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Abstract - This paper presents new mathematical proofs on the correctness of the Collatz conjecture based on new unified 

formulas re-expressing this conjecture in a scalable algebraic form. We are proposing new precise formulas that enable 

expressing all natural numbers in the Collatz conjecture according to a unified methodology that allows scaling calculations 

on infinite numbers, and then we use these unified formulas to prove that all natural numbers are converging to the number 

one when we perform Collatz operations on them. In addition, we are presenting computational codes based on these algebraic 

formulas to provide computational results that guide the development of proofs. As a result, this paper is presenting twenty-

seven new theorems along detailed proofs, where the first seven theorems are proposing new unified formulas to re-express 

the values of numbers according to unified algebraic forms, whereas the other theorems are using these new formulas to 

demonstrate that all natural numbers are converging to the number “1” when we forward Collatz operations on them; whereas 

demonstrating that there is no divergency over these operations. We also use these formulas to demonstrate that all natural 

numbers create loops in infinity that may cause Collatz calculations to circulate in a ring of numbers. Furthermore, we 

demonstrate that the only ring of natural numbers that creates a loop for the Collatz conjecture is where we go from “1” to 

“4”, then calculations converge back to the number one. All theorems presented in this paper are developed according to an 

engineering methodology based on structuring unified formulas to re-express Collatz calculations along step-by-step proofs, 

which allow us to develop a breakthrough demonstrating the correctness of the Collatz conjecture, while providing new 

insights into the characteristics of prime numbers and their distribution. 

Keywords - Collatz conjecture, New algebraic proofs, New theorems, New unified formulas, Computational codes, Prime 

numbers characteristics. 

1. Introduction 
In 1930, the Collatz conjecture was introduced by German mathematician Lothar Collatz [1], and it studies natural numbers 

according to consecutive sequences. This conjecture is also referred to as the “Syracus Problem” [2]. 

 

The Collatz conjecture determines two specific operations to conduct on a natural number 𝑛1, depending on the condition, 

whether it is even or odd, which allows us to calculate a consecutive number 𝑛2.  

 

Basically, the Collatz conjecture states that if the natural number 𝑛1 is even (pair), then the consecutive number 𝑛2 will be 

equal 
𝑛1

2
, whereas 𝑛2 will be equal  

(3𝑛1+1)

2
 if 𝑛1 is odd (impair) [3]. 

 

The Collatz conjecture also states that if we repeat these operations by starting from any natural number, calculations will 

eventually converge to the number “1”, and operations will go from “1” to the number “4”, then they will loop back to “1” [4]. 

In the 20th century, there were many published attempts by mathematicians trying to verify the statements of the Collatz 

conjecture by conducting its proposed operations on high natural numbers [5], and see if calculations are actually converging 

to the number “1”, especially after the introduction of computation technologies starting from 1946. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Starting from 1946, when the first computer was introduced [6-7], mathematicians had more access to computational 

resources that allowed them to automate calculations, whereas conducting operations on larger variables containing extensive 

amounts of digits. 

During the second half of the 20th century, between 1946 and 2000, mathematicians were able to use computational 

resources on the Collatz conjecture to verify its statements, which allowed them to validate that it is keeping its accuracy for 

(almost) all natural numbers with values less than 232 [8-10]. 

Starting from the beginning of the 21st century, mathematicians had access to more powerful computers and programming 

languages that allowed extending operations on extremely large values, which also enabled them to verify that the statements 

of the Collatz conjecture are actually keeping their accuracy on natural numbers reaching up to 264 [10-11]. 

These advanced computational resources also allowed us to graphically map trees showing interconnections among natural 

numbers based on the Collatz conjecture, which links natural numbers according to extensive branches as shown in Figure 1, 

where all reached natural numbers are converging to the number “1”. 

Even though computation is allowing to verify that the given statements in Collatz conjecture are continuing to be true on 

extensive large numbers [10], there have been no algebraic proof that absolutely demonstrate the convergency of all natural 

numbers (including infinity numbers) to the number “1” when we keep repeating the given operations in Collatz conjecture 

whereas starting these operations on any even number or odd number [12-13]. 

Due to the absence of a conclusive algebraic proof before publishing this paper, the Collatz conjecture has been considered 

as an unsolved problem in number theory [14-15].  

Fig. 1 The tree and loop of natural numbers according to conducted calculations in Collatz conjecture 

 

The shown tree maps in Figure 1 present branching patterns among natural numbers where all Collatz operations eventually 

converge to the number “1”, then creating a loop between the numbers “1” and “4”. These converging patterns are inspiring us 

to develop unified formulas re-expressing the Collatz conjecture according to algebraic forms that we can use to structure 

algebraic proofs on the convergence of infinite natural numbers toward “1”. 

 

In addition, the shown relations among numbers in Figure 1 are inspiring to analyze the distribution of prime numbers on 

these tree branches, while identifying common criteria among them according to the Collatz conjecture. 

