The proposed unified formula in (Equation 9) (Theorem 3) enables the calculation of the value of the first number n; from

a sequence of odd numbers {n,,n,,ns, ...,n,,} that can create a Collatz loop. This proposed formula can be extended to
calculate the values of other numbers n; in this sequence by relying on iterative rotations of this sequence in terms of order.

For example, we rotate the sequence of odd numbers {n,, n,,ns, ..., N1, Ny} to the left by one step in order to have the
sequence {ny, ng, ..., Ny_1, Ny, Ny }, Wwhere each number is expressed as shown in (Equation 32). :

3n, + 1 =2k2ng; 3n, +1 =2%n,; ...; 3n,_, +1=2%m-1n; 3n,, +1=2%mn;; 3n, + 1 =2k, (32)
As a result, we can calculate the value of the odd number n, as shown in (Equation 33):

j=m-1, . j=m-—i,
2Xj=0 k(1)+25211n—2[3i*221'=2 k()| 4zm-1

n; = (33)

l=m
2Zi=0 K@ _3zm

This time, we rotate the sequence {nq, n,,ns, ..., Ny_1, Ny } by two steps to the left, which gives us the resulting sequence
{ns, ..., yp_1, My, Ny, Ny} expressed in (Equation 34), where we can calculate the value of n; as shown in (Equation 35):

3ng +1=28n,;..; 3n,_4 + 1 =2%m-1n_; 3n, + 1 = 2kmn; 3n; + 1 = 2*1n,; 3n, + 1 = 2k2n, (34)
22;:31_1k(f)+3*2k1*22§:73n_1k(j)+2§§£n_2[3i*zzj:;n_i+lk(j) +3m=1
ng = | ko = 0 and ksq) € {N — {0}} (35)

l=m
2Zi=0 K@) _zm

We deduce that we use the same unified formula to calculate any odd number n; from the sequence
{ny,ny, ns, ..., N1, Ny, } that can create a Collatz loop. The only difference is made by rotating the sequence, iteratively, by

s" steps to the left and respecting the new order of the resulting sequence. Therefore, we create the operator ROT*( ) to
express the iterative rotation of order as shown in (Equation 36):

ROT™(k;) = k}-[if (i==0{=0;} else{if(i +s>m){j=i+s—m;lelse{j=i+s; }}] (36)

We can calculate the value of any number n;,,; from the sequence {n,, n,, ns, ..., ny,_1, N}, where the value of "I"
respects the condition (0 < [ < m — 1), by relying on the operator ROT,"*( ) shown in (Equation 36), while using the
presented expression in (Equation 37):
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z:j:m—i—l

- ; A ROTT (K ;
=m-1 =
Z:=(r)n 3Lx27Jj=0 1 ( (}))

(37

N1 = =m
221=0 K _gm

The next stage is relying on recurrence (induction) to prove the given statement and proposed formulas in Theorem 4.

We suppose that the used formula in (Equation 37) is correct to calculate a number n;, ;, by rotating the order of the sequence
(Equation 29) by "I" steps to the left, in order to obtain the shown sequence in (Equation 38). Then, we will prove by
recurrence that we can use the same logic to calculate n;, , by rotating the resulting sequence in (Equation 38) by one other
step to the left.

3ROTI™(ma) + 1 = 2ROT" (K@) ROT™ (ny); 3ROT™(n,) + 1 = ZRZTlm(K(Z))ROTlm(nQ; i} BROT™(Mpps) + 1 =
2ROT, (K(m-”)ROTl’”(nmhz); 3ROT™ () + 1 = 2ROTI (K(m-Z))ROTlmnEnm_l); 3ROT™ () + 1 =
2RO (Kam-0) ROT™ (n,); BROT™ (M) + 1 = 2RO (Kam) ROT™ () (38)

We extend the used logic in this proof by rotating the shown sequence in (Equation 38) by one step to the left. As a result, we
obtain the shown sequence in (Equation 39).

3ROT™(n,) + 1 = 2RO (K@) ROT™ (n3); ...; 3ROT™ (Mpy—s) + 1 = 2ROT (K- ROT™(n,,_5); 3ROT™ (M) + 1 =
2RO (Kan-2) ROT™ (ny_1); BROT™ (Npy) + 1 = 2RO (Kn-0)ROT™ (n,,); 3ROT™ () + 1 =
2RO (Kem) ROT™ (n,); 3ROT™(ny) + 1 = 28T (K@) ROT™ (ny) (39)

As a result, we can calculate the value of the element ROT;™(n,) by using the shown formula in (Equation 40), which is
based on extending the demonstrated formula in Theorem 3.

22;:’(;"_1}207‘?1(1((1‘))*_2::?—2 3i*22§:12n_iR0T7in(K(j)) 43m-1
ROT™(n;) = sEmy (40)
2%1=0 “(D_3m
We deduce that we can re-express the shown formula in (Equation 40) to be presented as shown in (Equation 41).
gizm-fst,20 ROt (K(p)
ROT[{1(ny) = ROT™(n,) = (41)

2220 K@) _gm
Therefore, the proposed statements and formulas in Theorem 4 are correct by recurrence (induction).

3.5. Fifth Unified Formula

This subsection presents a new theorem proposing a fifth unified formula scaling the second proposed formula in Theorem
2 by reversing its operations in terms of order, which allows for expressing an odd number in a function of its consecutive odd
numbers according to the operations of the Collatz conjecture.

Theorem 5

Supposing a sequence of odd numbers {n,, n,, ns,n, ..., n,,} that create a Collatz branch, where the numerical process to
pass from one number of this sequence to the following one is as stated by the operations of the Collatz conjecture, which are
re-expressed in Theorem 1. The unified mathematical formula to calculate any number ng of this sequence in function of
n,, where (1 <s < m) is as shown in (Equation 42).

l=m-1-s . . 1:=T”_1_5K .
nm*221=0 K(—l+m—1)_2§;gl—1—5 3iyp =i (=j+m-2)

ns = Jm=s | Ks—1 = 0% Ks_4 and K(;»g) € {N - {0}} (42)
Proof of Theorem 5
In the case of having a sequence of two odd numbers {n,,_1, n,,} that create a Collatz branch, where the numerical

process to pass from one odd number of this sequence to the following one is as described in (Equation 1) (Theorem 1); we
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express the value of n,,_; as follows: 3n,,_, + 1 = 2¥m-1n_  Therefore, we can express this value of n,,_; as shown in
(Equation 43).

Jj=m—-1-s

Lj=i k(= j+m-2)

SIE0 k(Ctem—1) _yi=0|4i
npr2-l= —Yio|3'2 (nm*zk(m_l)—l)
n(s:m—l) = 3m-s = 3 |km—2 =0=x km—z (43)

As a result, the proposed formula in (Equation 42) (Theorem 5) is correct for the case of having a sequence of two
consecutive odd numbers {n,,_4, n,,} that creates a Collatz branch.

In the case of having a sequence of consecutive three odd numbers {n,,_,, n,,_1, n,, } that create a Collatz branch, where the
numerical process to pass from one number of this sequence to the following one is as described in (Equation 1) (Theorem
1); we express the values of n,,,_; and n,,,_, as follows: 3n,,,_, +1 = 2km-2n, | and 3n,,_, + 1 = 2km-0n_

nm*zk(m‘l) —1)

After replacing the value of n,,_, by (nm_1 = in order to identify the expression of (nm_2 =

Zk(m_z) *N(m—1) -1

S ) in terms of n,,, we obtain the following formula presenting the value of n,,_, in function of n,,;: n,,,_, =

npr2m=2tkm-1)_km-2)_3

5 . Therefore, we can express this value of n,,_, as shown in (Equation 44).

=1 . . jEm=1-s,
Ny # 2Z1E0 K(-tem=1) — P=1|30y p2jmi  K(=jam=2)

N(s=m-2) = 3m-s |km—3 =0= km—3

N2 m=-2)TKm-1) _30,,K(m-3)*kim-2) _31,,k(m-3)
=4 nm_z =

- lkmos =0 (44)
As a result, the proposed formula in (Equation 42) (Theorem 5) is correct for the case of having a sequence of three odd
numbers {n,,_,, Ny,_1, Ny} that creates a Collatz branch.

In the case of having a sequence of four odd numbers {n,,_3, n,,_, N;m_1, Ny} that create a Collatz branch, where the
numerical process to pass from one odd number of this sequence to the following one is as described in (Equation 1)
(Theorem 1); we express the values of n,,,_3, n,,,_, and n,,,_; as follows: 3n,,_3 + 1 = 2km-3n_ . and 3n,,_, + 1 =
2km-2m . and 3n,_, + 1 = 2km-1n, .

. 2Km-Dp, 1
After replacing the value of n,,_; by (nm_1 = —)

in order to identify the expression of (nm_2 = .

Zk(m_z)‘n(m_l)—1>

npr2Km-2)Tkm-1)_y*m-2)_3

in terms of n,,, we obtain the result (nm_z = ) Then, we replace the value of n,,,_, by

9
Zk(m_3)n(m_2) -1
3

npr2 m=2)tKan-1)_ykm-2)_3
Nm-2 =

5 ) in order to identify the expression of (nm_3 =

> in terms of n,y,,

which allows us to determine the expression of n,,_5 as follows: n,,,_; =
N2 m=3)Tkm-2)tkan-1) _;Km-3)*km-2)_3.,km-3)_g

. Therefore, we can express this value of n,,_5; as shown in (Equation 45).

27
—m—1— . ) j=m-1-s
n,, * ZZLS” 1 Sk(_l+m—1) _ ;zan—l—s [31 * 22j=i k(_j+m—2)]
N(s=m-3) = 3m-s | ks—1 =0xkg_ 4
I= ; . j=2,
Ny # 22050 K(-trm-1) — yri=2 [3‘ % 2%)=1 "(—1+m—2)]
= Nyp-3 = 33 | km-q = 0% kg
N2 m=3) TR (m-2)K(m-1) _30,,Km-4)K(m-3)tk(m-2) _31,,Km-0*m-3) _32,,*(m-2)

= Nyp-3 = 27 | km—s =0

40



Yassine Larbaoui / IJMTT, 72(1), 28-89, 2026

2 Km=3)TRm=-2)*k(m-1) _5K(m-3)*K(m-2) _3.5Km-3) _9

S Ny_3 = (45)

27
As a result, the proposed formula in (Equation 42) (Theorem 5) is correct for the case of having a sequence of four odd
numbers {N,;,_3, Nym_2, Nm_1, Ny } that creates a Collatz branch.

The next step in this proof is using recurrence (induction). Therefore, we suppose that the proposed formula in (Equation
42) (Theorem 5) is correct for a sequence of (p — 1) odd numbers {Ny,_p12, Mn—p+3, Mm—p+as = Nm—3, -2, Nm—1, Ny} that
create a Collatz branch, where the numerical process to pass from one number of this sequence to the following one is as
described in (Equation 1) (Theorem 1). Then, we add another odd number n(;,_p41) to this sequence, and we try to verify
whether the proposed formula in (Equation 42) (Theorem 5) extends itself correctly by expressing the value of n¢,_,.1) in
terms of n,,, .

We suppose having a sequence of (p) odd numbers {1,;,_p11, Nin—p+2: Mm—p+3s =+ Mm-3, Mm—2) Tn—1, N} that create a
Collatz branch, where the numerical process to pass from one number of this sequence to the following one is as described in
(Equation 1) (Theorem 1). Then, we suppose that the proposed formula in (Equation 42) (Theorem 5) is correct for each element
ng from this sequence, where the value of "s" is in the following range (m — p + 2 < s < m — 1). Therefore, we suppose that
the calculated expression in (Equation 46) for 7(5—,_p42) by using the proposed formula in (Equation 42) (Theorem 5) is
correct.

l=m-1-s . | ogpfEmolos,
nm*zzlzo k(—l+m—1)_Z;:gn_l_s[y*zzjﬂ k(—j+m-2)

n(s:m—p+2) = 3m-s | ks—l =0= ks—l (46)

Mmpizy*2 P+ 1
3

Finally, we replace ng;,_p42) in the equation <n(m_p+1) = ) by its shown expression in (Equation 46) in

order to present the number 7, 1) in function of n,,, which gives us the shown result in (Equation 47).

_ 2K ing, g — 1
n(s:m—p+1) - 3

I=p- : . j=p—4
2Kkm—p+1 4 221=€ 3k(—l+m—1)nm — 2km-p+1 [3P=3 4 Z‘,=g_4 (31 % 22j=i k(—]'+m—2))] —3p-2
i=

= Nm—p+1 = 3p-1 | km—p

=0%*kpm_p

I=p— i . Jj=p—4 .
2Kkm-p+1 4 221=€ 3k(—1+m—1)nm — 2km—p+1 4 393 _ Z‘,—g“* <3l * 22j=i k(—1+m—2)> —3p-2
i=

= Npm—p+1 = 3p-1 | km—p

=0%*kpm_p

l1=p-3 {—1y— ; ]:=P_3k ; —
2km=p+1 4 2Zi=0 ~ K-tem-np, — $TP3 (3‘ * 2%)=i (—1”"-2)) —3p~2

= Nm-p+1 = | km—p =0x km—p

3p-1

I=p- L , Jj=p-3
22120 2k(—l+m—1)nm - 22;5‘3 [3! « 22 j=i "(—j+m—2)] — 3p-2

= Np—p+1 = 3p-1 | km—p =0

I=p- - , j=p-2 )
2ZZ0 Ktimenp b [31 ¥ 2%j=i "(—1+m—2)]

= NMpmps1 = 3p-1 | km-p =0
—m—1— Jj=m-1-s
Y= S"'—(—z+m—1>—2526"‘1‘5[31'*22#1' "(—i+m—2>]
= N(s=m-p+1) = 3m—s | ks—1 =0 47)
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As aresult, we deduce that Theorem 5 is true, because its proposed statements and proposed formula in (Equation 42) are
correct by recurrence to calculate the value of each element n; from a sequence containing (p) elements of odd numbers
{Mm—p+1 Mm—p+2, Mm—p+3s -+ Nn—3, Mm—2, Mm—1, Ny } that create a Collatz branch, where the numerical process to pass from
one odd number of this sequence to the following one is as described in (Equation 1) (Theorem 1).

3.6. Sixth Unified Formula

This subsection presents a new theorem proposing a sixth unified formula re-expressing the statements of the Collatz
conjecture by expressing only sequences of consecutive odd numbers, which is based on extending the first and the fifth
proposed theorems in this paper.

Theorem 6

Supposing a sequence of odd numbers {n,, n,, ns, n, ..., n,,} that create a Collatz branch, where the numerical process to
pass from one odd number of this sequence to the following one is as stated by the operations of the Collatz conjecture, which
are re-expressed in Theorem 1. If this Collatz branch is based on conducting the operations of the Collatz conjecture by starting
from the number n, and converging into the number (n,, = 1) , then we can express n, according to the general formula shown
in (Equation 48).

l=m—-1 . . jEm=i=2
R

n = =y | Ko = 0 and K;z1) € {N — {0}} (48)
Proof of Theorem 6

In order to prove this sixth theorem, we are going to extend Theorem 5 by scaling its presented formula in (Equation 42).

Based on Theorem five, which we already proved, when we have a sequence of odd numbers {n,,n,, ns, n, ..., n,,} that
creates a Collatz branch, where the numerical process to pass from one odd number of this sequence to the following one is as
stated by the operations of the Collatz conjecture (which are re-expressed in Theorem 1); we can calculate the value of an odd
number ng of this sequence in terms of n,, as shown in (Equation 49):

l=m—-1-s . . j=m-1-s i
nm*221=0 K(_H_m_l)_Zi;r)n—l—s[y*zzj‘:i K(—j+m—2)]

ng = | Ks-1 =0*K;_4 (49)

3m-s
Therefore, if the sequence of odd numbers {n,, n,,n3,n, ...,n,y,} is starting the conduction of Collatz operations from n; and
then converging into an odd number n,, = 1; then we can express the number n, as presented in (Equation 50):

1 j=m-1-s

l=m—-1— . . i
Ny * 25120 K(ctome1) _ yi=m=1-s [3l x 2= K(—z+m—z>]

Nis=1) = 3m—s | Ks—1 = 0% Kg 4

l=m-2 . X j=m-2 X
Ny * 2ZiZ0  K(-l4m-1) — yim-2 [31 * 22j=i K(—1+m—2)]

p—1 Tl1 = 3m_1 | KO = 0
—me . _ j=m-2
280 Ky — yrizm=2 [3‘ x 2Xj=i K(—i+m—2>]
=n, = 1 | Ko =0
=m— Jj=m—i-2
e IK(l)—ZfEB”_Z[ﬂ*zEFo KU)]
=n = Fm—1 | Ko =0 (50)

As a result, the proposed formula and the presented statements in Theorem 6 are correct.

3.7. Seventh Unified Formula

This subsection presents a new theorem proposing a seventh unified formula re-expressing the statements of the Collatz
conjecture by expressing sequences of consecutive odd numbers and their neighbors, which is based on extending the first and
the sixth proposed theorems in this paper.
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Theorem 7

Supposing a group "L" containing natural numbers, where the minimum number in "L" is {n; = 1} and the maximum
number is {n,, = m}; as shown in (Equation 51). If every odd number n, from this group, "L" is converging to a value (P = 1)
inferior to itself when repeating the operations of the Collatz conjecture, whereas having (ng; < n,,); then we can express
every natural number "n" from the group "L" where (n < n,,,_,) as shown in (Equation 52).

L={n=Ln,=2,n3=3;n,= 4;..; npp_y = (m—1); np, = m} (51)

=t jmt—ic1
zzl=oK(D—z;fs‘l[si*zzf:o )

n =2k

| R € Nand K("O) =0and K("z) €Z and K("l) € Z and Ké}e{o,l,z}) €
{(N—{0}}and(R+K;)=0and (R+K; +K;)>0 (52)

3t-1

Proof of Theorem 7
In order to prove this theorem (Theorem 7), we are going to extend Theorem 6 by scaling its presented formula in (Equation
48).

We suppose having an odd number ng from the group "L" where the minimum number in "L" is {n, = 1} and the maximum
number in "L" is {n,, = m}. We also suppose that every odd number in the group "L" is converging to the number “1”” when
repeating the operations of the Collatz conjecture.

Since we supposed that ng is an odd number converging to the number “1” when we keep repeating the operations of the
Collatz conjecture, whereas starting them on ng, we can express the generated branch of Collatz by these operations as shown
in (Equation 53).

ng = nj; 3n; + 1 = 2%n); 3n, + 1 = 2F2n}; . 3np_, + 1 = 2Ft-1n) = 2ker (53)

By relying on Theorem 6 and the shown expressions in (Equation 53), we can present the number n as shown in
(Equation 54).

I=t-1 . ) ]:=t_i_2k ;
2Z1=0 k(l)_zig—Z[y*zZ,:o (1)]

ng=n, = | ko = 0 and k; € {N — {0}} (54)

3t-1

Now, we calculate the value of the natural number "n" where (n € {L — {n,,}}) and (n = ny — x), whereas having

(x € {N - {0}} and x = % andqeNandr e N). By selecting the values of "q" and "r" as natural numbers, the

(20+43%20-1) -1 (20+43+21-1) — 9. (22+43+21-1) -3 (29+3+22-1) -4 (22+43%22-1) _
3 ’ 3 ’ 3 ’ 3 ’ 3

value of "x" can be among the group {
5; . ngq } As a result, we obtain the shown expression in (Equation 55).

e . . j=t-i-2
28156 Tk — yrizt-2 [31 x 2%j=0 "w]

n=n—x =n= T —Xx

I=t-1 P . Z}:it—i—zk .
22i=0 k@ — 22:6 2 [31 * 24j=0 (1)] (29 +3%27 —1)

3t-1 3

= n =

e ) ) j=t—i—2
22%=S 1k(l) _ Zli:B—Z [31 % 22}=0 k(j)] _ (Zq +3 %27 — 1)3t—2

= n= 3t-1

=t— . . j=t—i-2
= T R e e AR R i
3t—1

= n =
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I=t-1, Zj—t =2,
220k wizt-3l3ioti=0 0| ga.at-2_prigt-1

=>n= = (55)

The next step is adapting the shown expression in (Equation 55) by replacing "g" with (kél) = q) whereas conducting the
following re-expressions {1y = q + k(5); k(z<jst—1) = K(j41) and k(o) = 0}, which gives us the shown result in (Equation
56). Since the value of k(; is a natural number absolutely superior to zero, whereas we have(k(l) =q+ k{z)), then we deduce
{kizy € Zand (q + k() > 0}.
j=t—i-2

l=t— . .
20¥SET ki) _ yrizt=3 [ 31 % 297 %j=1 k(f+1)] — 20 %3672 _ 27 4 3t-1

= n =

3t-1

I=t— i . ! j=t—i-2 7
2kE1)+Zl=§ 1kEl+1) _ Z:f6—3 [31 % Zk(1)+zj=1 k(j+1)] _ 2"21) % 3t—2 — 2T % 3t—1

=n= 3t-1
1= . =t—i-1 1
2K T2k _ yizt-3 [ . 2K k(i)] — k(1) 4 3t-2 _ T 4 3t-1
> n =

3t—1

2ZEZik(y _ yizt-3 [31 « 2201 e 1"(1’)] — 2K % 3672 — 27 4 301
=n=

3t—1

Jj=t—i—-1
SIZikG wizt- 2[3L*ZZJ 1 (1)] 2Ta3t-1

—n= (56)

The following step is adapting the shown expression in (Equation 56) by replacing kél) with (kél) = kEl) + r) whereas
replacing kE j>1) With (kE i>1) = kgj)) and using (kEO) = 0), which gives us the shown result in (Equation 57). The values
(kiyy =kiy +720), (kiyy =q), (q+k{z»>0) and (k(;»y) = k(;) are inducing the conditions (k(y)+ 7 >0) and
(kgl) +r+ kEz)) > 0 where the values of “r” and “q” are selected to be natural numbers.

1=t " . . jet-ict, "
2=k _ yi=t-2 [3l x 27 Zj=1 k(f)] — 27 % 3t-1

= n= —1
— =t—i-1
- 225=§k(1) l t 2 [31 " 221 1 k(j)] — DT 4 3t-1
= n= 3t-1
Jj=t—i-1
Zl 1k(l) Zl t— 2[31*221 1 (1)] 3t-1
— orT
>n=2 pra (57)

Since we have (kl('o) = 0) we can re-express the shown value of "n" in (Equation 57) as presented in (Equation 58).

—t j=t—i-1
ZZLSk(l) Zl t—2 [31 * 22] 0 = k(j)] _ 20 * 3t—1
Y
=n=2 31
Jj=t—i-1
2:l ok(l) Zl t- 1[3 *221 =0 k(})]
—n=2" L (58)
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As a result, we deduce that we can express the natural number "n" from the group {L - {nm}} according to the proposed
formula in (Equation 58), whereas having r € Nand kEO) = 0and kEZ) €Z and k21) € Z and kEie{O,l,Z}) € {N—
{0} } and (r + kl) > 0and (r + ki + k2) > 0. Therefore, the given statements and the proposed formulas in Theorem 7 are
correct.

4. New Theorems Providing Reciprocal Formulas for the Collatz Conjecture

This section presents two theorems proving the reciprocal logic of the presented statements and proposed formulas in
Theorem 6 and Theorem 7, which we will use principally to prove further theorems and formulas in this paper about the
correctness of the Collatz conjecture.

4.1. First Proposed Theorem for Reciprocity
This subsection presents the eighth theorem, which we rely on to prove the reciprocity of Theorem 6 in this paper.

This eighth theorem will allow us to prove in other sections that repeating the operations of the Collatz conjecture, whether
starting them on any odd number or even number, will eventually converge to the number “1”.

Theorem 8

In the group of natural numbers N, if any odd number ng is expressed as shown in (Equation 59), where all coefficients
k(;»1) are natural numbers different from zero and (k, = 0), then this odd number n; is converging to the number “1” when
we keep repeating the operations of the Collatz conjecture, whereas starting these operations on ng.

I=m-1 . o oyjEmei=2y
22i=0 "(D—Zfzﬁn_z[%zzFo k(l)]

ng = per | ko = 0 and ki=1) € {N — {0} (59)

Proof of Theorem 8
In this proof, we will rely on the presented statements and proposed formulas in Theorem 1 and Theorem 5.

Supposing an odd number (ng = n;) expressed as shown in (Equation 59), where all coefficients k ;1) are natural numbers
different from zero, whereas (k, = 0).

The first step is conducting Collatz operations on the odd number (ny = n;) according to the presented formula in
(Equation 1) (Theorem 1), which allows us to express ng as shown in (Equation 60).

3ng+1=3n,+1=2kn, |k, € {N-{0}} andn, is an odd number (60)

To simplify expressing the calculations and formulas, we use the shifting operator SHIF Tlm’ (k( j)) to shift the value of the
coefficient k(j) to the left by [ steps, whereas m' is the maximum value to reach.

’ ko =0, lf(] = 0)
m - —
SHIFT, (k(f)) {ij, if(j>0and0<j+1<m)
Based on the shown expressions in (Equation 60), we can present the odd number n, as shown in (Equation 61), where
we replace ng with its shown value in (Equation 59).
238 k _ yizme2 [3i ] zzﬁ’?—i_z’w)]

n2=3 + —

_(Bng+1)
- = k1 5 3m-1 k1

2 2k1

e , , j=m-i-2
QEIE0 ke _ yri=m=2 [3l < 2% "(ﬂ] +3m2
= n, =

2k1 * 3m—2

280 k@ — yi=m-3 [31‘ « ZZ}-:T_E_ZR(D] _gm-2 4 gm-2

i=

> n, =
2 k1 5 3m-2
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l=m—-1 o . j':m—i—Z .
221:0 k@ _ Z;;gl 3 [31 * 221=0 k(})]

> n, =
2 k1 5 3m-2

=m— . . j=m-i-3 —
21 4 2Tk _ gl 4 yi=m3 [3L om0 SHIFTT 1("@)]

=Ny = 2k 4 3m-2
282 Tk — yizm-3 [3i * zzfzgn_i_35H1FTf”_l(k(j))]
=n, =2k 2l 5 3m=2
22522”_1k(z)—zﬁiﬁn‘3[gi*22§:?_i_3SH’FTT'I("(J'))]
—n, = = (61)

In this first step, the operator SHIF Tlm, (k¢ j)) is allowing the shift in the sequence Zj:gn_i_e’ SHIFT{™*(k j)) to the left
by one step, in order to exclude the coefficient k; from the sequence.

The second step is conducting Collatz operations on the odd number n, according to the presented formula in (Equation
1) (Theorem 1), which allows us to express n, as shown in (Equation 62).

3n, + 1 = 2k2n, | k, € {N — {0}} and n; is an odd number (62)

Based on the shown expressions in (Equation 62), we can present the odd number n; as shown in (Equation 63), where
we replace n, with its shown value in (Equation 61).

I=m-1 . . Jj=m—i-3 m-1(,, .
GBn, + 1) 2= ko) — iz [31 «Zjmo  SHIFT] ("m)] .
= = JE—
n3 2k2 n; =3 2kz 4 3M=2 + 2kz
l=m-1 o X j':m—i—s m—1 ) _

22[:2 k([) _ Zi;‘gl 3 [31 % 22j=0 SHIFTy (k(]))] + 3m 3

—3 11,3 S 2k2 " 3m_3

=m- j=m—i-3 -
2T ko — yizmes [3i %m0 ST 1("(1’))] _gm-3 4 gm-3
= Nz = TP
l=m-1 . , Jj=m-—i-3 m-1(,, .
2212? kg _ Zi:gn—4 [31 % 221-:0 SHIFT{ (k(]))]
—3 n3 = 2k2 . 3m_3
l=m- . i Jj=m-i-4 -1 .
2z 4 ZIET T k) _ ke  yizm—4 [31 « im0 SHIFTS (km)]
= Nz = TP
=m- j=m—i-4 -
22 — pizpet [3i Xm0 SHIFTS" 1(k<f))]
— ks
=>n; =2 EPELE
=m- j=m-—-i—4 —
2T 1k(l)_2§§gl—4[3t*22j=o SHIFTE! 1(k(j))]
=ns = e (63)

In this second step, the operator SHIF Tlm’(k( j)) is allowing the shift in the sequence Z;:gn_i_‘} SHIFTJ* (k j)) to the
left by two steps, in order to exclude the coefficients k; and k, from the sequence.

46



Yassine Larbaoui / IJMTT, 72(1), 28-89, 2026

The third step is conducting Collatz operations on the odd number n; according to the presented formula in (Equation 1)
(Theorem 1), which allows us to express ns as shown in (Equation 64).

3ng +1=2%n,|k; € {N - {O}} and n, is an odd number (64)

Based on the shown expressions in (Equation 64), we can present the odd number n, as shown in (Equation 65), where
we replace n; with its shown value in (Equation 63).

Gny + 1) QX Ry i=m- 4[31 L 28m0 45H1Fsz_1("(j>)]
— 3 P —
ny = ok =n, =3 2k3 4 3m-3 + 2k3
221 3 k(l) Zl m-— 4[31 * 221 m-i- 4SH1FT2m_1(k(j))] + 3m—4
=N, = k3 4 3m—4
22%22"_%(1) — yizm-s [31' " 221 e 45H1Fsz_1(k(j))] — 3m-4 4 gm—4
=N, = ks 4 3m—4
2TiZT Ry _ yizm-s [31 " 221 Zmei 4SH1FT2m_i_1(k(j))]
= nyg = 2k3 N 3m_4
oks 4 ZZ8 Tk _ ks 4 Nisms [31 * 221_:)” - SSH’FTgn_l(k(j))]
- n4, =

2k3 x 3m—4

=m—i-5

=m- . -1
QST k@ — yizm=s [31 L Xm0 sHiFTE (ko‘))]

k.
=n, =2
4 k3 5 3m—4

l=m—-1 . Jj=m-i-5 m—1 .
P k(l)—Zizﬁn_s[wzzf o  SHIFT3 (k(J))]

o, = a— (65)

In this third step, the operator SHIFT;™ (k( ])) is allowing the shift in the sequence ZJ =Mm-iS SHIF T3m'1(k( j)) to the left
by three steps, in order to exclude the coefficients k4, k, and k5 from the sequence.

Now, we will rely on recurrence (induction) by supposing that n, is expressed as shown in (Equation 66), where
(t € [1,m — 2]). Then, we calculate the value of (nt+1 = (3nt+1)

) which is presented in (Equation 67).

—m— j=m—i-t-1 -
ZET 1k(l)—2§§3n_t_1[3l*221 0 SHIFT?ill(kU))]
ng = St (66)
e . j=m—i-t—1 m—1
TEM kg _ yi=m—t-1|ai , 9Xico SHIFTy_y (k(j))
(Snt +1) QLi=t O] =0 3t % 24j=
e = T oK Merr =3 2Kt % 3m-t ok
221 t k(l) Zl m—t—1 [31 % ZZJ smoi-t- 1SHIFT{'_1I1(k(j))] 4+ gm-t-1
= Npy1 =

Zkt x 3M— t-1

2IZ T Ky _ yri=m-t-2 [31 e 2% 15“'”{“-_11(“0))] — 3m=t=1 4 gm-t-1
i=
= N1 =

2kt * 3m—t—1
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Jj=m—-i—-t-1

S k) _ yizm-t2 [3i B SHIFTi‘l‘f(km)]

= M1 = 2kt  3m—t-1

=m— i . Jj=m-—i-t-2 -
LI 22%4&11 k@ — ke 4 szgn—t—z [31 % 221':0 SHIFT{™ 1(k(j))]

= Ngq = 2kt  3m—t-1

—r— . . j=m—-i—-t-2 -
2SIE0a k) — yizmot=2 [31 x 2%j=0 SHIFTZ" 1("(1‘))]

— okt
= Npyy =2 2kt 4 3m—t-1

l=m—-1 i Jj=m—i—t-2 m—1 .
S ka)-zéfan‘”[si*zzj:o SHIFTY ("m)]

= sy = e (©7)
According to the used method of recurrence (induction), we deduce that whatever the value of the natural number v where

(v € [1,m — 1]), the value of the odd number n,, can be calculated as shown in (Equation 68), whereas having (ng = n,). The
Jj=m—-i-v—-1

operator SHIFT,™ (k¢jy) is allowing the shift in the sequence 2%j=0
exclude all the coefficients {k,} (h € [1,v — 1]) from the sequence

m-—1 .
SHIFTS2T (k(j) to the left by (v — 1) steps, in order to

z:]::m—i—v—l

l=m-1 . . m=1(p .
2Zi=y "(D_g;fgn—v—l[gt*z j=0 SHIFTYES (k)

ny, = pre |ko = 0 and k(js1) € {N —{0}} (68)

ko =0, if(j=0)

m' —
SHIFT[™ (k¢p) = {km' if(j>0and0<j+1<m)

Therefore, we can use the shown expression in (Equation 68) to calculate the value of the odd number n,,_; as shown in
(Equation 69), which we converge to by repeating the operations of the Collatz conjecture, whereas starting these operations
on the odd number ng = n,.

oXEmiikay yi=m=(m-1)-1 [3i ¥ zzﬁgm_(m_l)_lSHIFTQZ%(k(i))]

Mn-1 = 3m—(m-1)
i=0 | i Z’f=‘i5HlFTm‘1(k n)
Zk(m—l) — ;:8 3L % 2%j=0 m-2\%(j)
= Nin-1 = 31
j=0 _
2kan-1) — 30 4 2¥j=0 SHIFTRZ3 (kg)) 2k@m-1) — 30 4 2k
= M1 = 31 = 31
2Km-1)_1
=N, =—"0 (69)

3

The next step is calculating the value of the odd number n,,, by conducting the operations of the Collatz conjecture on the
odd numbers n,,_; according to (Equation 1) (Theorem 1), which allows us to express the value of n,, as shown in (Equation
70).

GBnp_1+ 1) 2km-1 — 1 1
Ttm = S kn-1) = Mm = 2km-1) 4 3 + 2km-1)
2km-u — 1+ 1
= Ny = —Zk(m—l)
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2km-1)
= nm = —Zk(m—1)
=>n,=1 (70)

Therefore, we deduce that by repeating the operations of the Collatz conjecture, starting these operations on an odd number
(ng = ny); we eventually converge to an odd number (n,, = 1), where the generated Collatz branch "L" by conducting these
operations is as shown in (Equation 71).

_ _ _ (Bny+1) _ (3np+1) _ (3nz+1) _ Bnp—q+1) _
L_{ns_nl'nz_ BT g T T g o M- i T T 1

(71)
As a result, we deduce that the presented statements and proposed formula in Theorem 8§ are correct.

4.2. Second Proposed Theorem for Reciprocity
This subsection presents the ninth theorem, which we rely on to prove the reciprocity of Theorem 7 in this paper.

This ninth theorem is based on scaling the proposed formulas and presented statements in Theorem 8, which we will use
in other sections to prove, algebraically, that repeating the operations of the Collatz conjecture, starting these operations on any
odd number or even number, will eventually converge to the number “1”.

Theorem 9

In the group of natural numbers N, if any odd number ng is expressed as shown in (Equation 72), where all coefficients
K(”i>2) are natural numbers different from zero, whereas (Kz € Z), (Kl € Z), (K(; = O), (R + Kl) >0 and (R + K, + Kz) >
0; then the odd number ng shown in (Equation 73) (ng = ng + y) is converging to the number “1” when we keep repeating
the operations of the Collatz conjecture, whereas starting these operations on nj.

22%55Kzz)—21325'1[3&225:54_1sz)]
ng = 2R = | Ky =0and Kigg1) € {N—{0}}and K, € Z and K, € Zand R €
Nand (R+K,)>0and (R+K, +K,) >0 (72)
ny =ng+y|ye{N-{0}}and n; MOD[2] = 1 (73)

Proof of Theorem 9
In this proof, we suppose having an odd number ng expressed as shown in (Equation 74), where all coefficients kzz>z) are

natural numbers different from zero, whereas having (k; € Z), (k; € Z) and (ko = 0).