 

Furthermore, the Collatz conjecture and the shown branches in Figure 1 are encouraging to re-express natural numbers 

according to a distributed architecture presented as a sum of terms, then using this architecture to analyze odd numbers, 

especially prime numbers, instead of relying only on factorization for number analysis. 

 

Developing a distributed architecture to represent natural numbers is reflected in the published work in [16], [17], and [18]. 

These published papers propose distributed structures to represent all roots of fourth-degree, fifth-degree, and sixth-degree 
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polynomials, which allow for determining some common criteria among distributed terms, like being able to be neutralized 

and simplified when they are multiplied by each other. 

 

Furthermore, the published work in [16], [17], and [18] introduces the axis of patterns revealing and calculations 

converging toward building algebraic proofs based on precise unified formulas. 

 

Engineering a distributed architecture to represent natural numbers, especially odd numbers and primes, will allow 

analyzing these numbers from different views, such as the number of distributed terms in each natural number and the distance 

between every two consecutive terms. In addition, this distributed architecture will allow analyzing odd numbers and prime 

numbers according to an exponential plan based on the narrowed group {2𝑘, 3𝑗}Instead of conducting analysis in a linear plan 

built on identifying possible factors of each odd number to determine whether it is prime or not. 

 

Furthermore, engineering a distributed architecture to represent natural numbers, whereas deducing common 

characteristics among primes will open the way to verify prospective infinity prime numbers by using parallel computation to 

calculate all included terms in parallel, which can minimize the computation time exponentially. 

 

The strategy of the presented work in this paper is to use an engineering methodology to develop the proofs on the Collatz 

conjecture from scratch by building unified formulas and theorems, which will allow the logic and formulas in this paper to be 

solidly built on each other step-by-step according to a scalable engineered structure. 

 

Therefore, this paper presents twenty-seven theorems based on new unified formulas re-expressing the statements of the 

Collatz conjecture according to distributed algebraic forms, which allow proving the correctness of the Collatz conjecture, 

while providing new insights and analytic methodologies on odd numbers and prime numbers. 

 

The first seven theorems in this paper present new unified formulas along with detailed proofs, which allow re-expressing 

the statements of the Collatz conjecture according to scalable algebraic forms based on distributed architectures of terms. These 

terms rely only on the group {2𝑘, 3𝑗} to build distributed architectures, which are to be presented as sums of exponential terms. 

The eighth and ninth theorems in this paper demonstrate the reciprocity of the proposed formulas, which allow us to prove that 

any natural number 𝑛𝑠 expressed according to these proposed formulas, this number will converge to “1” when we keep 

repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠. 

 

The tenth theorem in this paper is relying on the proposed unified formulas in precedent theorems in order to demonstrate 

along a detailed proof that the Collatz loop where we go from the number “1” to the number “4” and then going back to the 

number “1”, is the only Collatz loop of its kind in the group of natural numbers ℕ. 

 

The presented theorems in this paper, from Theorem 11 up to Theorem 18, use previous unified formulas to demonstrate 

step-by-step that there is no Collatz loop composed of “m” elements in the group of natural numbers ℕ, except the demonstrated 

loop in Theorem 10. 

 

The presented theorems in this paper, from Theorem 20 up to Theorem 27, use the previously unified formulas to 

demonstrate that every odd number and every even number, except zero, eventually converge to the number “1” when we keep 

repeating the operations of the Collatz conjecture. Furthermore, these theorems rely on this convergence to present all odd 

numbers and even numbers according to unified algebraic formulas. 

 

In the final sections, this paper provides new insights into odd numbers and prime characteristics according to proposed 

unified formulas, while revealing patterns of prime distribution, which forward the results of this paper to reach the harmonics 

of Riemann, the zeta function, and the Riemann hypothesis. 

 

This paper also presents programmed codes in Python and Java along with their outputs, which we developed to compute 

the proposed formulas in this paper and to visualize computational results, in order to be used in the presented proofs and to 

guide the development of theorems. 

 

As a result, the contents of this paper are structured as follows: Section 2 presents the used methods and analytic logic of 

development, starting from re-expressing the statements of the Collatz conjecture toward providing algebraic proofs about their 

correctness. Section 3, presenting seven theorems proposing unified formulas re-expressing the statements of the Collatz 

conjecture along detailed proofs. Section 4 presents new theorems demonstrating the reciprocity of proposed formulas and the 
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reciprocity of Theorem 6 and Theorem 7. Section 5, presenting nine new theorems demonstrating that there is no loop that can 

contradict the Collatz conjecture. Section 6, presenting four theorems demonstrating the convergence of odd numbers and even 

numbers toward “1” when we keep repeating the operations of the Collatz conjecture. Section 7, presenting three theorems 

proving the correctness of the Collatz conjecture, which allow re-expressing all odd numbers and even numbers, except zero, 

according to unified formulas. Section 8 presents new insights about characteristics of prime numbers and how to verify them, 

while highlighting common patterns of prime distribution based on the proposed unified formulas in this paper. Finally, section 

9 is for the conclusion. 

 

2. Methods 
Instead of using only a research methodology and relying on forward calculations, we are building the results of this paper 

according to an engineering methodology where we develop formulas, theorems, and proofs according to a scalable logic step-

by-step. Therefore, we architect the structure of new unified formulas that will allow us to build algebraic proofs and concretize 

a general logic considering all possible scenarios and all expected inputs and parameters, which will allow us to build the proofs 

in precise details step-by-step. 

Considering that Collatz conjecture is stating two different operations conducted on natural numbers depending on their 

nature whether they are even or odd, we need to re-express these two operations according to one unified form that we can 

scale on all natural numbers and that link between two consecutive odd numbers, in order to minimize the size of numbers 

group and to zoom on the characteristics of prime numbers. 

After determining one unified form to re-express the Collatz conjecture in order to link two consecutive odd numbers, we 

need to scale this form on tree-branches containing odd numbers, where we can express each odd number by using a different 

odd number in the same tree-branch. 

In order to demonstrate algebraically that the statements of the Collatz conjecture are correct, we need to prove that there 

is no loop among natural numbers where Collatz operations can circulate infinitely, except the loop where we go from the 

number “1” to the number “4” and then go back to “1”. In addition, we need to prove that when we commence using the 

operations of the Collatz conjecture on any natural number S, calculations will not diverge to infinity and they will actually 

converge to a value T inferior to S. 

Furthermore, we need to use the new unified formulas in this paper to demonstrate that every natural number S can be 

expressed as a function of a number T on the same tree-branch where the value of T is inferior to S. Then, proving that when 

we keep repeating the operations of the Collatz conjecture, starting these operations on any natural number T, calculations will 

eventually converge to the number “1”. 

Since the proposed unified formulas in this paper are based on distributed architectures of exponential terms, we will use 

them to analyze the characteristics of prime numbers according to the number of distributed terms in them and according to the 

exponential distances among contained terms. In addition, we will use these new formulas to study the distribution of prime 

numbers according to trees of numbers, which will highlight new insights away from relying on factorization. 

The proposed formulas in this paper will allow proving the correctness of the Collatz conjecture, and also will allow 

highlighting specific criteria deduced from the structure of these formulas to be used in identifying whether an odd number is 

prime or not, while guiding statistics analysis on prime distribution. 

As a result, the engineered logic in this paper is as follows: 

1. Developing a unified formula re-expressing the operations of the Collatz conjecture on consecutive numbers. 

2. Developing a unified formula expressing a tree-branch of consecutive numbers linked by Collatz operations. 

3. Developing a unified formula expressing potential loops of Collatz operations and allowing for the calculation of the value 

of the first number in any potential loop. 

4. Developing a fourth formula generalizing the third formula by expressing the value of any natural number inside a potential 

loop created by Collatz operations. 

5. Developing a fifth formula expressing an odd number S as a function of another odd number T, where starting the 

operations of the Collatz conjecture on S eventually converges to T after repeating these operations. 

6. Developing a sixth formula scaling the fifth one by expressing an odd number S in function of the odd number “T=1”, 

where starting the operations of the Collatz conjecture on S eventually converging to the number “1”. 
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7. Developing a seventh formula generalizing the sixth formula by expressing neighbors of the odd number S, whether these 

neighbors are even or odd. 

8. Developing reciprocal theorems based on the sixth formula and the seventh formula, in order to be used in the 

demonstration of the convergence of the operations of the Collatz conjecture to the number “1”. 

9. Using the third formula to demonstrate that there is only one Collatz loop starting from a number 𝑛1 and going back to the 

same number 𝑛1, and this loop is concretized when 𝑛1 = 1. 

10. Using the third and fourth proposed formulas to demonstrate that there is no Collatz loop consisting of “m” elements where 

Collatz operations can circulate among them, except the loop where calculations start from "𝑛1 = 1" and then going back 

to 𝑛1. 

11. Using the eighth and ninth proposed formulas to demonstrate that when we start Collatz operations on any odd number S, 

calculations will not diverge to infinity, and they will actually converge to a value T inferior to S, which allows us to 

express all odd numbers according to a unified formula. 

12. Using the eighth and ninth proposed formulas to demonstrate that when we start Collatz operations on any even number 

S, calculations will not diverge to infinity, and they will actually converge to a value T inferior to S. Therefore, we will be 

able to express all even numbers according to a unified formula. 

13. Using the eighth and ninth proposed formulas to demonstrate that when starting the operations of the Collatz conjecture 

on any natural number 𝑆 different from zero, these operations will eventually converge to the number “1”, which allows 

us to express all natural numbers according to one unified formula. 