226 k'ﬁz)—zﬁié‘l[si*zzfzg_i_l"'G)]
ng =27 e | ko = 0and kigq1, € {N—{0}}and k; € Z and ky € Zandr e
Nand (r+ky) = 0and (r+k; + k3) > 0 (74)
22%25 kEz) — 2526—2 [31' % zzf':gﬂ_l"'('j)] — 20 4 3t-1
—_ T
=>n, =2 301

27 4 22155k _ pr yi=t=2 [3i ¥ 225_?_1%] — 27 w3t

S 3t-1
=t . ' ' jt—i-1,"
2r+21=1"’-(1)_2;56—2[31*2”2,—:1 k(])]_zr*3t—1

=>ns=

(75)

3t-1

The following step is adapting the shown expression in (Equation 75) by replacing k21) with (kzl) = kél) - r) whereas
replacing kE j) with (k( i1y = K¢ j>1)) and using (kEO) = 0), which gives us the shown result in (Equation 76).

49



Yassine Larbaoui / IJMTT, 72(1), 28-89, 2026

=t—i—-1

zz%zik&) Zl t-2 [31 % 221 1

3t—1

k(,-)] — 27 5 3t-1

ﬂnsz

Jj=t—i-1

= . .
QLIEi Ky _ yi=t=3 [ 3i 5 251 "w] — 2K % 362 — 7 4 31

=n, = 31

1= . . ! j=t—i-1,7
2k *TiZ2kGy yizt-3 [31 ¥ 2k Lj=2 k(,-)] — 2k x 3t-2 _ pr 4 3t-1

= ng = 3t-1

Jj=t—i-2
k(1)+21 LT yizt- 3[31 2 K(1)+Zjzy "(j+1>]_2k51)*3c-z_zr*3t-1

—=n, = — (76)

The next step is adapting the shown expression in (Equation 76) by replacing kél) with (q = kél)) whereas conducting the
following re-expressions {k¢y = q + k(z) s Kasgjet-1) = kEj +1) and k) = 0}, which gives us the shown result in (Equation
77). The values (k{l) = k'('l) +71>0), (k(l) =q) and (k) =q + k(z)), are relying on the conditions (kzl) +7>0) and
(k(l) = k(z) +r+ k(l) > 0) where the values of “r” and “q” are to be selected as natural numbers, whereas the value of k4

is in the group {N — {0}}.

=t— . j=t—i-2
204 Kl - B 3t 2B e | 20302 - g e 3o

=ns = 3t-1
221 ok — Zl t=3 [3l * 22 e k(j)] — 29 %3172 27 4 3671

= n, = 3t-1

2Bk _ izt [3i ; 225323'”"m] — 3t (29 4 3% 27 —1)3t2

=ng = 3t-1
2826 "k — yrizt-2 [31 250 Zk(,-)] — (2943 %27 —1)3t2

=ns = 3t-1

SEEE6 Ry sizt- 2[31*221 o . 2"(1‘)]
(29+3%2"-1)
= ng = prsy - 3 | ko =0and k() € {N - {0}} (77)

Ay3e27— Ay3a27— 43427~
Now, we re-express e +332 D as ((2 +332 D _ y) where (y e{N—{0}}andy = (2+33721) andqeNandr e

N) By selecting the values of "q" and "r" as natural numbers, the value of "y" can be among the group

043490 043,01 2 9,91 w22 22
{(2 +3:20-1) _ =1; (22+327-1) _ =2; (22+3:27-1) _ 3(2 32iol) 4(2 v21) =5;. s—1}.Asaresult,weobtainthe

)

3 3 3 3 3
shown expression in (Equation 78).

Zzl —0 k(l) Zl t—2 [31 * 22 oo zk(j)]

=ng = 31 —y | ko =0and kgsyy € {N — {0}
O sist- 2[31*22§ o 2"(1‘)]
=n,+y= = | ko = 0and k(sp) € {N—{0}}  (78)

50



Yassine Larbaoui / IJMTT, 72(1), 28-89, 2026

Based on (Equation 78), we deduce that the odd number ng {n; = ny + y} is expressed as shown in (Equation 79), where n

_ (2‘?+3*2r—1))
- 3

is an odd number and (y is an even number.

1=t . jet-i-z,
22150 lka)—ziﬁ‘z[si*zzjzo km]

ol = | ko = 0 and k1) € {N — {0}} (79)

3t-1

Based on the shown formula of the odd number ng in (Equation 79), we deduce that n; is expressed according to the
proposed formula and presented statements in Theorem 8, which means that we eventually converge to the number “1” when
we keep repeating the operations of the Collatz conjecture, whereas starting these operations on an odd number ng.

As aresult, we deduce that the presented statements and proposed formulas in Theorem 9 are correct.

5. New Theorems Proving the Collatz Conjecture by Treating Possible Loops

This section presents nine new theorems along with detailed poofs, which rely on the proposed formulas in the previous
theorems in this paper, in order to demonstrate that there is no possible Collatz loop where the operations of the Collatz
conjecture start from an odd number n; and loop back to the same number, except the loop where (n; = 1).

5.1. Proposed Theorem on Collatz Loops Consisted of One Element
This subsection presents the tenth theorem in this paper, which treats possible Collatz loops consisting of one odd number
according to the proposed formulas in Theorem 3 and Theorem 4 in this paper.

Theorem 10
In the group of Natural numbers N, there is only one subgroup containing one odd number {n,} that can create a Collatz loop
where 3n, + 1 = 2¥1n, and k; € {N — {0}}, and this unique subgroup is {n; = 1} as shown in (Equation 80).

vGeN;(if 3{n}eG |3n +1=2Mnand k; e (N—{0}}) = ({n,} ={1}) (80)

Proof of Theorem 10
The proposed unified formula in (Equation 9) (Theorem 3) for Collatz loops is based on dividing the value of the numerator

- o gEmei1, , 1= .
o3« 2%)=0 k(’)] on the value of the denominator [221=gl ko — 3"‘]. Therefore, this proposed formula allows us to

calculate values of real numbers.

However, in order to have an integer number as a result of this formula (Equation 9 in Theorem 3), the value of the
denominator should be less than or equal to the numerator, and also should be a divisor of an integer value.

In the case of having the smallest Collatz loop, which consists of only one odd number {n, }, the value of the number n, is
calculated as (n1 = ﬁ) where ( k, € {N — {0}} ) Therefore, in order to have an integer value as a result of this expression,
we need to start by having the condition. (2¥* — 3) < 1, which can also be expressed as follows: 2¥1 < 4. Consequently, the

value of k; should be limited as follows: 1 < k; <2

In addition, the value of the denominator (2%t — 3) should be dividing the value of the numerator (number 1) by a positive

integer value, which means that there is only one value that can be given to k; which is (k; = 2). Therefore, we can calculate

1

the exact value of n, as follows: n; = s = 1.

As a result, Theorem 10 and its shown expression in (Equation 80) are correct, because there is only one subgroup
consisting of one odd number {n, } that can create a Collatz loop, and this subgroup is where {n; = 1}

5.2. Proposed Theorem on Collatz Loops Consisted of Two Elements
This subsection presents the eleventh theorem, which treats possible Collatz loops consisting of two odd numbers
according to the proposed formulas in Theorem 3 and Theorem 4 in this paper.
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Theorem 11
In the group of Natural numbers N, there is no subgroup of two different odd numbers {n,,n,} that can create a Collatz
loop where (3n; + 1 = 2¥1n,) and (3n, + 1 = 2¥2n,) whereas having (ki € {N - {O}D as shown in (Equation 81), because

the maximum value for n; will be (max(nl) = %)

¥ G eN; A{ny,ny} € G| ny # ny and 3n, + 1 = 2K1n, and 3n, + 1 = 2%2n, and k; € {N — {0}} (81)

Proof of Theorem 11

The proposed unified formulas in (Equation 9) and (Equation 29) (Theorem 3 and Theorem 4) for Collatz loops are based
on dividing the values of specific numerators by specific denominators when calculating values of odd numbers involved in
possible Collatz loops.

Since both formulas in (Equation 9) and (Equation 29) (Theorem 3 and Theorem 4) are based on the same structure of
terms, while rotating the order to calculate the values of consecutive odd numbers according to Theorem 4, we will focus on

o i j::m—i—l . . lI=m
analyzing the division of the numerator Y!=g*~1|3% % 2%j=0 )| on the value of the denominator [221=0 ko — 3m].

Therefore, these proposed formulas in (Equation 9) and (Equation 29) allow for calculating the values of real numbers.

However, in order to have an integer number as a result of these formulas (Equation 9 and Equation 29), the value of the
denominator should be inferior (or equal) to the numerator and also should be divided by an integer value.

In the case of having the second smallest Collatz loop, which consists of two different odd numbers {n,, n,}, the value of
(2*1+3)
2k1+k2_9

the number n, is calculated as (n1 = ) whereas having (ki € {N — {0}}) . Therefore, in order to have an integer value

as a result of this expression of n;, we need to start by having the condition (2¥1tk2 — 9) < (2*1 + 3), which can also be
expressed as follows: 2¥1(2%2 — 1) < 12. Consequently, the values of k; and k, should be limited as follows: 1 < k; < 3 and
1<k, <(4—-ky).

Therefore, it is impossible to have a Collatz loop consisting of two different odd numbers {n,, n,}, where n, is outside the
range [1; 2[, because the maximum real value for n, is % where (k; = 3) and (k, = 1).

=
The maximum value of n; is calculated by identifying the minimum positive value of the denominator [221=gl kay — 3"‘],

. . j=m-i-1,
then identifying the maximum positive value of the numerator },\=g*~* [3‘ «2%j=0 k|,

As a result, the expression (Equation 81) and the presented statements by the eleventh theorem in this paper are correct,
because there is no subgroup of two different odd numbers {n,,n,} that can create a Collatz loop where
(3n, + 1 = 2K1n,) and (3n, + 1 = 2¥2ny) and (k; € {N — {0}}).

5.3. Proposed Theorem on Collatz Loops Consisted of Three Elements
This subsection presents the twelfth theorem, which treats possible Collatz loops consisting of three odd numbers according
to the proposed formulas in Theorem 3 and Theorem 4 in this paper.

Theorem 12
In the group of natural numbers N, there is no subgroup of three different odd numbers {n,,n,,n;} that can create a Collatz
loop where (3n, + 1 = 2¥1n,) and (3n, + 1 = 2%2n;) and (3n; + 1 = 2%3n,) and (k; € {N — {0}}) as shown in

(Equation 82), because the maximum value for n, will be (max(nl) = 45—9).

¥ G € N; A{ny,ny,n3} € G [n; # njjzpy and 3ny + 1 = 2¥1n, and 3n, + 1 = 2¥2n3 and 3n; + 1 = 250, and k; €

{N - {0}} (82)
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Proof of Theorem 12
As mentioned in the proof of Theorem 11, both formulas in (Equation 9) and (Equation 29) (Theorem 3 and Theorem 4)
are based on the same structure of terms, while rotating the order to calculate the values of consecutive odd numbers

=m-i-1

. . J .
according to Theorem 4. Therefore, we will focus on analyzing the division of the numerator Y !=7~1|3% % 2%j=0 “O | on

l=m
denominator [221=0 ko) — 3’"], which generate values of real numbers.

As it was mentioned in the proof of Theorem 11, in order to have an integer number as a result of the shown formulas in
(Equation 9) and (Equation 29) (Theorem 3 and Theorem 4), the value of the denominator should be inferior (or equal) to the
numerator, and also should be a divisor of an integer value.

In the case of having the third smallest loop of Collatz, which consists of three different odd numbers {n,, n,, n;}, the
(2k2+k14342k119)

STk Tk 57 ) whereas having

value of the first number n; the length of this sequence is calculated as (nl =

(ki € {N - {0}}) Therefore, in order to have an integer value as a result of this expression of n;, we need to start by having
the condition (2k1tk2+ks — 27) < (2K2+k1 4 3« 2K1 + 9) which can also be expressed as follows: 2%t (2ks+kz — 2k2 _ 3) <
36. Consequently, the values of k4, k, and k5 should be limited as follows: 1 < k; < 5and1 <k, < (6 —k;)and1 < k; <
(7 - k1 - kz)'

Therefore, it is impossible to have a Collatz loop consisting of three different odd numbers {n,, n,, n;}, where n, is outside

the range [1; 9], because the maximum value for n; is 4—59 where (k; = 3), (k, = 1) and (k5 = 1).

=
The maximum value of n, is calculated by identifying the minimum positive value of the denominator [221=g1 kay — 3m],

) i Jj=m—i-1 .
then identifying the maximum positive value of the numerator ¥}=g*~* [3’ % 2%j=0 k(f)].

As a result, the expression (Equation 82) and the presented statements by the twelfth theorem in this paper are correct,
because there is no subgroup of three different odd numbers {n;,n,,n;} that can create a Collatz loop where
(3ny + 1 = 2k1n,) and (3n, + 1 = 2*2n3) and (3n; + 1 = 2%3n,) and (k; € {N — {0}}).

5.4. Proposed Theorem on Collatz Loops Consisted of Four Elements
This subsection presents the thirteenth theorem, which treats possible Collatz loops consisting of four odd numbers
according to the proposed formulas in Theorem 3 and Theorem 4 in this paper.

Theorem 13

In the group of Natural numbers N, there is no subgroup of four different odd numbers {n,,n,, n;,n,} that can create a
Collatz loop where (3n; + 1 = 2¥1n,) and (3n, + 1 = 2*2n3) and (3n; + 1 = 2¥3n,) and 3n, + 1 = 2%+n,) and (k; €

{N — {0}}) as shown in (Equation 83), because the maximum value for n; will be (max(nl) = % )

¥ G € N; A{ny,ny,ng,n,} € G |y # nj(jppy and 3ny + 1 = 251, and 3n, + 1 = 2%2n3 and 3n; + 1 =
2ksn, and 3n, + 1 =2%n, and k; € (N—{0}}  (83)

Proof of Theorem 13
As mentioned in the proof of Theorem 11, both formulas in (Equation 9) and (Equation 29) (Theorem 3 and Theorem 4)

are based on the same structure of terms, while rotating the order to calculate the values of consecutive odd numbers according
. . j=m—i-1,,
to Theorem 4. Therefore, we will focus on analyzing the division of the numerator Y !=0** [31 % 2%j=0 KU)] on the value

. = .
of the denominator [221=6” Ko — 3’"], which generate values of real numbers.
As it was mentioned in the proof of Theorem 11, in order to have an integer number as a result of the shown formulas in

(Equation 9) and (Equation 29) (Theorem 3 and Theorem 4), the value of denominator should be less than (or equal) to the
numerator, and also should be dividing it into an integer value.
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In the case of having a loop of Collatz consisting of four different odd numbers {n;,n,, ns;, n,}, the value of the first
number n; the length of this sequence is calculated as (n1 = (2k3+k2:;:::f£:::ii:izkun)) whereas having (k; € {N — {0}}).
Therefore, in order to have an integer value as a result of this expression of n;, we need to start by having the condition
(2katketkstks _ g1) < (2ksthatks 4 3 4 2k2%k1 4 9 4 2K1 4+ 27), which can also be expressed as follows: 2kt (2ketkstka
2kstk2 _ 3 4 2k2 — 9) < 108. Consequently, the values of k;, k,, k3 and k, should be limited as follows: 1 < k; < 6 and
1<k, <(7—-k)and1<k; <(B8—k;—ky)and1 <k, <(9—k; —k, — k3).

Therefore, it is impossible to have a Collatz loop consisting of four different odd numbers {n,, n,, ns,n,}, where n, is

outside the range [[1; 7], because the maximum value for n, is % where (k; = 4), (k, = 1), (k3 = 1) and (k, = 1).

=
The maximum value of n, is calculated by identifying the minimum positive value of the denominator [221=5n kay — 3m],

k(j)].

. . Jj=m-i-1
then identifying the maximum positive value of the numerator Y}=¢* "1 |3% * 2%j=0

As a result, the expression (Equation 83) and the presented statements by the thirteenth theorem in this paper are correct,
because there is no subgroup of four different odd numbers {n,,n, ns;,n,} that can create a Collatz loop where
(3ny + 1 = 2k1n,) and (3n, + 1 = 2*2n3) and (3n; + 1 = 2%3n,) and (3n, + 1 = 2%+ny) and (k; € {N — {0}}).

5.5. Proposed Theorem on Collat; Loops Consisted of Five Elements
This subsection presents the fourteenth theorem, which treats possible Collatz loops consisting of five odd numbers
according to the proposed formulas in Theorem 3 and Theorem 4 in this paper.

Theorem 14

In the group of Natural numbers N, there is no subgroup of five different odd numbers {n,, n,, n;, ny, ns} that can create
a Collatz loop where (3n; + 1 = 2¥1n,) and (3n, + 1 = 2¥2n;) and (3n; + 1 = 2¥3n,) and 3n, +1 =
2kang) and (3ns + 1 = 2%sny) and (k; € {N — {0}}) as shown in (Equation 84), because the maximum value for n; will be

(max(nl) = g)

13

¥ G € N; A{ny, ny,ng,ny,ns} € G | ny # nj(jep and 3n, + 1 = 2¥n, and 3n, + 1 = 2%2n3and 3n; + 1 =
2ksn, and 3n, + 1 = 2%ng and 3ns + 1 = 2%sn, and k; e (N —{0}}  (84)

Proof of Theorem 14

As mentioned in the proof of Theorem 11, both formulas in (Equation 9) and (Equation 29) (Theorem 3 and Theorem 4)
are based on the same structure of terms while rotating the structure to calculate the values of consecutive odd numbers
according to Theorem 4.

. , j=m—i-1,,
Therefore, we will focus on analyzing the division of the numerator Y=g~ |3" « 2%j=0 KU)] on the value of the

. l=m .
denominator [221=0 ko — 3’”], which generate values of real numbers.

As it was mentioned in the proof of Theorem 11, in order to have an integer number as a result of the shown formulas in
(Equation 9) and (Equation 29) (Theorem 3 and Theorem 4), the value of denominator should be less than (or equal) to the
numerator, and also should be dividing it into an integer value.