14. Using the distributed architecture of the proposed formulas and their included parts to identify whether an odd number is 

prime or not. 

15. Using the distributed architecture of proposed formulas to highlight specific patterns that will guide statistics analysis on 

the distribution of prime numbers in the tree of natural numbers (Figure 1) after interconnecting them by Collatz operations, 

in order to deduce new approximation formulas counting prime numbers with high precision. 

16. Using Python and Java programming languages to develop codes based on proposed formulas, in order to generate 

visualized graphics of computational results, which will guide the development of theorems and proofs. 

3. New Unified Formulas Re-expressing the Collatz Conjecture 
In this section, we are presenting seven new theorems proposing new unified formulas along detailed proofs step-by-step, 

in order to re-express the given statements and operations in the Collatz conjecture according to a scalable algebraic logic. 

3.1. First Unified Formula  

This subsection presents a new theorem proposing the first unified formula re-expressing the statements and operations of 

the Collatz conjecture to interconnect only odd numbers, since when we have an even number, we keep dividing by “2” until 

obtaining an odd number. 

Theorem 1 

We can re-express the operations of the Collatz conjecture by applying them only to the group of odd numbers, in order 

to connect each pair of consecutive odd numbers 𝑛1 and 𝑛2 in a Collatz branch as shown in (Equation 1).  

𝑛2 =
3𝑛1+1

2𝑘  | 𝑘 ∊ ⟦1, +∞⟦ 𝑎𝑛𝑑 𝑛𝑖 ∊ {ℕ − {0}} 𝑎𝑛𝑑 𝑛𝑖  𝑀𝑂𝐷[2] = 1                          (1) 

Proof of Theorem 1 

The Collatz conjecture states two different algebraic operations to be conducted on any natural number (𝑛1 ≠ 0) depending 

on its nature, whether it is odd or even. 

If a natural number (𝑛1 ≠ 0) It is odd, we multiply it by three, then we add one to the output as shown in Figure 2, in order 

to obtain a resulting even number "𝑀" where 𝑀 = 3𝑛1 + 1. 

If a natural number "𝑀" is even, we divide it by “2” as shown in Figure 2, and if the output of the division is also even, we 

divide it again by “2”. As a result, we keep dividing the output by “2” until we obtain the output as an odd number 𝑛2, which 

allows expressing the even number "𝑀"  as follows: 𝑀 = 2𝑘𝑛2 | 𝑘 ∊ ⟦1, +∞⟦. 

Therefore, we deduce the possibility of expressing every two consecutive odd numbers 𝑛1 and 𝑛2, in the Collatz conjecture as 

follows: 3𝑛1 + 1 = 2𝑘𝑛2. As a result, the proposed statements and the proposed formula (Equation 1) in Theorem 1 are correct. 
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3.2. Second Unified Formula  

Fig. 2 Illustration of re-expressing the operations of Collatz conjecture to interconnect two different odd numbers 

 

This subsection presents a new theorem proposing a second unified formula re-expressing the statements of the Collatz 

conjecture by expressing only sequences of consecutive odd numbers in a Collatz branch, which is based on extending the first 

proposed theorem in this paper. 

Theorem 2 

Supposing a sequence of odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4 … , 𝑛𝑚} that create a Collatz branch, where the numerical process to 

pass from one odd number of this sequence to the following one is as stated by the operations of the Collatz conjecture, which 

are re-expressed in Theorem 1. The unified mathematical formula to calculate any number 𝑛𝑠 of this sequence in function of 

𝑛1 where  (2 ≤ 𝑠) is as shown in (Equation 2). 

𝑛𝑠 =
𝑛1∗3𝑠−1+∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑠−𝑖−2
𝑗=0 ]𝑖=𝑠−2

𝑖=0

2
∑ 𝐾(𝑙)

𝑙=𝑠−1
𝑙=0

  | 𝐾0 = 0 𝑎𝑛𝑑 𝐾(𝑖≥1)  ∊ {ℕ − {0}}                     (2) 

Proof of Theorem 2 

In the case of having a sequence of two odd numbers {𝑛1, 𝑛2} that create a Collatz branch, where the numerical process to 

pass from one odd number of this sequence to the following one is as described in (Equation 1) (Theorem 1); we express the 

value of 𝑛2 as follows: 3𝑛1 + 1 = 2𝑘1𝑛2. Therefore, we can express this value of 𝑛2 as shown in (Equation 3). 

𝑛2 =
3(2−1)𝑛1+∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=2−𝑖−2
𝑗=0 ]𝑖=2−2

𝑖=0

2
∑ 𝑘(𝑙)

𝑙=2−1
𝑙=0

=
(31𝑛1+2𝑘0)

2𝑘0+𝑘1
=

(3𝑛1+20)

20+𝑘1
=

(3𝑛1+1)

2𝑘1
                   (3) 

As a result, the proposed formula in (Equation 2) (Theorem 2) is correct for the case of having a sequence of two 

consecutive odd numbers {𝑛1, 𝑛2} in a Collatz branch where 𝑘0 = 0. 

 

In the case of having a sequence of consecutive three odd numbers {𝑛1, 𝑛2, 𝑛3} that create a Collatz branch, where the 

numerical process to pass from one number of this sequence to the following one is as described in (Equation 1) (Theorem 1); 

we express the values of 𝑛2 and 𝑛3, as follows: 3𝑛1 + 1 = 2𝑘1𝑛2 𝑎𝑛𝑑 3𝑛2 + 1 = 2𝑘2𝑛3.  

 

After replacing the value of 𝑛2 by (𝑛2 =
3𝑛1+1

2𝑘1
) in order to identify the expression of (𝑛3 =

3𝑛2+1

2𝑘2
) in terms of 𝑛1, we 

obtain the following result: 𝑛3 =
9𝑛1+3+2𝑘1

2(𝑘1+𝑘2) . Therefore, we can express this value of 𝑛3 as shown in (Equation 4). 
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𝑛3 =
3(3−1)𝑛1+∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=3−𝑖−2
𝑗=0 ]𝑖=3−2

𝑖=0

2
∑ 𝑘(𝑙+1)
𝑙=3−1
𝑙=0

=
32𝑛1+31∗2𝑘0+30∗2𝑘0+𝑘1

2(𝑘0+𝑘1+𝑘2)                           (4) 

As a result, the proposed formula in (Equation 2) (Theorem 2) is correct for the case of having a sequence of three odd 

numbers {𝑛1, 𝑛2, 𝑛3} creating a Collatz branch where 𝑘0 = 0. 

In the case of having a sequence of four odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4} that create a Collatz branch, where the numerical 

process to pass from one number of this sequence to the following one is as described in (Equation 1) (Theorem 1); we express 

the values of 𝑛2, 𝑛3 and 𝑛4, as follows: 3𝑛1 + 1 = 2𝑘1𝑛2 𝑎𝑛𝑑 3𝑛2 + 1 = 2𝑘2𝑛3 𝑎𝑛𝑑 3𝑛3 + 1 = 2𝑘3𝑛4.  

After replacing the value of 𝑛2 by (𝑛2 =
3𝑛1+1

2𝑘1
) in order to identify the expression of (𝑛3 =

3𝑛2+1

2𝑘2
) in terms of 𝑛1, we 

obtain the result: 𝑛3 =
9𝑛1+3+2𝑘1

2(𝑘1+𝑘2) . Then, we replace the value of 𝑛3 by (𝑛3 =
9𝑛1+3+2𝑘1

2(𝑘1+𝑘2) ) in order to identify the expression of 

(𝑛4 =
3𝑛3+1

2𝑘3
) in terms of 𝑛1, which allows us to determine the expression of 𝑛4 as follows: 𝑛4 =

27𝑛1+9+3∗2𝑘1+2(𝑘1+𝑘2) 

2(𝑘1+𝑘2+𝑘3) . 

Therefore, we can express this value of 𝑛4 as shown in (Equation 5), where 𝑘0 = 0. 

𝑛4 =
3(4−1)𝑛1+∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=4−𝑖−2
𝑗=0 ]𝑖=4−2

𝑖=0

2
∑ 𝑘(𝑙)
𝑙=4−1
𝑙=0

=
33𝑛1+30∗2(𝑘0+𝑘1+𝑘2) +31∗2𝑘0+𝑘1+32∗2𝑘0

2(𝑘0+𝑘1+𝑘2+𝑘3)     (5) 

As a result, the proposed formula in (Equation 2) (Theorem 2) is correct for the case of having a sequence of four odd 

numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4} creating a Collatz branch. 

The next step in this proof is using recurrence (induction). Therefore, we suppose that the proposed formula in (Equation 

2) (Theorem 2) is correct for a sequence of "𝑚" odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4 … , 𝑛𝑚} that create a Collatz branch, where the 

numerical process to pass from one number of this sequence to the following one is as described in (Equation 1) (Theorem 1). 

Then, we add another odd number 𝑛(𝑚+1) to this sequence, and we try to verify whether the proposed formula in (Equation 2) 

(Theorem 2) does extend itself correctly by expressing the value of 𝑛(𝑚+1) in terms of 𝑛1. 

Let us suppose that we have a sequence of (𝑚 + 1) odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4 … , 𝑛𝑚, 𝑛(𝑚+1)} that creates a Collatz branch 

as shown in Figure 3, where the numerical process to pass from one odd number of this sequence to the following one is as 

described in (Equation 1) (Theorem 1). Then, we suppose that the proposed formula in (Equation 2) is correct for each element 

𝑛𝑠 from this sequence where (2 ≤ 𝑠 ≤ 𝑚). Therefore, we suppose that the calculated expression in (Equation 6) for 𝑛𝑚, by 

using the proposed formula in (Equation 2) (Theorem 2) is correct.  