In the case of having a loop of Collatz consisting of five different odd numbers {n,, n,, ns, ny, ns}, the value of the first
number n, the value of this sequence is calculated as shown in (Equation 85), where k; € {N - {0}}:

(2k4+k3+k2+k1+3*2k3+k2+k1+9*2k2+k1+27*2k1+81)
ok1+ka+k3+kat+ks_o43

n, = (85)

Therefore, in order to have an integer value as a result of this expression of n; (Equation 85), we need to start by having
the condition (2k1tkatkstkatks _ 243) < (2katksthaths 4 3 4 phsthatks 4 gy pkatks 4 27 4 2%1 4 81), which can also be
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expressed as follows: 2K1(2kstkatkstha _ pkatkstks _ 3 4 pkstka _ g « 2k2 — 27) < 324. Consequently, the values of k;,
ko, ks, k, and ks should be limited as follows: 1 < k; <8and1 <k, < (9—ky)and1 <k; < (10 —k; —k,)and 1 <
k4£ (11—k1—k2—k3)and1Sk5S (12_k1_k2_k3_k4).

Therefore, it is impossible to have a Collatz loop consisting of five different odd numbers {n,, n,, n3, n4, ns}, where n, is

outside the range [1; 86], because the maximum value for n, is % where k; =4, k, =1, k; =1, k, =1and kg = 1.

. . . o .. .. . [=m
The maximum value of n, is calculated by identifying the minimum positive value of the denominator [221=0 kay — 3’”], then
. ip . .. i= ;o oyiEmoist,
identifying the maximum positive value of the numerator Y,:=m =1 [3¢ x 2%j=0 Ol

As a result, the expression (Equation 84) and the presented statements by the fourteenth theorem in this paper are correct,
because there is no subgroup of five different odd numbers {n;,n,,ns;, ny, ns} that can create a Collatz loop where
(3n, + 1 = 2%1n,) and (3n, + 1 = 2%2n3) and (3n; + 1 = 2%3n,) and (3n, + 1 = 2¥ng) and Bns + 1 =
2ksny) and (k; € {N — {0}}).

5.6. Proposed Theorem on Collatz Loops Consisted of Six Elements
This subsection presents the fifteenth theorem, which treats possible Collatz loops consisting of six odd numbers according
to the proposed formulas in Theorem 3 and Theorem 4 in this paper.

Theorem 15
In the group of Natural numbers N, there is no subgroup of six different odd numbers {n,, n,, ns, ny, ns, ng} that can create a
Collatz loop where (3n, + 1 = 2k1n,) and (3n, + 1 = 2%2n3) and (3n; + 1 = 2%3n,) and 3n, + 1 =

2kang) and (3ns + 1 = 2%sng) and (3ng + 1 = 2%6n,) and (k; € {N — {0}}) as shown in (Equation 86), because the

. . 6995
maximum value for n; will be (max(nl) = E)'

¥ G e N; A{ny, ny,n3,ny,ns,ne} € G | 0y # Nj(jepy and 3ny + 1 = 2K1n, and 3n, + 1 = 2M2n3 and 3n; +1 =

2ksn, and 3n, + 1 = 2%ng and 3ns + 1 = 2%5ng and 3ng + 1 = 2%n, and k; € (N —{0}}  (86)

Proof of Theorem 15
As mentioned in the proof of Theorem 11, both formulas in (Equation 9) and (Equation 29) (Theorem 3 and Theorem 4)
are based on the same structure of terms, while rotating the order to calculate the value of consecutive odd numbers according

. . j=m—i-1,
to Theorem 4. Therefore, we will focus on analyzing the division of the numerator Y:=m~? [3l x 2%)=0 k(f)] on the value

=
of the denominator [221=6nk(1) — 3"‘], which generate values of real numbers.

As it was mentioned in the proof of Theorem 11, in order to have an integer number as a result of the shown formulas in
(Equation 9) and (Equation 29) (Theorem 3 and Theorem 4), the value of denominator should be less than (or equal) to the
numerator, and also should be dividing it into an integer value.

In the case of having a loop of Collatz consisting of six different odd numbers {n,, n,, ns, ny, ns, ng}, the value of the first
number n, of this sequence is calculated as shown in (Equation 87), whereas having (kl- € {N - {0}})

(2k5+k4+k3+k2+k1+3*2k4+k3+k2+k1+9*2k3+k2+k1+27*2k2+k1+81*2k1+243)
ng =

2k1+k2+k3+ka+ks+ke _779 (87)

Therefore, in order to have an integer value as a result of this expression of n, (Equation 87), we need to start by having
the condition (2Kitketksthkatkstke _ 779) < (2kstkatksthotky | 3y pkathsthotks 4 g 4 pkstkatks 4 27 4 Dkatks | 81 «
2k1 4+ 243), which can also be expressed as follows: 2K1(2Fetkstkatkstks _ pkstkatksthks _ 3 4 pkatkstks _ g y pkstka _
27 = 2k2 — 81) < 972.
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Consequently, the values of k4, k,, ks, k,, ks and kg should be limited as follows: 1 < k; < 9and 1<k, < (10 — k)
and 1<k; <(11—k;—ky)and 1 <k, <(12—ky —k,—k3) and 1 < ks < (13 —ky —k, — ks —k,) and 1 < kg <
(14‘_kl_k2_k3_k4_k5).

Therefore, it is impossible to have a Collatz loop consisting of six different odd numbers {n,, n,, n3, n,, ng, ng}, where
n,is outside the range [1; 23], because the maximum value for n; is % where (k; =5), (k, = 1), (k3 = 1), (k, = 1),
(ks = 1) aIld (k6 = 1).

As a result, the expression (Equation 86) and the presented statements by the fifteenth theorem in this paper are correct,
because there is no subgroup of six different odd numbers {n;, n,, ns;, ny,ns, ng} that can create a Collatz loop where
(3n; + 1 =2%n,) and (3n, + 1 = 2*¥2n3) and 3ng + 1 = 2%3n,) and (3n, + 1 = 2¥n) and B3ngs + 1 =
2ksng) and (3ng + 1 = 2%n,) and (k; € {N — {0}}).

5.7. Proposed Theorem on Collatz Loops Consisted of Seven Elements
This subsection presents the sixteenth theorem, which treats possible Collatz loops consisting of seven odd numbers
according to the proposed formulas in Theorem 3 and Theorem 4 in this paper.

Theorem 16

In the group of Natural numbers N, there is no subgroup of seven different odd numbers {n,, n,, ns, ny, ng, ng, n,} that
can create a Collatz loop where (3n; + 1 = 2¥1n,) and (3n, + 1 = 2%2n3) and (3n; + 1 = 2%n,) and B3n, + 1 =
2kang) and (3ns + 1 = 2¥sny) and (3ne + 1 = 2%n;) and (3n, + 1 = 2%7n,) and (k; e (N—{0}}) as shown in
43289).

(Equation 88), because the maximum value for n, will be (max(nl) = 909

¥ G € N; A{ny, ny, n3, ny, N5, M6, 17} € G | My # Nj(jepy and 3ny + 1 = 2K1n, and 3n, + 1 = 2¥2n 3 and 3n; + 1 =
2ksn, and 3n, + 1 = 2%ng and 3ns + 1 = 2%sng and 3n, + 1 = 2%6n, and 3n, + 1 = 2¥7n, and k; € {N — {0}} (88)
Proof of Theorem 16

As mentioned in the proof of Theorem 11, both formulas in (Equation 9) and (Equation 29) (Theorem 3 and Theorem 4) are
based on the same structure of terms, while rotating the order to calculate the values of consecutive odd numbers according to

. , Jj=m—i-1,
Theorem 4. Therefore, we will focus on analyzing the division of the numerator Y!=f*~1|3! * 2%j=0 k(f)] on the value of

. [=m .
the denominator [221=0 kay — 3’”], which generate values of real numbers.

As it was mentioned in the proof of Theorem 11, in order to have an integer number as a result of shown formulas in
(Equation. 9) and (Equation. 29) (Theorem 3 and Theorem 4), the value of denominator should be inferior (or equal) to the
numerator, and also should be dividing it into an integer value.

In the case of having a loop of Collatz consisting of seven different odd numbers {n,, n,, ns, ny, ns, ng, n,}, the value of
the first number n; of this sequence is calculated as shown in (Equation 89), whereas having (kl- € {N — {0}}).

(2k6+k5+k4+k3+k2+k1+3*2k5+k4+k3+k2+k1+9*2k4+k3+k2+k1+27*2k3+k2+k1+81*2k2+k1+243*2k1+729)
o2k1+ka+k3+ka+kstketk7 _51g7

ny, = (89)

Therefore, in order to have an integer value as a result of this expression of n, (Equation 89), we need to start by having
the condition (2k1+k2+k3+k4,+k5+k6+k7 _ 2187) < (2k6+k5+k4+k3+k2+k1 + 3% 2k5+k4+k3+k2+k1 + 9 % 2k4+k3+k2+k1 + 27 %
2kstkatky 4 81 « 2k2tka 4 243 « 2K1 4+ 729), which can also be expressed as follows: 2F1(2Fk7tketkstkatkstks _
2ketkstkatkstks _ 3 4 pksthathatha _ g 4 pkatkstka _ 07 4 Dkstka _ 81 « 2k2 — 243) < 2916. Consequently, the values of
ki,ky, ks, ky, ks, ke and k; should be limited as follows: 1 < k; < 1land1 <k, < (12 —k;)and1 < k; < (13 —k; — k;)
and 1<k, <(14—k; —k,—k;)and 1 < ks <(15—ky —k, —ks—k,)and 1 <k, < (16 —k; —k, — ks —k, — ks)
andlSk7S (17_k1_k2_k3_k4_k5_k6).
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Therefore, it is impossible to have a Collatz loop consisting of seven different odd numbers {n,, n,, ns, ny, ns, ng, ns},
222 where (ky = 6), (k, = 1), (ks = 1),

09

where n, is outside the range [1; 23], because the maximum value for n, is
(ks =1), (ks = 1), (ke = 1) and (k, = 1).

As a result, the expression (Equation 88) and the presented statements by the sixteenth theorem in this paper are correct,
because there is no subgroup of seven different odd numbers {n,, n,, ns, ny, ns, ng, n,} that can create a Collatz loop where
(3n, + 1 = 2k1n,) and (3n, + 1 = 2%2n3) and (3n; + 1 = 2%3n,) and (3n, + 1 = 2¥ng) and Bns + 1 =
2ksng) and (3ng + 1 = 2%n;) and (3n, + 1 = 2%7n,) and (k; € {N — {0}}).

5.8. Proposed Theorem on Limited Collatz Loops

This subsection presents the seventeenth theorem, which treats possible Collatz loops consisting of "L" odd numbers
(L € [2; 64]) according to the proposed formulas in Theorem 3 and Theorem 4 in this paper.

By having "L" odd numbers in a possible Collatz loop, the range of these odd numbers can have a theoretical value that
L

may exceed (g) .
Theorem 17

In the group of Natural numbers N, there is no subgroup of "L" (L € [2; 64]) different odd numbers
{n,,ny, N3, Ny, N5, N, Ny, ...,N;_1, N} that can create a Collatz loop where (3n; +1=2%n,)and 3n, +1=
2%2n,) and (3ng + 1 = 2%3n,) and (3n, + 1 = 2%4ng) and (3ns + 1 = 2%5ny) and (3ng + 1 = 2%6n,) and (3n, + 1 =
2k7ng) and ...and (3n,_; + 1 = 2K-1n) and (3n, + 1 = 2¥in,) and (k; € {N — {0}}), as shown in (Equation 90).

(¥ G eN)and (v L € [2; 64] ); B{ny, np, n3, My, M5, g, Mg, oo, pq, } € G| i€ [1,L —1]; n; # njjepy and 3n; + 1 =
2kin;,, and 3n, + 1 = 2*n, and k; € {N — {0}} (90)

Proof of Theorem 17
As mentioned in the proof of Theorem 11, both formulas in (Equation 9) and (Equation 29) (Theorem 3 and Theorem 4)
are based on the same structure of terms, while rotating the order to calculate the values of consecutive odd numbers. Therefore,

. , Jj=m—i-1, )
we will focus on analyzing the division of the numerator Y!=0*~* |3 « 2%j=0 k(”] on the value of the denominator

1=
[221=6n kay — Sm], which generate values of real numbers.

As it was mentioned in the proof of Theorem 11, in order to have an integer number as a result of shown formulas in
(Equation. 9) and (Equation. 29) (Theorem 3 and Theorem 4), the value of denominator should be inferior (or equal) to the
value of numerator, and also should be dividing it into an integer value.

As long as we forward calculations toward identifying a finite (or infinite) Collatz loop consisting of "m" different odd

: : 1=m
numbers. {n, ny, N3, Ny, Ns, Ng, Ny, «o., Ny_1, Ny}, We will always need to have a value for the denominator [221=0 kay — 3’"]

. i j=m—i-1,
less than the value of the numerator ¥ '=g~* [31 x 2%j=0 k(”].

As a result, we can identify the shown condition in (Equation 91).

i=m-1

25580 —3m] < Z [3i . 22§Z?_i_1k<n]

=0

=m-i-

— 2ZET k) _ [3i « 2550 1"(1)] < 3m

— X0k — [3i «28m0 k(j)] < 3m 4 3m-1
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Jj=m—-i-1

— zk1 I:ZZE;”k(l) _ 3m—2 _ ::671—3 3i * 22]:2 k(j)” < 3m [g] (91)

Considering that every coefficient k(;.¢) is a natural number different from zero (ki € {N - {0}}) and (ko = 0); the
minimum value for k; is one when (1 < i < m), whereas the expected Collatz loop will consist of "m" elements. Therefore,
the minimum value of [X1Z0 k(] is (m — 1).

The maximum value of the coefficient k; is also identified by having the minimum positive value for the denominator
I= 1=
[221=gl ko — 3’"] where (3m < 2k1 5 2R k(l)), which gives the shown result in (Equation 92).

m 3771

-1 & 3Tk a2
zm—l) and 2™t < 2%1=2 ") < ceil (2k1)

:ZSZ"lSceil(

I=m
= 1<k, <ceil (m * In(3) —(m-— 1)) and (m—1) < Z kg < ceil (m * In(3) — (k1)>

ln(z) e~ ln(Z)
' In( _ . n(3)
=k, € [[1; ceil (m * % -m+ 1) ]] and Y3 kg € [[(m — ); ceil (m * % B kl) ]] ©2)

Since we reached the result (k1 € [[1; ceil (m G _ o+ 1)]]) and (Z%igﬂ kg e [[(m — 1); ceil (m L) kl) ]D,

* — _—7
In(2) In(2)
we deduce the minimum and maximum values of k; shown in (Equation 93), whereas we deduce the minimum and maximum
values of Y{=1""* k(;41) shown in (Equation 94).

MIN(ky) = 1; MAX (ky) = ceil (m + i:g; —m+1) (93)
=m- =m— . In(3)
MIN(SIZ0 " any) = (m — 1 MAX(ZED k) = ceil (m+ ) (94)

We deduce that when the value of "m" goes to infinity, the value of k;is limited by having a maximum value that cannot
exceed 60% of (m), because of the shown result in (Equation 95).

n(3) _
n(2)

MAX (ky) = ceil (m « m+1) ~ ceil(m + 0,5849625 + 1) (95)

We also deduce that the value of Y:}=7? k(1+1) is limited by having a maximum value that cannot exceed 159% of (m)
when the value of "m" goes to infinity, because of the shown result in (Equation 96).

MAX (I k) = [ceil (mEa)| = ceil(m = 1,5849625) (96)

Now, we express the formula to calculate the maximum value of n; which is obtained when k; is taking its MAX value
shown in (Equation 95). Then, we use Python (Figure 4) to provide computational results highlighting the evolution of the
maximum value of n;.

The maximum value of n; It is mainly defined by identifying the maximum value for the numerator
i ; Jemeisly o . . 1=
I=m-1130 4 2%j=0 0|, after determining the first positive value for the denominator (221=g1 ko — 3m).
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Codes mPy‘Ihonto calculate the maximum and minimum values of nl in possible Collatz loops

Fig. 4 Programmed codes in python to generate graphical illustrations of the maximum and minimum values of n_1.

When the coefficient k; takes its maximum value, the value of ¥}=m1 k(4+1) will be at its minimum, which is (m — 1).

As a result, the maximum value of n, (Equation 97) is calculated by giving each coefficient k; a value equal to “1” when
(2 < i <m), whereas k; is taking the maximum value of MAX (k).

| ey lkm]
MAX(n,) = where k, = ceil (m NELC 1) and (i€ [2,m]| k;=1) (97)
Zl 0 k@ _gm n(2)

The next step is expressing the formula to calculate the minimum value of n, (Equation 98), which is obtained when k,,, is
taking its MAX value.

j=m—i-1
sizm=1ata =0 "w] o
. n(3 .
MIN(n,) = T where k,, = ceil (m * ) and (vie[l,m—1]| k; =1) (98)

We can re-express the shown formula of MAX(n,) in (Equation 97) to be as presented in (Equation 99):

_1+21 =m- 2[3i*2(m—2—i+1(1)]
Z(m 1+K1)_3m

n(3)
n(2)

MAX(n,) = where K; = ceil (m * -m+ 1) (99)

We can re-express the shown formula of MIN (n,) in (Equation 98) to be as presented in (Equation 100):

—1+Zl m— 2[3i*2(m—1—i)] _ Zgzgl—l[3i*2(m—1—i)]
2(m— 1+Km)_3m T (m-1+Km)_3gm

where K,,, = ceil (m NG " 1) (100)

MIN(n,) = )

59



Yassine Larbaoui / IJMTT, 72(1), 28-89, 2026

We used the Python programming language to program the shown code in Figure 4, in order to compute the values of
MAX(n,) and MIN (n,) when "m" goes from 2 to 64, whereas "m" is the number of elements in prospect Collatz loops.

When we vary the value of "m" in the range [2; 64], the maximum value MAX (n,) among all values illustrated in Figure
5, is the value (851995363565), which is obtained when m = 63, whereas all the numbers in the range
([1; 18446744073709551616] = [1;2%4]) are already verified by computation that they converge toward the value “1”
when we keep repeating the operations of the Collatz conjecture on them [10, 32]. Therefore, there is no Collatz loop consisting
of "m" elements where "m" is in the range [2; 64]. As a result, the expression (Equation 90) and the presented statements in
Theorem 17 are correct, which means there is no Collatz loop of "m" elements that can contradict the Collatz conjecture, where
"m" is in the range [2; 64].
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Fig. 5 Computed graphs showing the evolution of maximum and minimum values of n_1 in function of the amount M of odd numbers in potential
Collatz loops.

5.9. Proposed Theorem on General Collatz Loops in the Group N
This subsection presents the eighteenth theorem in this paper, which treats possible Collatz loops consisting of L odd
numbers (L € {N}) according to the proposed formulas in Theorems 3 and 4 in this paper.
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Theorem 18

In the group of Natural Numbers {N}, there is no subgroup of L (Le{N-{1}}) odd numbers
{n,,ny, N3, Ny, Ns, N, Ny, ..., Ny _1, N} that can create a Collatz loop where 3n;+1=2n,and3n, +1=
2%2n5 and 3n; + 1 = 2%3n, and 3n, + 1 = 2%ng and 3ns + 1 = 2%n, and 3ng + 1 = 2%n, and 3n, + 1 =

2% ng and ...and 3n,_; + 1 = 2¥.-1n, and 3n, + 1 = 2kin, .

(G eN)and (vL € {N—{0,1}} ); a{ny, ny, n3, Ny, N5, N, Ny, .., Ny, N} €G| ¥i€[1,L—1]3n;+1=
2kin;,, and 3n, + 1 = 2kn;  (101)

Proof of Theorem 18

In the proof of Theorem 17, we demonstrated that in the group of Natural Numbers {N}, there is no subgroup of L
(L € [2,64] ) odd numbers {n,,n,, ns, ny, ng, Ng, N, ...,N;_1,n;} that can create a Collatz loop. For that, we relied on
calculating the maximum value and the minimum value of n; as shown in (Equation 99) and (Equation 100).

In Theorem 3 and Theorem 4, we proved that if an odd number n, is included in a possible Collatz loop
{nq,ny, ng, Ny, N, Ng, Ny, ..., N1, Ny} €xpressed as shown in (Equation 102), then the value of this odd number n; can be
calculated by using (Equation 103). Therefore, we can re-express the odd number n, to be as presented in (Equation 104).

3n, + 1 =2kn,; 3n, + 1 = 2k2n,; 3n; +1 = 2k3n,; ...; 3n,,_, +1 =2km-1n_; 3n, +1 = 2kmn, (102)

. Jj=m-i-1,
Zifﬁn_l[si*zzﬁo km]

n, = S | ko = 0 and k(s € {N—{0}}  (103)
241=0 “()_3zm
i=m-1 . )
=m . jEm=i-1,
=n, (ZZf:o k@ — 3m) = [31 % 22j=0 k(/)] | ko =0 and ksqy € {N — {0}}
i=0
m*zZEB"'l"(D—z:izsn‘Z[si*zzﬁ?_i_z"m]

ﬁnlz

= | ko = 0 and kgsry € (N = (03} (104)

Proving that there is no Collatz loop consisting of “m” elements, where (m > 2), is based on demonstrating that the value
of n, on the right-hand side of the shown equation in (Equation 104), it is always equal to “1”, and it is different from the value
of n; shown on the left-hand side of the same equation.

In Theorem 20, we prove that if an odd number n; is eventually converging toward “1” when conducting the operations of the
Collatz conjecture on it, then the odd number (2ng + 1) is also converging toward “1” when we keep repeating the Collatz
operation, whereas starting these operations on (2ng + 1).

In Theorem 21, we prove that if an odd number n; is eventually converging toward “1” when conducting the operations of the
Collatz conjecture on it, then the odd number (2ng + 3) is also converging toward “1” when we keep repeating the Collatz
operation, whereas starting these operations on (2ng + 3).

In Theorem 20 and Theorem 21, the odd numbers {ng; 2n, + 1; 2n, + 3 } are proven to converge toward the number “1” when
repeating Collatz operations by proving that each one among them is expressed according to the shown formula in (Equation
105).
22%:3”'1"(D—zézs’”[si*zzﬁiﬁn_i_zKw]
n= | Ko = 0 and Ky € {N — {0}} (105)

3m—1

In Theorem 25, all odd numbers are proven to be expressed according to the shown formula in (Equation 105) by scaling

“, _n

Theorem 20 and Theorem 21. Therefore, based on Theorem 8, every odd number “n” in the group of natural numbers N

converges to the number “1” by repeating the conduction of Collatz operations, whereas starting these operations on “n”,
because these odd numbers are expressed as shown in (Equation 105). As a result, the expression (Equation 101) and the
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presented statements in Theorem 18 are correct, because there is no Collatz loop consisting of “m” elements (odd numbers)
where m € {N — {0}} except the Collatz loop, where (m = 1).

6. New Theorems Proving the Collatz Conjecture by Treating Convergence

This section provides foundation theorems proving that when starting Collatz operations on any odd number, calculations
do not diverge and they actually converge to values inferior to the starting number. Then, this section presents more general
theorems built on the foundations, which allow us to prove that when repeating Collatz operations, starting them on any natural
number different from zero, calculations eventually lead to the number “1”.

6.1. Proposed Theorem for One-Step Convergence of Collat; Operations

This subsection presents a theorem identifying when a one-step operation of the Collatz conjecture on an odd number n
will actually converge to a value n, inferior than n,. The presented results in this subsection are based on the statements and
formulas of Theorem 1 in this paper, which re-express the operations of the Collatz conjecture.

Theorem 19

Supposing two odd numbers n; and n, connected according to the operations of the Collatz conjecture, which we can

express as follows: n, = 37;:'1. If we have k; superior or equal “2” (k; = 2) and we have n; absolutely superior to “1” (n; >

1); then we will have (n, < n;) as shown in (Equation 106).

3ng +1

v{n,n,} e {N — {0}} where {n,,n,} are odd numbers and n, = 6

andn, > 1L;If ky = 2istrue=>n, <ny
(106)
Proof of Theorem 19

When having a group of two consecutive odd numbers {n,,n,} connected according to the operations of the Collatz
conjecture, we can express these two odd numbers by using the first proposed formula (Equation 1) in Theorem 1 of this paper

as follows: n, = 3Zilwhich we demonstrated in the proof of Theorem 1.
By having n, = 372117:1 and supposing the condition n; > 1 is true; we have the following logic that leads to the shown result

in (Equation 107):

. 3y +1 3n;+1
If ky =2istrue = n, = <

2k1 22
_3n1+1<3n1+1
=n, = ST g
3n, +1
= 4n, =4 > <3n, +1

=>4n2 _4n1 < _n1+1
= n, —n,; < 0 (since we supposed n; > 1)
= n, < n, (since we supposed n; > 1) (107)

As a result, (Equation 106) and the proposed statements in Theorem 19 are correct.

6.2. First Proposed Theorem for Multi-Step Convergence of Collat; Operations

This subsection presents a theorem proving that if we have a group of odd numbers L, (L, € N), where every odd number
(ng) in this group is converging to inferior values than itself when repeating the operations of the Collatz conjecture, while
starting these operations on n,, then, we will have other odd numbers expressed as (2n, + 1) also converging to inferior values
than themselves when repeating the operations of the Collatz conjecture, whereas starting on them.
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Theorem 20

Supposing a group L; containing odd numbers, where the minimum odd number in L, is {n; = 1} and the maximum odd
number is {n, = 2(h — 1) + 1}; as shown in (Equation 108). If every odd number n, from this group (L;) is converging to a
value (P; = 1) inferior to itself when repeating the operations of the Collatz conjecture, whereas starting these operations on
ng; then every odd number (ng, = 2ng + 1) is also converging to an inferior value (P; = 1) (where P; < n;) when repeating
the operations of the Collatz conjecture, whereas starting on n; .

Li={fni=Ln,=3;n3=5n=7.;n_,=2h-2)+1;n,=2(h—-1)+1} (108)

Proof of Theorem 20

To prove Theorem 20, we start by considering ng from the group L; where ng is converging to the number “1” when
repeating the operations of the Collatz conjecture, whereas starting these operations on ng. Therefore, we will adopt the group
L' expressing the odd numbers generated when starting Collatz operations on the odd numbers ng, which is to be expressed as
shown in (Equation 109).

3ng+1  _, _ 3nh+1. ., _ 3ni+1 , , _3npoqatl o
ZTl' ny = 2Kz Ny = 2T3’ s M1y My = K1 P=1 (109)

1 [ ! =
L —{nl—ns,nz—

The next step is relying on Theorem 6 to express ng by using the presented formula in (Equation 110), which we already
demonstrated in the proof of Theorem six.
zz%zgl_lK(D—Zf:::)n_z[si*zzj':?_l_z K

ng =nj = | Ko =0and K;5; € {N—{0}}  (110)

3m-1

Now, we consider the odd number (ns L =2ng+ 1) , which we need to prove that it is expressed according to the proposed
formula (Equation 59) in Theorem 8. Therefore, we will prove that (ngl =ng — 4) is expressed according to the proposed
formula (Equation 72) in Theorem 9; because Theorem 9 is forwarding Theorem 8.

We calculate the value of (n; L, =ng, —4=2ng— 3) whereas replacing n, with its shown expression in (Equation 110),
which allows us to obtain (Equation 111).

Jj=m—i-2

22%25"_1 Kay _ Z:ﬁ:gl-Z [31' * 22j=0 K(j)]

ng, =2ng—3 = ng =2 o= -3

2+ 2550 K@ — g 4 izm-2 [Bi * zzf'zgl_L_ZK(j)]

! — —
= ng, = 3m-1 3

l=m-— . , j=m-i-2 ,
2% 2850 K@) — 2 4 pizm-2 [3! % 2%)=0 K(D] —3m
=] n;1 =

3m—1

i

2% 2ZER T KW _ g 4 yrizm2 [3i « 2550 _ZKU)] — 94 3m-2

3m—1

2% 2858 K — 24 pizm3 [3i . 225:?_i_2’((f>] —2%3M72 -9 x3m2

3m—1

2% 2ZE0 T K _ g 4 yizms [3i . 221':31_1_2’(0)] —11%3m2

3m—1
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I=m-1 . | ogfEmei-2g
2*22120 K(l)_Z*Zkz‘(']n_3|:3l*22j=0 K(])

= nj = = (111)

_8*3m—2_3*3m—2

The next step is adapting the shown expression in (Equation 111) by replacing the number "8" with (ZK(,D = 23) whereas
conducting the following re-expressions {K(;y = 3; K(j=1) = K(j11) + 2; K<jem-1) = K(j+1) and K5y = 0}, which gives us
the shown result in (Equation 112). The value (K(jzl) = K('j T 2) is leading to the result (K('z) € [—1,+[ ), because
(K € {N - {0}}).

e . _ j=m—i-2
2K(072 4 NIZ0 T K@ — K72 4 yizm-3 [31 * 2%j=0 K(j)] — 2K « 3m-2 _ gm-1
—1 n;l =

3m—1

l=m— i . Jj=m—i-2 s
ZK{—Z % 22+Zl=;n 1K(Il+1) _ ZK{—Z % Zi=m—3 [3L % 22+2j=1 K(j+1)] _ ZK{ % 3M—2 _ 3m-1

=
I
= ng, = 3m-1
l=m-— . . j=m—i-2
21(('1)+Zl=71n IK(’l+1) _ Z;fan—3 [31 % ZK(,1)+ZJ'=1 K('j+1)] _ 2K('1) % 3m—2 _ 3m—1
-
= NG, = 3m-1
1= . ., ! Jj=m-—i-1 1
2K TS K — yizm=3 [3! « 2K )= K(j)] — K@) 4 gm-2 _ gm-1
—1 n;l =

3m—1

= ) . Jj=m—i-1 s
QBTG _ yizmes [31 « 2% "(D] — 2K 4 3m-2 _ gm-1

[
= N, = 3m-1

l=m ! . L opfEmei=1 0
2Zi=1 K(l)_zéz;r]n—Z[3z*22j:1 K(})]_3m—1

pr (112)

—1 n;lz

Since we have (K('O) = 0), we can re-express the shown value of ng, in (Equation 112) to be presented as shown in
(Equation 113):

1= , , j=m—i-1 s
221=gl’((’l) — Z%:gl‘z [31 * 221':0 K(j)] —3m-1
ro_
= ng, = 3m-1
1= . Jj=m-—i-1 s
221=5"Kb)_25231—1[3i*22j=o 40)
= ng = e (113)

Based on the shown expression in (Equation 113), we can present the value of ng, as shown in (Equation. 114).

siEml mea IEm
2%1=0 (l)_g:gl 13i,0%j=0 (6))

pe IR = 0and Ky = 0 and K{ = 3 and K(,, € [—1, +oo[ and K(;¢(g 5} €
{N—{0}}and (R+K{)=0and (R+K{+K;)>0 (114)

= ng, =2F

We deduce that (n; L =N — 4) is expressed while respecting the presented statements and proposed formula (Equation
72) in Theorem 9. Therefore, based on the statements of Theorem 9, the odd number (ns , = 2ng + 1) is converging to the
number “1” when we keep repeating the operations of the Collatz conjecture, whereas starting these operations on 7, , because

it is expressed according to the proposed formula (Equation 59) in Theorem 8. As a result, the given statements in Theorem 20
are correct.
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6.3. Second Proposed Theorem for Multi-Step Convergence of Collatz; Operations

This subsection presents a theorem proving that if we have a group of odd numbers L, (L, € N), where every odd number
(ng) in this group is converging to inferior values than itself when repeating the operations of the Collatz conjecture, whereas
starting these operations on n; then, we will have other odd numbers expressed as (2n; + 3) also converging to inferior values
than themselves when repeating the operations of the Collatz conjecture, whereas starting on them.

Theorem 21

Supposing a group L, containing odd numbers, where the minimum odd number in L, is {n; = 1} and the maximum odd
number is {n; = 2(h — 1) + 1}; as shown in (Equation. 115). If every odd number n, from this group (L,) is eventually
converging to a value (P, = 1) inferior to itself when repeating the operations of the Collatz conjecture, whereas starting these
operations on n; then every odd number (n,, = 2n, + 3) is also converging to an inferior value (P, = 1) (where P, < n,)
when repeating the operations of the Collatz conjecture, whereas starting them on n, .

L,={n,=Lin,=3;n3=5n,=7;..;n_, =2h—2)+Ln, = 2(h—1) + 1} (115)

Proof of Theorem 21

To prove Theorem 21, we start by considering ng from the group L, where ng is converging to the number “1” when
repeating the operations of the Collatz conjecture, whereas starting these operations on ng. Therefore, we will adopt the group
L' expressing the odd numbers generated when starting Collatz operations on the odd numbers ng, which is expressed as shown
in (Equation. 116):

3nj+1
2k1

3n5+1

n' = 3n+1
2kz 7 4T

2k3

L’={n1=ns;n'2= nh = nl = P2=1} (116)
The next step is relying on Theorem 6 to express ng by using the presented formula in (Equation 117), which we already
demonstrated in the proof of Theorem six.

l=m-1 . o oypfEmeiz
221=5n K(l)_Z;:g"—Z[gl*zZ#o 0

| Ko = 0 and K;»; € {N — {0}} (117)

— ! —
ng =Ny = 3m-1

Now, we consider the odd number (ns2 = 2n, + 3) , which we need to prove that it is expressed according to the

proposed formula (Equation 59) in Theorem 8. Therefore, we will prove that (n;2 =n,, — 4) is expressed according to the
proposed formula (Equation 72) in Theorem 9; because Theorem 9 is forwarding Theorem 8.

We calculate the value of (n;2 =n, —4=2n;— 1) while replacing ng with its shown expression in (Equation 117), which

2
allows us to obtain (Equation 118).

j=m—i-2

22%25"_1 Kay _ Z:ﬁ:gl-Z [31' * 22j=0 K(j)]
-1

I _ [
ng, =2n;—1 = ng, =2 -1

=m- . i j=m-—i-2
2+ 2550 K@ — g 4 izm-2 [31 % 2Zj=0 K(ﬂ]
5 n;z = = -1
=m- . A Jj=m-i-2
2 2520 KW — 2 4 yizme2 [31 % 2%j=0 K(ﬁ] —gm-1
= n;z =

3m—1

i=

24 2N K _ g 4 pizm2 [3i . 22533”_1_2"0)] — 34 3m2

r_
= ng, = 3m-1
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24 250 KW — 9 4 i [3i % zzﬁzy_i_2K<f>] —2%3M2_34%3m2

ro_

= ng, = 3m-1

I=m-1 . . jEm=i=2
2 % 221=0 Koy _ 2 % E:Bn—3 [31 * 221':0 K(})] — 5 % 3m—2
ro_
= N5, = 3m-1
I=m-1 . o oyfEmoi=2z
2422I=0 K(l)_z*ZﬁzgnJLL*zZFO K| _guam-2_3.,3m-2
T

= nl, = = (118)

The next step is adapting the shown expression in (Equation 118) by replacing the number "2" with ZK(Il) = 21 whereas
conducting the following re-expressions {K(;y = 1; K(1<jem—-1) = K('j +1) and K(y) = 0}, which gives us the shown result in

(Equation 119). The value (Kj_q) = K('j+1)) is leading to the result (K('z) e {N — {0}}), because (K € {N — {0}}).