 

Fig. 3 Illustration of Collatz branch consisting of (m+1) odd numbers interconnected according to the re-expressed operations of 

Clollatz conjecture 

 

𝑛𝑚 =
𝑛1∗3𝑚−1+∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

2
∑ 𝐾(𝑙)

𝑙=𝑚−1
𝑙=0

 | 𝐾0 = 0 𝑎𝑛𝑑 𝐾(𝑖≥1) ∊ {ℕ − {0}}         (6) 

Finally, we replace 𝑛𝑚 in the equation (𝑛(𝑚+1) =
3𝑛𝑚+1

2𝐾𝑚
) by its shown expression in (Equation 6), in order to express 

the odd number 𝑛(𝑚+1) in function of 𝑛1, which gives us the shown result in (Equation 7). 
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𝑛(𝑚+1) =
3 ∗ 3𝑚−1𝑛1 + 3 ∗ ∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ] + 2∑ 𝐾(𝑙)

𝑙=𝑚−1
𝑙=0𝑖=𝑚−2

𝑖=0

2𝐾(𝑚) ∗ 2∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0

 

 

⟹ 𝑛(𝑚+1) =
3𝑚𝑛1+∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0

2
∑ 𝐾(𝑙)

𝑙=𝑚
𝑙=0

 | 𝐾0 = 0 𝑎𝑛𝑑 𝐾(𝑖≥1) ∊ {ℕ − {0}}                                   (7) 

As a result, we deduce that Theorem 2 is true, because its proposed statements and proposed formula in (Equation 2) are 

correct by recurrence (induction). 

3.3. Third Unified Formula  

This subsection presents a new theorem proposing a third unified formula re-expressing the statements of the Collatz 

conjecture by expressing only sequences of consecutive odd numbers that can create a loop forwarding calculations back to the 

starting number, which we describe as the Collatz loop. This subsection is based on the proposed formulas in Theorem 1 and 

Theorem 2. 

A Collatz loop is a sequence of integer numbers where Collatz operations circulate from one to another of these numbers 

without breaking out of the loop. 

In order to define a new unified formula for calculating the first number 𝑛1 of any potential sequence of numbers 

{𝑛1, 𝑛2, 𝑛3, 𝑛4 … , 𝑛𝑚} that can create a Collatz loop, we need first to identify a common structure of calculation among small 

sequences of Collatz loops that may consist of two, three, or four numbers. Then, generalizing this structure on larger sequences 

of numbers that may build extensive Collatz loops, which can be proven afterward by induction (recurrence). 

Theorem 3 

Supposing a sequence of consecutive odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4 … , 𝑛𝑚} that creates a Collatz loop, where the numerical 

process to pass from one odd number of this sequence to the following one is as described in (Equation 8); the unified 

mathematical formula to calculate the first number 𝑛1,sequence of this is as shown in (Equation 9). 

3𝑛1 + 1 = 2𝑘1𝑛2;  3𝑛2 + 1 = 2𝑘2𝑛3;  3𝑛3 + 1 = 2𝑘3𝑛4; … ;  3𝑛𝑚−1 + 1 = 2𝑘𝑚−1𝑛𝑚;  3𝑛𝑚 + 1 = 2𝑘𝑚𝑛1                (8) 

𝑛1 =
∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0

2
∑ 𝑘(𝑙)

𝑙=𝑚
𝑙=0 −3𝑚

 | 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}}                 (9) 

Proof of Theorem 3 

We are using the proof by recurrence (induction). Therefore, the first stage is to treat the second smallest Collatz loop, 

which consisted of two odd numbers {𝑛1, 𝑛2}, where we can pass from one to another between them by using the operations 

shown in (Equation 10).  

3𝑛1 + 1 = 2𝑘1𝑛2;  3𝑛2 + 1 = 2𝑘2𝑛1               (10) 

The first step of this stage is calculating 𝑛2 in function of 𝑛1 at the second iteration, where 3𝑛2 + 1 = 2𝑘2𝑛1. The 

resulting expression at this first step is as shown in (Equation 11).  

𝑛2 =
(2𝑘2𝑛1−1)

3
                (11) 

The second step is replacing 𝑛2 by the shown expression in (Equation 11), in order to determine the value of 𝑛1 in the 

first iteration, where 3𝑛1 + 1 = 2𝑘1𝑛2. The resulting expression at this second step is as shown in (Equation 12). 