- . R
2K 220 KW — 9K(y & yizm-3 [31 * 22j=0 K(j)] _ 9K() 4 gm-2 _ gm-1

I

= N, = 3m-1

l=m— i . ! Jj=m—i-2 s
ZK(’1)+Z[=;" 1K(,l+1) _ Zifgl—S [31 % 2K(1)+2j=1 K(j+1)] _ ZK(Il) * 3m—2 _ 3m—1
L

= ng, = 3m-1

1= i . ! j=m—i-1 s
2K(,1)+Zl=;nl((’l) _ Ziz‘(r)n—3 [31 * ZK(1)+ZJ-=2 K(])] _ ZK(II) * 3m—2 _ 3m—1
L
= N5, = 3m-1

=m-i-1

= , . Jj
2T Ky _ yrizmes [3! « 2%j=1 K('D] — 2K() 4 3m-2 _ gm-1

-
= ng, = 3m-1
1= ! i o ogjEm=i-1 0
ZEI:TK(I)_Z;zgl—z[3l*22j=1 K(])]_3m—1

= ng, = prr (119)

Since we have (K('O) = 0), we can re-express the shown value of ng, in (Equation 119), in order to be presented as shown

in (Equation 120):

= . . j=m—i-1
22§=3"K<'z> — yizm-2 [3l % 2Zj=0 K('f)] —3m-t

[
= ng, = 3m-1

l=m I . . Jj=m-i-1 I
221=0 K(l)-z;zg"—l[g,t*zzj:o L40)

(120)

[ —
= nsz - 3m-1

Based on the expression (Equation 120), we can represent the value of ng, to be as shown in (Equation 121):

1= X Jj=m-—i-1 s
2ZI=0 Kfz)—zifﬁn‘l[si*zzho K(j)]

IR = 0 and K(y) = 0 and K5,y € {N — {0} } and (R + K;) >
Oand R+K/ +K) >0 (121)

! _ 9R
= ng, =2 gy

We deduce that (n;2 =ng, — 4) is expressed while respecting the presented statements and proposed formula (Equation
72) in Theorem 9. Therefore, based on the statements of Theorem 9, the odd number (nSZ =2n; + 3) is converging to the
number “1” when we keep repeating the operations of the Collatz conjecture, whereas starting these operations on 7, , because
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it is expressed according to the proposed formula (Equation 59) in Theorem 8. As a result, the given statements in Theorem 21
are correct.

6.4. Third Proposed Theorem for Multi-Step Convergence of Collatz Operations

This subsection presents a theorem proving that if we have a group of odd numbers L; (L; € N), where every odd number
(ng) in this group is converging to inferior values than itself when repeating the operations of the Collatz conjecture, whereas
starting these operations on n; then, we will have even numbers expressed as 2%ng (k € [1, +oo[[) also converging to inferior
values than themselves when repeating the operations of the Collatz conjecture, whereas starting on them.

Theorem 22

Supposing a group L3 containing odd numbers, where the minimum odd number in Lz is {n; = 1} and the maximum odd
number is {n; = 2(h — 1) + 1}; as shown in (Equation. 122). If every odd number ng from this group (L3) is converging to a
value (P; = 1) inferior to itself when repeating the operations of the Collatz conjecture, whereas starting these operations on
ng; then every even number 2¥ng (k € [1,+0o0[) is also converging to an inferior value (P; = 1) (where P; < ny) when
repeating the operations of the Collatz conjecture, whereas starting on 2¥n,.

Ly={fn,=Lin,=3;n3=5n,=7..;n_1=2h—-2)+L;n, = 2(h—1) + 1} (122)

Proof of Theorem 22
Supposing that every odd number ng from the group L is converging to the number (P; = 1) when repeating the
operations of the Collatz conjecture, whereas starting these operations on n.

In the case of having a number (nSS = ans) where (k € [1,+0o0]), it will be even. Therefore, we will keep dividing this
number. n,, on “2” until reaching the next odd number, which is ng. Consequently, repeating the operations of the Collatz

conjecture, starting on (ns3 = ans) will eventually converge to the number “1”.

As a result, the given statements and formulas in Theorem 22 are correct, because every even number (ns3 = 2k ns) will
be converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas starting these
operations on 1, .

6.5. Fourth Proposed Theorem for Multi-Step Convergence of Collatz Operations

This subsection presents a theorem proving that if we have a group of odd numbers L, (L, € N), where every odd number
(ny) in this group is converging to inferior values than itself when repeating the operations of the Collatz conjecture, whereas
starting these operations on ng; then, we will have other even numbers and odd numbers expressed as {2*ng, 2ng + 1, 2n, + 3}
also converging to inferior values than themselves when repeating the operations of the Collatz conjecture, whereas starting on
them.

Considering the odd number (2n, + 5); we can re-express it as (2n, + 5 = 2ng,; + 1) where {n, = 2(s — 1) — 1} and
{ngs4+1 = 2(s) — 1} are two consecutive odd numbers. Therefore, the odd number (2n, + 5) is already covered by the developed
theorems. The same logic can be applied to the odd number (2n; +4a+ 1|a € [[1,+oo[) which we can express as
(2ng+4a+1=2n5.,+1]|ace[1,+oo]).

Theorem 23

Supposing having a group L, containing odd numbers, where the minimum odd number in L, is {n; = 1} and the maximum
odd number is {n,, = 2(m — 1) + 1}; as shown in (Equation. 123). If every odd number ng from this group (L,) is converging
to a value (P, = 1) inferior to itself when repeating the operations of the Collatz conjecture, whereas starting these operations
on ng; then every natural number ng ({n; =2knsorni =2n,+1ornl,=2n,+3}(k e N)) is also converging to an
inferior value (P, = 1) (where P, < n,,) when repeating the operations of the Collatz conjecture, whereas starting these
operations on ng.

Ly={ni=L4Ln,=3;n3=5n,=7.;n,,=2m—-2)+Ln, = 2m—-1)+1} (123)
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Proof of Theorem 23

Supposing having the group L, containing odd numbers where the minimum is {n; = 1} and the maximum is {n,, =
2(m — 1) + 1}, whereas supposing every odd number n, from this group (L,) is converging to a value (P, = 1) inferior to
itself when repeating the operations of the Collatz conjecture, whereas starting these operations on n.

According to the subsection of Theorem 20, we proved that if an odd number n; is converging to the number “1” when
repeating the operations of the Collatz conjecture, whereas starting these operations on ng; then the odd number expressed as
(ng = 2ng + 1) is also converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas
starting on ng.

According to the subsection of Theorem 21, we proved that if an odd number ng is converging to the number “1” when
repeating the operations of the Collatz conjecture, whereas starting these operations on ng; then the odd number expressed as
(ns = 2ng + 3) is also converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas
starting on ng.

According to the subsection of Theorem 22, we proved that if an odd number ng is converging to the number “1” when
repeating the operations of the Collatz conjecture, whereas starting these operations on ng; then the even number expressed as
(n. = 2kny) (Where ke {N — {0}}) is also converging to the number “1” when we keep repeating the operations of the
Collatz conjecture, whereas starting on ng.

Therefore, we deduce that the given statements by Theorem 23 are correct.

6.6. Fifth Proposed Theorem for Multi-Step Convergence of Collatz Operations

This subsection presents a theorem proving that if we have a group of natural numbers Lg (L 5 € {N — {0}}), where every
odd number (ny) in this group is converging to inferior values than itself when repeating the operations of the Collatz conjecture,
whereas starting these operations on ng; then, we will have a larger group Ly (Lg € {N — {0}}) twice the size of Lg where every
natural number (ng € Lg) is also converging to the number “1” when we keep repeating the operations of the Collatz
conjecture, whereas starting on n .

Theorem 24

Supposing a group Lg containing natural numbers, where the minimum number in Lg is {n; = 1} and the maximum number
is {n,, = m}; as shown in (Equation. 124). If every odd number n, from this group (Ls) is converging to a value (Ps = 1)
inferior to itself when repeating the operations of the Collatz conjecture, whereas starting these operations on ng; then every
natural number n; from the group (L = [1, 2n,,]) is also converging to the number “1” when we keep repeating the operations
of the Collatz conjecture, whereas starting on ng.

Le={n,=Lin,=2,n;=3;n,= 4;...; yp_y = (m—1);n,, = m} (124)

Proof of Theorem 24

Supposing that the group Lg is containing natural numbers where the minimum is {n; = 1} and the maximum is {n,, =
m}, whereas supposing every odd number n, from this group (Lg) is converging to a value (Ps = 1) inferior to itself when
repeating the operations of the Collatz conjecture, whereas starting these operations on 1.

“1”

According to the subsection of Theorem 20, we proved that if the odd number ng is converging to the number when
repeating the operations of the Collatz conjecture, whereas starting these operations on ng; then the odd number expressed as
(ns = 2ng + 1) is also converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas
starting on ng.

Therefore, based on using Theorem 20, we deduce that every odd number (ng = 2ng + 1) in the interval [1,2n,,] is
converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas starting these
operations on ng.

According to the subsection of Theorem 21, we proved that if the odd number ng is converging to the number “1” when
repeating the operations of the Collatz conjecture, whereas starting these operations on ng; then the odd number expressed as
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(ng = 2ng + 3) is also converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas
starting on ng.

Therefore, based on using Theorem 21, we deduce that every odd number expressed as (ng = 2ng + 3) in the interval
[1,2n,,] is converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas starting
these operations on nj,.

Considering the odd number (2n, + 5); we can re-express it as (2ng + 5 = 2ng,; + 1) where {n, = 2(s"' — 1) — 1} and
{ng41 = 2(s") — 1} are two consecutive odd numbers. Therefore, the odd number (2ng + 5) is already covered by the
developed theorems. The same logic can be applied to the odd number (2n; + 4a + 1| a € [1, +oo[) which we can express
as (2ng+4a+1=2ng.,+1|ace[l,+oo]).

According to the subsection of Theorem 22, we proved that if an odd number ng is converging to the number “1” when
repeating the operations of the Collatz conjecture, whereas starting these operations on ng; then every even number expressed
as (n = 2*n,) (where k € {N — {0}}) is also converging to the number “1” when we keep repeating the operations of the
Collatz conjecture, whereas starting on ng.

Therefore, based on using Theorem 22, we deduce that every even number n; in the interval [1, 2n,,] is converging to the
number “1” when we keep repeating the operations of the Collatz conjecture, whereas starting these operations on nj,.

As a result, we deduce that the given statements by Theorem 24 are correct.

7. New Theorems Providing Algebraic Proofs on the Correctness of the Collatz Conjecture
This section presents new theorems proving the correctness of the Collatz conjecture while proposing new unified formulas
re-expressing this conjecture algebraically on natural numbers.

7.1. First Proposed Theorem Proving Collatz Conjecture on Odd Numbers

This subsection presents a theorem proving that all odd numbers are converging to the number “1” when we keep repeating
the operations of the Collatz conjecture, whereas starting these operations on them, and they are all expressed according to a
unified formula composed of distributed terms based on the group {2¥, 3/}.

Theorem 25

Every odd number (ns1 € N) where we have (ns1 > O), this number is converging to “1” when we keep repeating the
operations of the Collatz conjecture, whereas starting these operations on ng, . This convergence is allowing us to express any
odd number ng, (ns, > 0) according to a unified formula composed of distributed terms as shown in (Equation 125).

I=m-1 . o ogfEmeisz g
221=0 K(l)_zgzgn_z[y*zzjﬂ K

ns, = 3m—1

| Ko = 0 and Kgsq) € {N — {0}} (125)

Proof of Theorem 25
Supposing having a group L, containing natural numbers, where the minimum number in L; is {n; = 1} and the maximum
number is {n,, = m}.

Supposing every odd number ng, from this group (L;) is converging to a value (P = 1) inferior to itself when we keep
repeating the operations of the Collatz conjecture, whereas starting these operations on n,_; then, according to Theorem 24 in
this paper, every odd number ng, from the group (L, = [[1,2'n,,]) is also converging to the number “1” when we keep
repeating the operations of the Collatz conjecture, whereas starting these operations on ng, .

Now, we consider the group of natural numbers. (L, = [1, 2'n,,]) where the minimum odd number is {n} = 1} and the
maximum odd number is {2n,, — 1}

Since every odd number ng, from this group (L) is converging to a value (P’ = 1) inferior to itself when repeating the
operations of the Collatz conjecture, whereas starting these operations on ng_; then, according to Theorem 24 in this paper,
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every odd number n;1 from the group (L; = [1,2%n,,]) is also converging to the number “1” when we keep repeating the
operations of the Collatz conjecture, whereas starting these operations on n, -

The next step is relying on recurrence (induction) by considering the group of natural numbers (L]- = [[1, 2/ ‘1nm]]) where
the minimum odd number is {n} = 1} and the maximum odd number is {2/~ *n,, — 1}.

Since every odd number ng, from the group (L;) is converging to a value (P’ = 1) inferior to itself when repeating the
operations of the Collatz conjecture, whereas starting these operations on n_; then, according to Theorem 24 in this paper,
every odd number n;1 from the group (Lj+1 = [[1, 2/ nm]]) is also converging to the number “1” when we keep repeating the
operations of the Collatz conjecture, whereas starting these operations on n, -

Therefore, by recurrence, we deduce that every odd number in the group (L]-Jr1 = |I1, 2/ nm]]) is converging to the number
“1” when we keep repeating Collatz operations, which allow us to extend this deduction to the group L;,; where the value of
the natural number *j” is going to infinity.

Consequently, we deduce that every odd number ng from the group {N —{0}} ({N—{O}}= _li{Ln Lz =
]—} [ee]

.1i£n M1,27 nm]]) is converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas
jo+o

starting these operations on n, .

Based on Theorem 6 in this paper, since every odd number ng, from the group {N — {0}} ({N —{0}} = _li{rn Lz =
jo4o

lim [1,2/ nm]]) is converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas
jo+o
starting these operations on ngl; we deduce that we can express n, , as shown in (Equation. 126):

I=m-1 . o oyfEmei=2
st K(l)_zéfgn—Z[y*zzj:o Kp

ng, = 3m—1

| Ko = 0and Ksq) € {N—{0}}  (126)

As a result, we deduce that the given statements and the proposed formula (Equation 125) in Theorem 25 are correct,
which means that the given statements in the Collatz conjecture are correct for odd numbers, because every odd number n, .
from the group {N - {0}} is converging to the number “1” when we keep repeating the operations of the Collatz conjecture,
whereas starting these operations on n, L

7.2. Second Proposed Theorem Proving Collatz Conjecture on Even Numbers

This subsection presents a theorem proving that all even numbers, except zero, converge to the number “1” when we keep
repeating the operations of the Collatz conjecture, and they are all expressed according to a unified formula composed of
distributed terms based on the group {2, 3/}.

Theorem 26

Every even number (ns2 € N) where we have (ns2 > 0), this number is converging to “1” when we keep repeating the
operations of the Collatz conjecture, whereas starting these operations on ng,. This convergence is allowing us to express any
even number ng, (n,, > 0) according to a unified formula composed of distributed terms as shown in (Equation 127).

—m— Jj=m-—i-2
22%=5n 1K(l)—2§§8n_2[3i*221=0 K(f)]

— 2k
ns, = 2 3m—1

| Ko = 0 and K51y € {N — {0}} and k e (N - {0}}  (127)
Proof of Theorem 26

Supposing having a group L, containing natural numbers, where the minimum number in L, is {n; = 1} and the maximum
number is {n,, = m}.
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Supposing every odd number ng from this group (L;) is converging to a value (P = 1) inferior to itself when we keep
repeating the operations of the Collatz conjecture, whereas starting these operations on ng; then, according to Theorem 24 in
this paper, every odd number and even number ng, from the group (L, = [1, 2n,,]) is also converging to the number “1”
when we keep repeating the operations of the Collatz conjecture, whereas starting these operations on ng, .

Now, we consider the group of natural numbers (L, = [1,2n,,]) where the minimum odd number is {nj = 1} and the
maximum odd number is {2n,, — 1}

Since every odd number n; from this group (L,) is converging to a value (P’ = 1) inferior to itself when repeating the
operations of the Collatz conjecture, whereas starting these operations on ng; then, according to Theorem 24 in this paper, every
odd number and even number ng, from the group (L; = [1,2?n,,]) is also converging to the number “1” when we keep
repeating the operations of the Collatz conjecture, whereas starting these operations on n;Z.

The next step is relying on recurrence (induction) by considering the group of natural numbers (L]- = [[1, 2/ ‘1nm]]) where
the minimum odd number is {n} = 1} and the maximum odd number is {2/~ n,, — 1}.

Since every odd number ng from the group (L;) is converging to a value (P’ = 1) inferior to itself when repeating the
operations of the Collatz conjecture, whereas starting these operations on n; ; then, according to Theorem 24 in this paper,
every odd number and even number n;2 from the group (Lj+1 = [[1, 2/ nm]]) is also converging to the number “1” when we

keep repeating the operations of the Collatz conjecture, whereas starting these operations on n;Z.

Therefore, by recurrence, we deduce that every even number from the group (Lj+1 = [[1, 2/ nm]]) is converging to the
number “1” when we keep repeating Collatz operations, which allow us to extend this deduction to the group L;,; where the

ITEx

value of the natural number ‘" is going to infinity.

Consequently, we deduce that every even number n;Z from the group {N—{O}} ({N—{O}}= _liin Ly =
jotoo

lliin 1,27 nm]]) is converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas
jo+oo

starting these operations on n;Z.
Based on Theorem 6 and Theorem 25 in this paper, since every odd number n, from the group {N —{0}}
({N —{0}} = ,liin Liv, = _lir+n M1,2/ nm]]) is converging to the number “1” when we keep repeating the operations of the
]—) [ee] ]—) (oo}
Collatz conjecture, whereas starting these operations on ny; we deduce that we can express n, as shown in (Equation 128):

Jj=m—i-2

l=m-1 . . "
im0 Ko _yizm=2|3i k=0 KO

ng = | ko = 0 and k(1) € N (128)

3m-1

Therefore, we can express every even number ng, in the group {N — {0}} <{N —{0}} = ‘HIP Ly = .liin M1, Zjnm]]) as
jotoo jotoo
shown in (Equation 129), since we can express every odd number in the same group as shown in (Equation 128).

Jj=m-—i-2

22%:3"—1K(l)_2§231—2 3i4%j=0 K(J')]

v ok
s, = 2 3m—1

| ko = 0 and k(sq) € {N — {0}} and k € {N —{0}} (129)

As a result, we deduce that the given statements and the proposed formula (Equation 127) in Theorem 26 are correct,
which means that the given statements in the Collatz conjecture are correct for even numbers, because every even number n;z
from the group {N — {0}} is converging to the number “1” when we keep repeating the operations of the Collatz conjecture,
whereas starting these operations on ngz.
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7.3. Third Proposed Theorem Proving Collaty Conjecture on Natural Numbers

This section presents a theorem proving that all natural numbers, except zero, converge to the number “1” when we keep
repeating the operations of the Collatz conjecture, and they are all expressed according to a unified formula composed of
distributed terms based on the group {2, 3/}.

Theorem 27

Every natural number (n; € N) where we have (ng > 0), this number is converging to “1” when we keep repeating the
operations of the Collatz conjecture, whereas starting these operations on n,. This convergence is allowing us to express any
natural number ng (n; > 0) according to a unified formula composed of distributed terms as shown in (Equation 130).

Z]:=m—i—2

l=m-1 . . .
X0 K@_yi=m-2|3i,5%j=0 o)

ng = 2% | Ko = 0 and K1) € {N — {0}} and k' € N (130)

3m-1

Proof of Theorem 27
Supposing having a group L, containing natural numbers, where the minimum number in L; is {n; = 1} and the maximum
number is {n,, = m}.

Supposing every odd number ng from this group (L,) is converging to a value (P = 1) inferior to itself when we keep
repeating the operations of the Collatz conjecture, whereas starting these operations on ng; then, according to Theorem 21 in
this paper, every natural number n} from the group (L, = [1,2%n,,]) is also converging to the number “1” when we keep
repeating the operations of the Collatz conjecture, whereas starting these operations on ns.

Now, we consider the group of natural numbers (L, = [1,2'n,,]) where the minimum odd number is {n; = 1} and the
maximum odd number is {2n,, — 1}.

Since every odd number n; from this group (L,) is converging to a value (P’ = 1) inferior to itself when repeating the
operations of the Collatz conjecture, whereas starting these operations on ng; then, according to Theorem 21 in this paper, every
natural number n, from the group (L; = [1,22n,,]) is also converging to the number “1” when we keep repeating the
operations of the Collatz conjecture, whereas starting these operations on n;.

The next step is relying on recurrence (induction) by considering the group of natural numbers (Lj = [[1, 2/ _1nm]]) where

the minimum odd number is {n} = 1} and the maximum odd number is {2/~ n,, — 1}.

Since every odd number ng from the group (L;) is converging to a value (P’ = 1) inferior to itself when repeating the
operations of the Collatz conjecture, whereas starting these operations on ng; then, according to Theorem 21 in this paper, every
natural number n; from the group (L]-H = [[1, 2/ nm]]) is also converging to the number “1” when we keep repeating the
operations of the Collatz conjecture, whereas starting these operations on n;.

Therefore, by recurrence, we deduce that every natural number in the group (L]-J,1 = [[1, 2/ nm]]) is converging to the
number “1” when we keep repeating Collatz operations, which allow us to extend this deduction to the group L;,; where the
value of the natural number /" is going to infinity.

Consequently, we deduce that every natural number n; from the group {N — {03} <{N —{0}} = lim Liy; = lim [1,27 nm]])
jo+4o joto

is converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas starting these

operations on n,.

Based on the proposed formulas in Theorem 25 and Theorem 26 in this paper, we can express every natural number n, where

(n; > 0) as shown in (Equation. 131).

l=m— . JEm—i-2,
X0 1k(z)—2§28”‘2[3i*zzj=o "U)]

ny =2+ | ko = 0 and kgzp) € (N — {0}} and k' € N (131)

3m-1
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As a result, we deduce that the given statements and the proposed formula in Theorem 27 are correct, which means that
the given statements in the Collatz conjecture are correct on natural numbers, because every natural number n; from the group
{N - {0}} is converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas starting
these operations on n.

8. New Results Providing Insights on Prime Numbers basing on the Collatz Conjecture
This section uses the presented unified formulas in this paper for the Collatz conjecture, in order to analyze characteristics
of prime numbers, including their distribution.

8.1. Using the Collatz conjecture on prime numbers
Prime numbers have been intriguing for mathematicians for centuries, with the vision of finding unified formulas
expressing them was always an axis of focus [19].

There have been many patterns in algebra leading toward identifying some prime numbers like Mersenne primes [20],
whereas the majority of prime numbers were not solidly linked into one conclusive pattern reinforced by algebraic proofs.

Some published papers focused on counting the number of prime numbers and their distribution instead of identifying the
values of primes themselves [21-22], since there has been no visible unified thread allowing the algebraic calculation of all
prime numbers with perfect precision. However, there are some other analytic methods and probabilistic methods to
approximate prime numbers and their distribution.

The importance of prime numbers surpasses theoretical concepts by using them in cryptography [23], where encrypted
data becomes more secure when using prime numbers for the generation of encryption keys, especially by using massive prime
values or massive pseudoprime numbers in asymmetric cryptography [24].

The Collatz conjecture allows us to interconnect all natural numbers according to a tree (Figure 1), which inspired us
toward developing unified formulas in this paper in order to re-express the operations of the Collatz conjecture. As a result, we
were able to develop a unified formula interconnecting all odd numbers by re-expressing the operations of the Collatz
conjecture as presented in Theorem 25, Theorem 8, and Theorem 6.

In the tree presenting the Collatz conjecture in Figure 1, natural numbers are interconnected according to branches.
Therefore, Theorem 25 in this paper presents a unified formula (Equation 132) interconnecting all odd numbers, whereas prime
numbers are expected to be distributed according to different branches as shown in Figure 1.

I=m-1 . CogjEmei=2
ot K(D—z;z?‘z[st*zzm K()

n = | Ko = 0 and K1) € {N — {0}} (132)

3m—1

In order to study the characteristics of prime numbers over the shown branches illustrating the Collatz conjecture according

to a tree in (Figure 1), we will rely on analyzing the included variables and sub-expressions in the unified formula (Equation
132), which we demonstrated in the proofs of Theorem 6 and Theorem 8.

8.2. Using the Collatz Conjecture to Identify Patterns of Prime Numbers
This subsection specifies six expressions deduced from the unified formula (Equation 132), which will allow analyzing
potential patterns among prime numbers. These expressions are as presented from (Equation 133) up to (Equation 138).

P, = YiZ0 Ky (133)

P,=m-—1 (134)

p, = [22%28“1K(z>] (135)

P, =[3m71] (136)

p, = [22%2?."‘11«0 —n* 3m—1] (137)
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(138)

The first promising expression deduced from the shown formula in (Equation 132) is as presented in (Equation 140),
which generates a specific pattern expressed by (Equation 141).

(139)

iach

threading

collatz

Fig. 6 Programmed codes in python to calculate values of PATTERN_n and graphically illustrate their evolutions.




Yassine Larbaoui / IJMTT, 72(1), 28-89, 2026

i

. . j=m—i-2
R, = 2l , yizm=2 [31 5% K (140)

PATTERN,, = [R,] MOD [n] (141)

We use the Python programming language, as shown in Figure 6, to create the codes that allow computing the results of
the shown expressions in (Equation 139), (Equation 140), and (Equation 141), which allows calculating the values of the
deduced pattern in (Equation 141). As a result, we obtain the graphical evolutions of the pattern as shown in Figure 7.

The graphical evolutions in Figure 7 show a specific pattern of static values mainly repeated among prime numbers, where
the value of ([R,]MOD][n]) is equal to “1” when “n” is a prime number.

There are a few odd numbers {s} which are not prime numbers, but they still give values of pattern equal to “1”
([Rs]MOD|s] = 1). However, these odd numbers are rare in the obtained results from the shown codes in Figure 6 and the
illustrated pattern in Figure 7. In addition, these rare odd numbers, which are not primes, do not appear in the pattern until
reaching the range [28, +oo[, like the value (341) where ([R3,;]MOD[341] = 1), and these non-prime numbers are presenting
a negligible quantity in the horizontal line of pattern (where PATTERN,, = 1) by comparison to the quantity of prime numbers
in the same line.

The shown expression of R,, in (Equation 141) is proposed in this paper as an alternative to using (2*"1M0D[n]), whereas
the expression (2""1MOD[n]) was proposed by Pierre de Fermat [25-26], which was also forwarded by scaling up its logic
toward verifying massive Mersenne primes [27-28], especially by using the Lucas-Lehmer primality test.

The proposed pattern for R,, This paper is composed of lower exponential values and is also composed of distributed terms,
in comparison to the term. (2" 1MOD[n]).

The composition of the expression (R,MOD[n]) makes it take lower values at the computational level than

(2"*MOD[n]) when "n" goes to infinity, and also allows calculating the values of distributed terms ( i=m-2 [3i *
Jj=m-—i-2 .

2%j=0 KU)D by using a reduction pattern and parallel computation [29], which can minimize the computation time

exponentially.
The advantage of the proposed pattern (R,MOD[n]) in this paper, we are allowed to identify potential prime numbers,
) Jj=m—i-2 .
especially infinite primes, because we can compute the calculation of each distributed term ([3‘ % 2%j=0 K(’)] M OD[n])

according to a separate thread in parallel with other terms, while having the possibility of using reduction patterns, we can

replace the value of ([22%231_11((’)—3('"'1)*4 MOD [n]) with the sum of terms ([ i=m-2 [Bi*

j=m—i-2 ,,
2% Komop [n]” MOD [n]) As a result, the proposed pattern (R,,MOD[n]) can exponentially reduce the computation

time of verifying infinity prime numbers by comparison to using (2""*M0D[n]).

Furthermore, the pattern (R,MOD[n]) can be expressed over less RAM (Random Access Memory) space than

i Jj=m—i-2,,
(2" 1MOD[n]), because we can calculate each term ([31 % 2%j=0 KU)] MOD [n]) from the proposed pattern according to a

. j=m-i-2 ,
converging reduction pattern while using parallel threads, whereas each one among these terms ([3‘ % 2%j=0 K(J)] MOD [n])

can have a lower exponential value than (2""*MO0D[n]), which can massively optimize the use of RAM space while reducing
the computation time.
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(Graph 1) Evolution of pattern values
in function of odd numbers

(Graph 2) Evolution of pattern values
in function of odd numbers
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Therefore, we are proposing four new conjectures based on the operations of the Collatz conjecture and the proposed
unified formulas in this paper to verify whether an odd number may be a prime or not, while preparing the proofs of these four
new conjectures to be published in a future article.

When verifying a possible prime number by using the proposed conjectures in this paper, the exponential value of (3%)
can be less than the exponential value of (2"1) because the value of (i) is in the range [0, m], whereas m is the number of
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Jj=m-—i-2 )
the coefficients {K(l-)}. In addition, the exponential value of <22i:° KU)) can also be less than the exponential value of

3 i Jj=m—i-2 .
(2""1), whereas we will have the possibility of computing the distributed terms < i=m-2 [3‘ % 2%j=0 KU)MOD[n]]) by
using a reduction pattern and parallel computation to identify the values of the proposed patterns.

The advantage of these four new conjectures in this paper is relying on the Collatz conjecture to verify finite and infinite
prime numbers while consuming less computing time by allowing more parallel computation of distributed terms, whereas
using reduction patterns. In addition, these four new conjectures are designed to allow the reduction of the use of RAM
(Random Access Memory) space, where the value of the new proposed patterns can occupy portions of memory space by
comparison to the pattern (2"~*M0D[n]).

Conjecture 1
If (n) is an odd number, then we can conduct the operations of the Collatz conjecture, which are re-expressed in
Theorem 25, in order to present this odd number as shown in (Equation 142).

After expressing the odd number (n) as shown in (Equation 142), whereas expressing the values of 7, and R,, as
consecutively shown in (Equation 143) and (Equation 144); if PATTERN,, shown in (Equation 145) is equal to “1”, then the
odd number (n) can be a prime number as shown in (Equation 146).

To enhance the computation of the shown pattern expression (PATTERN,,) in (Equation 145) at the levels of exploiting
memory space and processing time, we can re-express this pattern as shown in (Equation 147).

zz%zgl_lK(l)—Zi(T)n_zLi*zzj:gn_i_z Ko

n = per | Ko = 0 and K1) € {N —{0}} (142)
1 = [ZiZ0 Ky MOD [n— 1] (143)
Ry = 2070 ¢ gizpe2 36 2% K0 | (144)
PATTERN,, = [R,] MOD [n] (145)
if (PATTERN, = 1) is true = ncan be a prime number (146)

. i j=m—i-2 ,
PATTERN,, = |(2!=D=mlMOD [n])  $i=m2 (30« 2%=0  “OMOD [n]” MOD [n] (147)

Conjecture 2
If (p) is an odd number, then we can conduct the operations of the Collatz conjecture, which are re-expressed in Theorem
25, in order to present this odd number as shown in (Equation 148).

After expressing the odd number (p) as shown in (Equation 148), whereas expressing the values of 7, 15, s, and R), as
consecutively shown from (Equation 149) up to (Equation 152); if PATTERN, shown in (Equation 153) is equal to “1”, then
the odd number (p) can be a prime number as shown in (Equation 154).

To enhance the computation of the shown pattern expression (PATTE RN;) in (Equation 153) at the levels of exploiting
memory space and processing time, we can re-express this pattern as shown in (Equation 155).

l=m—1 _ gjemeicz,
221=0 K(l)_zkz-gl_z[3l*22j=0 K(])

p= — | Ko = 0 and Kgsyy € {N - {03} (148)

1, = [ZIZ07 Ky MOD [p — 1] (149)
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ry=[(p—1) —n]|MOD [r,] (150)
s, = math. floor [M] +1 (151)
|2
’ r) i=m-2|qi Z]:=m_i_2K ; e
R, =27« [ i=n [3L * 2%j=0 <J>” (152)
PATTERN;, = [R,] MOD [p] (153)
if (PATTERNI’, = 1) is true = pcan be a prime number (154)
, , o giEmeic2g Sp
PATTERN,, = | (2™ MOD [p]) * < i=m-2 [3‘ * 2%j=0 ¥ MOD [p]D MOD [p]||MOD [p] (155)

Conjecture 3
If (q) is an odd number, then we can conduct the operations of the Collatz conjecture, which are re-expressed in
Theorem 25, in order to present this odd number as shown in (Equation 156).

After expressing the odd number (q) as shown in (Equation 156), whereas expressing the values of 7; and Ry as
consecutively shown in (Equation 157) and (Equation 158); if PATTERN, shown in (Equation 159) is equal to “1” or if it is
equal (q — 1), then the odd number (gq) can be a prime number as shown in (Equation 160).

To optimize the computation of the shown pattern expression (PATTE RN,;) in (Equation 159) at the levels of exploiting
memory space and processing time, we can re-express this pattern as shown in (Equation 161).

22%25”'1Ka)_z::{)"‘z[m*szié"‘i‘z'ﬁﬂ
q = pe | Ko = 0 and K1) € {N — {0}} (156)
/ =m— -1
T'q = [Z%=6n 1K(l)] MOD [QT (157)
(q-1)__; , ] j=m—i-2
Ré{ = 2[ q21 _TCI] * Z%Zg“z [3l * 225':3” K(j)] (158)
PATTERN, = [R;] MOD [q] (159)
if (PATTERN,; =1o0r PATTERN; =q—1 ) is true = "q" can be a prime number (160)
r = | (257 i=m-23i , %20 KO
PATTERN, = (z =4l mop [q]) « yi=m=2 (30 4 p%j0 MoD [q]|| MoD [q] (161)

Conjecture 4
If (v) is an odd number, then we can conduct the operations of the Collatz conjecture, which are re-expressed in Theorem
25, in order to present this odd number as shown in (Equation 162).

After expressing the odd number (v) as shown in (Equation 162), whereas expressing the values of 1, 7, s, and R, as
consecutively shown from (Equation 163) up to (Equation 166); if PATTERN,, shown in (Equation 167) is equal to “1” or if
it is equal (v — 1), then the odd number (v) can be a prime number as shown in (Equation 168).

To optimize the computation of the shown pattern expression (PATTERN,) in (Equation 167) at the levels of exploiting
memory space and processing time, we can re-express this pattern as shown in (Equation 169).
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22%2;’{1_1K(l)_zgzgn—z[y*zzj:gl_i_z 0

v = pere | Ko = 0 and K(sq) € {N — {0}} (162)

— -1
r, = [SiZpt Ky MOD [ (163)
P = [(”;1) —r,,] MOD [r,,] (164)

(0520

s, = math. floor [zri] +1 (165)

] . . Zj=m_i_21( ) SI’]
R, = 27 [ i=m—2 [31 « 25150 (,)” (166)
PATTERN., = [R,] MOD [v] (167)
if (PATTERN, = 1or PATTERN, =v — 1) is true = "v" can be a prime number (168)

, ) ] jem—i-z sv
PATTERN;, = | (2™ MOD [v])*([ f=m-2 [31*22,-:0 X mMop [v]” MOD [v]) MOD [v] (169)

8.3. Using the Collatz conjecture to analyze the distribution of prime numbers
This subsection identifies specific distribution patterns of prime numbers over the group of natural numbers N while relying
on the proposed formulas re-expressing the Collatz conjecture in this paper.

In the previous subsection, we proposed four conjectures identifying patterns of prime numbers, where the goal is to deduce
whether an odd number can be a prime or not while relying on the proposed formulas re-expressing the Collatz conjecture in
this paper.

The four patterns {PATTERNn ; PATTERN, ; PATTERN,, ; PATTERN;} The four proposed conjectures presented in
the previous subsection extend the pattern {2"~* MOD [n]} to verify whether an odd number "n" can be a prime or not. In
addition, these proposed patterns are enhancing the used mathematical expressions by relying on proposed formulas re-
expressing the Collatz conjecture in Theorem 25, Theorem 8, and Theorem 6 in this paper.

The four proposed patterns {PATTERNn; PATTERNg ; PATTERN,, ; PATTERN;} are composed of mathematical

expressions with lower exponential values than {2"~1 MOD [n]}, and also composed of distributed terms {2;3:5"—2 [3i *

Jj=m-—i-2 i
2%j=0 KU)]}, which opens the way to minimize the use of RAM (Random Access Memory) space for exponential values,

especially when the odd number “n” is scaling up to infinity. In addition, these distributed terms allow the use of reduction
patterns while deploying more parallel computation by relying on multithreading, parallel streams, and distributed computation
on CPUs (Central Processing Units) and cores, which can minimize processing time.

In this subsection, we are going to use Conjecture 1 to identify possible prime numbers while counting them according to
specific ranges expressed as [0, MAX, ]| where LeN.

The proposed formulas in Theorem 25, Theorem 8, and Theorem 6 in this paper re-express the Collatz conjecture while
being composed of a distributed architecture of terms based on the group {2¢, 3¥}. Therefore, we are going to count and analyze
the distribution of prime numbers according to exponential ranges expressed as [0,25] where LeN. We are selecting the
smallest natural number {2} from the group {2¢, 3¥} as an essence to divide ranges as [0, 2] in order to analyze the distribution
of prime numbers.