𝑛1 =
(𝑛1∗2𝑘1+𝑘2−2𝑘1−3)

9
               (12) 
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 The third step of this stage is calculating the general value of 𝑛1 by using (Equation 12). As a result, the final expression 

of 𝑛1, for any Collatz loop that may consist of only two odd numbers is as shown in (Equation 13), which respects the proposed 

unified formula for Collatz loops in (Equation 9) (Theorem 3). 

𝑛1 =
(2𝑘0+𝑘1+3)

2𝑘0+𝑘1+𝑘2−9
 | 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}}                          (13) 

The second stage is to treat the third smallest Collatz loop, which consists of three odd numbers {𝑛1, 𝑛2, 𝑛3}. We can pass 

from one to another among these three odd numbers by using the described operations in (Equation 14). 

3𝑛1 + 1 = 2𝑘1𝑛2;  3𝑛2 + 1 = 2𝑘2𝑛3;  3𝑛3 + 1 = 2𝑘3𝑛1                          (14) 

The first step of this second stage is calculating 𝑛3 in function of 𝑛1 at the third iteration, where 3𝑛3 + 1 = 2𝑘3𝑛1. The 

resulting expression at this first step of stage 2 is as shown in (Equation 15).  

𝑛3 =
(2𝑘3𝑛1−1)

3
                         (15) 

The second step at this stage is calculating 𝑛2 in function of 𝑛1 at the second iteration, where (3𝑛2 + 1 = 2𝑘2𝑛3) by 

replacing 𝑛3 with its shown value in (Equation 15). The resulting expression at this second step (stage 2) is as shown in 

(Equation 16). 

𝑛2 =
(2𝑘3+𝑘2𝑛1−2𝑘2−3)

9
                         (16) 

The third step (second stage) is replacing 𝑛2 by the shown expression in (Equation 16) in order to determine the value of 

𝑛1 in the first iteration, where (3𝑛1 + 1 = 2𝑘1𝑛2). The resulting expression at this third step (stage 2) is as shown in 

(Equation 17). 

𝑛1 =
(2𝑘3+𝑘2+𝑘1𝑛1−2𝑘2+𝑘1−3∗2𝑘1−9)

27
                           (17) 

 The fourth step of this second stage is calculating the general value of 𝑛1 by using (Equation 17). As a result, the final 

expression of 𝑛1 for any possible Collatz loop that may consist of only three odd numbers is as shown in (Equation 18), which 

respects the proposed unified formula for Collatz loops in (Equation 9) (Theorem 3). 

𝑛1 =
(2𝑘2+𝑘1+3∗2𝑘1+9)

2𝑘1+𝑘2+𝑘3−27
=

∑ [3𝑖∗2
∑ 𝑘(𝑗)
𝑗=2−𝑖
𝑗=0 ]𝑖=2

𝑖=0

2
∑ 𝑘(𝑙)

𝑙=3
𝑙=0 −33

 | 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}}                            (18) 

The third stage is treating the fourth smallest Collatz loop, which consists of four odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4}. We can 

pass from one to another among these four odd numbers by using the described operations in (Equation 19). 

3𝑛1 + 1 = 2𝑘1𝑛2;  3𝑛2 + 1 = 2𝑘2𝑛3;  3𝑛3 + 1 = 2𝑘3𝑛4;  3𝑛4 + 1 = 2𝑘4𝑛1                        (19) 

The first step of this third stage is calculating 𝑛4 in function of 𝑛1 at the fourth iteration, where (3𝑛4 + 1 = 2𝑘4𝑛1). The 

resulting expression at this first step (stage 3) is as shown in (Equation 20).  

𝑛4 =
(2𝑘4𝑛1−1)

3
                          (20) 

The second step at this stage is calculating 𝑛3 in function of 𝑛1 at the third iteration, where (3𝑛3 + 1 = 2𝑘3𝑛4) by replacing 

𝑛4 with its shown value in (Equation 20). The resulting expression at this second step (stage 3) is as shown in (Equation 21). 

𝑛3 =
(2𝑘4+𝑘3𝑛1−2𝑘3−3)

9
                              (21) 

 
The third step at this stage is calculating 𝑛2 in function of 𝑛1 at the second iteration, where (3𝑛2 + 1 = 2𝑘2𝑛3) by replacing 

𝑛3 with its shown value in (Equation 21). The resulting expression at this third step (stage 3) is as shown in (Equation 22). 
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𝑛2 =
(2𝑘4+𝑘3+𝑘2𝑛1−2𝑘3+𝑘2−3∗2𝑘2−9)

27
                                (22) 

The fourth step (third stage) is to replace 𝑛2 by the shown expression in (Equation 22) in order to determine the value of 

𝑛1 in the first iteration, where (3𝑛1 + 1 = 2𝑘1𝑛2). The resulting expression at this fourth step is as shown in (Equation 23). 