Usually, we use the sieve algorithm to identify prime numbers in computation because of its perfect theoretical precision.
However, this algorithm of sieve relies on saving arrays or lists representing the majority of natural numbers in memory while
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identifying prime numbers among them, which can consume a lot of RAM (Random Access Memory) space that can exceed
Gigabytes or even exceed dozens of Gigabytes when scaling up to infinity numbers. Therefore, it will be useful to rely on
specific patterns to identify the primality of odd numbers without saving them in memory space before and after their
verification.

In Conjecture 1, we identified a pattern allowing us to verify whether an odd number can be a prime number or not, where
PATTERN,, shown in (Equation 136) is equal to “1” when majorly "n" is a prime number, which we deduced from the shown
results in Figure 7.

All values of PATTERN,, in Figure 7, the edges are distributed according to a triangular shape, where the maximum edge
can be expressed by a linear equation, whereas the minimum edge is identified by a static value (PATTERN,, = 1) obtained
majorly when "n" is a prime number.

| Codes to count possible prime numbers according to Conjecture 1 in the range [0, 2"] (Section 1)
Code Part 2

[ Code Part |

(]
nter_in_range;
|] primes

wWim count-2-
ger, TWO. pow(K) ;

2.multiy

wuns

.add(Biginte

" range
r)

ti(max-min)/2+1;

Fig. 8 Section 1 of developed codes in Java programming language for comparison between using Conjecture 1 and Sieve algorithm to count the
amount of prime numbers in the range [0, 2"]
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The shown expression of PATTERN,, in (Equation 136) is based on R,, which is presented in (Equation 135), whereas R,
consists of the subexpression {2!=1=m

]}. In addition, all odd numbers are expressed as shown in (Equation 133), which
. . t=m-1 . .
consists of the subexpression (221=0 K®w ). Therefore, we use the Java programming language to create the shown codes in

{Figures 8, 9, and 10}, in order to count prime numbers in each range [0,2™], which generates the illustrated evolution in
blue color shown in Figure 11.

System.out.println(

numbers.,parallelStream().forEach(e
thread|jt]= Thread(()

prime_testing(jj2, r));

thread{jt].start();

function(e));

counter=primes counter in 'n‘:r‘|:.;—i@,J;
primes counter[m]=counter;

j<max+l; 3 y ( s=8; s<dlm+l; s+4) {
min2)/2; taMath.log(s+l);

jt2].30in();

thread|
!

J

tt=t/Math.log(2

+A0B(Z);

(ttA1==0.8) {
g.printStackTrace();

primes counter| | Jtt+m]=counter

(s<dlim) {
mes_counter_in_range{r|=primes_co

counter=counter,add(primes counte
r_in_range[r].add(BigInteger.ONE); 55 e[s+1])
J

| range function(

- e

il!o:i {

er,valueDf(s

YMath. ) System,out.printin(
ranges initiali g() ; ! ! chbdh &b e I
values initiali g() (int n=0; n<l+l; n++) {
System.out.printin(”A t of t system.out,println(
+dim+ 1 +n+
i +primes_counter[nl);

Fig. 9 Section 2 of developed codes in Java programming language for comparison between using Conjecture 1 and Sieve algorithm to count the
amount of prime numbers in the range [0, 2"]
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Codes to count possible prime numbers according to Conjecture | in the range [0, 2"] (Section 3)
Code Part 5 Code Part 6

“encerer =

(LineAndShapeRenderer)
dataset = chart.getCategoryP
DefaultCategoryDataset(); renderer.setAut
"

create

sieve_counter bl .
F o, setSeriesStroke(1,
ChartFactory.creat BasicStroke(3.9f));

renderer,setSeriesStroke(2, 1

Color(@xff .
renderer.setSeriesPaint(@,
chartPanel =
chart.getTitle().setFont(titl : ChartPanel(chart);
chart.getlegend().setItemFont|(

Font("Sa f Font. ) Frame frame =
frame.setSize(1924, )3
frame.setContentPane(chartPanel);
fram cationR 1] )

(JFrame.EXI

setVisible(

axis.setTickLabelFont(newFont);
axisy.setTickLabelFont(newFont
p.getDomainAx

Fig. 10 Section 3 of developed codes in Java programming language for comparison between using Conjecture 1 and Sieve algorithm to count the
amount of prime numbers in the range [0, 2"]

The results shown in blue in Figure 11 present the calculated amount of prime numbers (thl (2("))) expressed in (Equation

171), which shows an exponential evolution of the number of prime numbers as a function of the natural number “n”.

The presented function (7Tc1 (2("))), in (Equation 171), the expression is used Ipsrrgry, shown in (Equation 170) to

identify the primality of odd numbers while relying on Conjecture 1.

. 3 {1, if (PATTERN; = 1)
PATTERN: =10, if (PATTERN; # 1)

. (2MW) =1+ Z

The green color in Figure 11 presents the actual number of prime numbers in each range [0, 2] by using the sieve
algorithm to calculate (1s(2™), whereas the red color presents the error difference [T[CI (2(”)) — T (2("))].

(170)

2(n-1)

FPATTERN(ZHI) |ne {N - {0}} (171)

i=0
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Values of Sieve PI and Approximation PI by Conjecture 1 in the range  Values of Sieve PI and Approximation PI by Conjecture 1 in the range

[0, Math.pow(2,n)] (Graph 1) [0, Math.pow(2,n)] (Graph 2)
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Fig. 11 Comparison graphs between using Conjecture 1 and Sieve algorithm to count the amount of prime numbers in the range [0, 2"]

From the shown results in Figure 11, we deduce that counting prime numbers by using Conjecture 1 in each range [0, 2]
is highly approximating the actual number of prime numbers identified by using the sieve algorithm, whereas the error
difference between them is negligible by comparison to the actual number of primes.

Since the error difference [ncl(z(”)) — Tig (2("))] between approximated amount of prime numbers and actual amount of
prime numbers is neglectable by comparison to the actual amount of primes (Figure 11), we deduce that we can use the proposed
patterns in this paper as an official way to determine prime numbers whereas searching for specific criteria and testing
conditions to eliminate the odd numbers that are generating the error difference in these proposed patterns.

Since the evolution of the number of prime numbers (n(zn)) in function of the natural number “n” is taking an exponential
model as shown in Figure 12, we can approximate this amount (1'[(21!)) as presented in (Equation 172), where the error function
£(n) is presenting a negligible value by comparison to the exponential value (e(“""ﬁ)).
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Tny = eMHB) — ¢y (172)

The results shown in Figure 12 in blue color present the evolution of the values (Div (Tf(zn+1))> which is expressed as

shown in (Equation 173).

(Graph A) (Graph B)

Evolution of Primes_Counter and Div_pl in the range [0, Math.pow(2,n)]  Evolution of Primes_Counter and Div_pi in the range [0, Math.pow(2,n)]
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Fig. 12 Illustration graphs showing the evolution of primes counter [n(zn)] and the coefficient [Div (n(2n+1))] in the range [0, 2"]

Div (Tgnery) =~ TE (173)

T2n)

According to the shown results by red color in Figure 12, we find that the amount of prime numbers follows specific
patterns when we count them in each range expressed as [1, 2"*1], where the blue value of Div (n(2n+1)) is converging toward

“«, _n

a stable linear level when “n” goes to higher values.

The blue function of Div (n(2n+1)) Figure 12 has oscillating patterns at the starting values before converging toward a

., n

stable linear level when “n” goes to higher values, where the oscillations attenuate, which inspires considering the inclusion of
harmonic functions, not only to analyze the distribution of prime numbers but also to identify the precise values of possible
primes.

The shown oscillations by Div (1T(2n+1)) in Figure 12, the inclusion of harmonic functions with specific frequencies in
expressing the values of Div (n(2n+1)), which is encouraging toward extending the results of this paper while considering the
Zeta function of Riemann and related harmonics to the Riemann hypothesis [29-30].

As long as we keep counting prime numbers toward infinity while using the function T,ny, the evolution keeps following

an exponential behavior as shown in Figure 11 and Figure 12, whereas the value of Div (T[(2n+1)) (Equation 173) keeps

converging toward a stable linear level with a specific limit, which we can approximate as shown in (Equation 174).
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lim Div (T[(Zn+1)) ~ (e® —1) (174)

n—-oo
Since the function T(gn+1) is having an exponential evolution, as shown in Figures 11 and 12, which we can express as

(n(2n+1) = e((n+Da+p) _ e(n)), therefore, we can calculate the space occupied under the evolution of TM(pn+1) in Figures 11

and 12 by using the integral shown in (Equation 175).

n+1 n+l n+1 n+1 1 . n+1 i
f (i) di =f eliath g —f ewdi :’f T di = [P, _f o
0 0 0 0 i
= fy " mgndi = 3 (D) — oF) — [ e di (73)

Based on the presented expression in (Equation 175), we deduce that we can express the value of e((+Da+B) 45 shown in
(Equation. 176).

e((+Da+p) — f0n+1 T[(Zi)di +a f0n+1 gpdi + ef (176)

Since the value of TM(pn+2) is based on using the exponential function, we deduce that the integral « [ On i T[(zi)di can be used to
n+1

calculate the value of 1(,n+2), which can also allow us to present T(,n+2y in terms of Z T(5i) Ai-
i=1
As a result, we can express the value of TM(pn+2) 8S shown in (Equation 177).
T(niz) = ae” f0n+1 (i di + ae” f0n+1 epydi + e P — g0 (177)

The presented expressions in (Equation 176) and (Equation 177) highlight the possibility of using the sum of previous
values expressed as (i) tO approximate the value of T(pn+2) for 10:10:00 AM prime counting. In addition, the shown

expressions in (Equation 176) and (Equation 177) highlight the possibility of approximating (50 by using an exponential
function along with an error function £(;y which have negligible values by comparison to (1) Furthermore, the illustrated

results in Figure 11 highlight that using the proposed conjecture in this paper (Conjecture 1) to identify possible prime numbers
provides high precision in their identification, which allows approximating the number of prime numbers (1) with exemplary

precision.

8.4. Resulted insights from using the Collatz conjecture on prime numbers
In the previous sub-sections, we relied on using the Collatz conjecture and the unified formula of Theorem 25 in this paper
to identify patterns of prime numbers, while analyzing their distribution in the group of natural numbers N.

The resulting insights from the previous sub-section are as follows:

1) The operations of the Collatz conjecture can be re-expressed according to unified formulas, which are presented in
Theorem 25, Theorem 8, and Theorem 6 in this paper, along with proofs.

2) All proposed unified formulas in this paper to re-express the operations of the Collatz conjecture are built on the group of
numbers {2¢, 3%} where "i" and "k" are natural numbers.

3) The proposed formula in Theorem 25 re-expresses the operation of the Collatz conjecture according to one unified form
interconnecting all odd numbers.

4) The proposed Theorems and formulas in this paper can be scaled up by forwarding the Collatz Conjecture and the sub-
expressions of the proposed formulas in order to architect specific new formulas that can either test primality or calculate
successive series of prime numbers.

5) We used the sub-expressions and variables included in the presented unified formula in Theorem 25 to identify possible
prime numbers according to specific patterns.

6) We proposed four new conjectures presenting four patterns { PATTERN,, ; PATTERN, ; PATTERN, ; PATTE RN} to
identify possible prime numbers by using Collatz operations and the proposed unified formula in Theorem 25.
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7) The proposed four patterns {PATTE RN, ; PATTERNg ; PATTERN,, ; PATTERN,;}. The four proposed conjectures are
based on re-expressing the pattern {2"~1 MOD [n]} to determine whether an odd number “s” can be a prime or not.
8) The four proposed patterns {PATTE RN, ; PATTERN, ; PATTERN,, ; PATTERN,;} are expressed according to a

distributed architecture of terms, which allows for computing them while using more reduction patterns and more parallel
threads.
9) The four proposed patterns { PATTERN,, ; PATTERN, ; PATTERN,, ; PATTERN,;} are expressed according to a

distributed architecture of terms, where each term has a lower exponential value than the pattern {2~ MOD [n]}, which
allows them to occupy less memory space as presented in the four proposed conjectures.

10) Computing the four proposed patterns { PATTERN,, ; PATTERN, ; PATTERN,, ; PATTERN,}. Using more reduction
patterns and more parallel threads can optimize the exploitation of memory space and processing time.

11) We used the proposed pattern PATTERN,, in Conjecture 1, to count prime numbers (ﬂc1 (ZL)) in different ranges expressed
as [0, 21] where L € {N — {0}}.

12) Counting prime numbers by using (ﬂm (ZL)), while relying on the proposed conjecture (Conjecture 1), is highly
approximating the actual number of prime numbers in Figure 11, which we calculated by using the sieve algorithm
(ms(2D)).

13) The error difference (T[(:l b —mg (ZL)) between counting prime numbers while using Conjecture 1 and counting them
by using the sieve algorithm is negligible by comparison to the actual number of primes, as shown in Figure 11.

14) We can use the proposed patterns in this paper as an official way to determine primes, whereas searching for specific
criteria and testing conditions in order to eliminate the odd numbers that generate the error difference (thl 2hH —m, (ZL))
in proposed patterns.

15) The number of prime numbers using the function (n(Z")) is having an exponential behavior with a negligible error, as
shown in Figures 11 and 12.

16) The number of prime numbers by using the function (n(Z")) can be formulated by relying on an exponential function
while including the use of a negligible error as follows: T;n) = e(mat+h) _ Em)-

17) The exponential evolution of the counted amounts of prime numbers when using the function (7‘[(2")) are allowing us to
T/ n =T N
calculate the function Div (n(2n+1)) = %(2) in order to analyze the distribution of primes.
(€10)
18) The function Div (T[(2n+1)) is converging toward a stable linear level when the value of “n” is scaling up toward higher
values, as shown in Figure 12.

€99

19) The shown convergence of the function Div (T[(2n+1)) in Figure 12, when the values of “n” are increasing, it leads to
expressing the stable linear level of convergence as follows: lim Div (1T(2n+1)) ~ (e*—1).
n—oo

20) The shown function Div (’IT(zn+1)) in Figure 12 shows oscillating evolutions at the starting values, whereas converging
toward a more stable linear level when the values of “n” are increasing.

21) The shown oscillations by the function Div (T[(zn+1)) in Figure 12, this can be explained by the inclusion of harmonic
functions with different frequencies.

22) The inclusion of harmonic functions in expressing the function Div (n(2n+1)) can be forwarded to analyze the distribution

of prime numbers while deploying these harmonics, or even be used to identify specific values of primes or other specific
patterns interconnecting them.

23) The inclusion of harmonic functions with different frequencies in expressing the function Div (T[(zn+1)) is leading toward

extending the results of this paper while considering the Zeta function of Riemann and related harmonics to the Riemann
hypothesis.

24) Expressing the number of prime numbers (7(2"**)) by using an exponential function (e((”“)“*ﬁ) — Ems1)) is allowing
us to calculate the space under this function by using the integral.

25) Calculating the space under the exponential function (e(("“)”ﬁ) - e(n+1)) is allowing us to include the use of integral

as follows: fonﬂ Ty di = %(e((”“)“*ﬁ) —ef) - f0n+1 gqpdi.

86



Yassine Larbaoui / IJMTT, 72(1), 28-89, 2026

26) Using an integral to calculate the space under the function (e(("“)‘”ﬁ ) — s(n+1)) is opening the way to calculate the value
of (m(2™*?2)) as follows: T(pniz) = ae” fonﬂ (i di + ae” f0n+1 epydi + e P — g0y,

27) Using an integral to calculate the space under the function (e(("”)‘“ﬁ ) — s(n+1)) is opening the way to calculate the value
of (n(Z"”)) while relying on the precedent values of (n(Zi)) whereas i € [1,n+1] .

28) Using an integral to calculate the space under the function (e(("“)‘”ﬁ ) — s(n+1)) is opening the way to calculate the value
of (n(Z"”)) while relying on the precedent values of error (S(i)) whereas i € [1,n+1] .
29) Using an integral to express the value of ((2"*2)) is opening the way to present the value of ((2"*?)) in terms of

n+1
ziZI ‘l'[(zi) Ai.

30) Using an integral to express the value of ((2"*2)) is opening the way to present the value of ((2"*2)) in terms of the

n+1
errors Y, ) A

9. Conclusion

This paper presents algebraic proofs of the correctness of the Collatz conjecture by starting with the development of
specific unified formulas forwarding the statements and logic of the Collatz conjecture, then building these proofs based on
these formulas while relying on recurrence (induction).

This paper provides specific unified formulas linking all odd numbers by using the operations of the Collatz conjecture.
Then, it scales up these formulas to express any natural number according to the operations of the Collatz conjecture.

This paper proves that there is no divergence when we keep repeating the operations of the Collatz conjecture on any
natural number different from zero. In addition, this paper demonstrates that there is no Collatz loop where the operations of
the Collatz conjecture circulate back to the starting number, “n;” of the loop, except the loop where (n; = 1).

l

The proposed unified formulas in this paper are used to prove that if any odd number, “n;” is expressed according to these
formulas, then this odd number is converging toward the value “1” when we keep repeating the operations of the Collatz
conjecture on it. In addition, we used these formulas to prove that if any odd number, “ng” is expressed according to these
formulas, then other odd numbers are expressed as “2ng + 17 and “2ng + 3” are also converging to the value “1” when we
keep repeating the operations of the Collatz conjecture on them. Furthermore, we used these formulas to prove that if any odd
number, “n,” is expressed according to these formulas, then any even number expressed as “2¥ng | k € {N — 0}” is also
converging toward the value “1” when using these operations of the Collatz conjecture.

This paper also uses the operations of the Collatz conjecture while relying on the proposed unified formulas to identify
specific patterns revealing possible prime numbers, while analyzing their distribution over the group of natural numbers N,
which allowed highlighting different insights on the characteristics of prime numbers.

This paper also presents computational results by providing developed codes in Python and Java programming languages
to compute the proposed unified formulas and to illustrate specific graphs that guide the development of proofs and theorems,
which also allowed highlighting specific patterns and characteristics of prime numbers.
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