𝑛1 =
(2𝑘4+𝑘3+𝑘2+𝑘1𝑛1−2𝑘3+𝑘2+𝑘1−3∗2𝑘2+𝑘1−9∗2𝑘1−27)

81
                             (23) 

 The fifth step of this third stage is calculating the general value of 𝑛1 by using (Equation 23). As a result, the final 

expression of 𝑛1 for any Collatz loop that may consist of exactly four odd numbers is as shown in (Equation 24), which respects 

our proposed unified formula for Collatz loops in (Equation 9) (Theorem 3). 

𝑛1 =
(2𝑘3+𝑘2+𝑘1+3∗2𝑘2+𝑘1+9∗2𝑘1+27)

2𝑘1+𝑘2+𝑘3+𝑘4−81
=

∑ [3𝑖∗2
∑ 𝑘(𝑗)

𝑗=3−𝑖
𝑗=0 ]𝑖=3

𝑖=0

2
∑ 𝑘(𝑙)

𝑙=4
𝑙=0 −34

 | 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}}                            (24) 

 At the previous stages one, two, and three of this proof, we were able to obtain downsizing expressions from the shown 

formula in (Equation 9) by scaling calculations on the finite values of (𝑚 = 2), (𝑚 = 3) and (𝑚 = 4) where our proposed 

unified formula in (Equation 9) (Theorem 3) was correct. Therefore, the next stage, stage four, is about proving that the 

proposed unified formula in Theorem 3 (Equation 9) is correct for a sequence of (𝑚 + 1) odd numbers.  

 However, we need to rely on a transitional algebraic form of the unified formula shown in (Equation 9) to make calculations 

extendable and distinguishable from 𝑛𝑚 to 𝑛𝑚+1. Therefore, we will rely on the shown expression in (Equation 25), which is 

deduced from Theorem 2.  

𝑛𝑚 =
3𝑚−1𝑛1+∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

2
∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=0

                               (25) 

 
 We rely on the proposed expression in (Equation 25) for a sequence of "𝑚" odd numbers. Then, we add another odd 

number 𝑛𝑚+1 to this sequence in order to create a Collatz loop consisted of (𝑚 + 1) numbers, which give us the final iterations 

shown in (Equation 26): 

3𝑛𝑚 + 1 = 2𝑘𝑚 ∗ 𝑛(𝑚+1) 𝑎𝑛𝑑 3 ∗ 𝑛(𝑚+1) + 1 = 2𝑘(𝑚+1) ∗ 𝑛1                              (26) 

By using the shown expressions in (Equation 26) and (Equation 25), we deduce the shown result in (Equation 27): 

𝑛(𝑚+1) =
3𝑚𝑛1+∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0

2
∑ 𝑘(𝑙)

𝑙=𝑚
𝑙=0

 𝑎𝑛𝑑 3 ∗ 𝑛(𝑚+1) + 1 = 2𝑘(𝑚+1) ∗ 𝑛1                           (27) 

 As a final step, we use the shown expressions in (Equation 27) to calculate the value of 𝑛1, which is presented in 

(Equation 28): 

𝑛1 =
3𝑚+1𝑛1+∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖
𝑗=0 ]𝑖=𝑚

𝑖=0

2
∑ 𝑘(𝑙)
𝑙=𝑚+1
𝑙=0

⇒ 𝑛1 =
∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖
𝑗=0 ]𝑖=𝑚

𝑖=0

2
∑ 𝑘(𝑙)

𝑙=𝑚+1
𝑙=0 −3𝑚+1

 | 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}}                             (28) 

 As a result, the proposed unified formula in (Equation 9) (Theorem 3) to calculate the first number 𝑛1 from a sequence of 

odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4 … , 𝑛𝑚} that can create a Collatz loop is correct for (𝑚 ∊ {ℕ − {0}}). 

 

3.4. Fourth Unified Formula  

This subsection presents a new theorem proposing a fourth unified formula scaling the third proposed formula in 

Theorem 3 by extending it to calculate any odd number that may be included in a Collatz loop. 
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Theorem 4 

Supposing a sequence of consecutive odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4 … , 𝑛𝑚} that are included in a potential Collatz loop, 

where the numerical process to pass from one odd number among them to the following one is as described in (Equation 29). 

The unified mathematical formula to calculate any odd number 𝑛𝑙+1 in this sequence (where 0 ≤ 𝑙 ≤ 𝑚 − 1), it is as shown in 

(Equation 30). 

The used operator 𝑅𝑂𝑇𝑠
𝑚( ) in (Equation 30) is rotating the order of shown numbers in the sequence (Equation 29) to 

the left by "𝑆" steps, whereas "𝑚" is expressing the number of numbers in the sequence. This rotating operator is expressed as 

shown in (Equation 31). 

3𝑛1 + 1 = 2𝑘1𝑛2;  3𝑛2 + 1 = 2𝑘2𝑛3;  3𝑛3 + 1 = 2𝑘3𝑛4; … ;  3𝑛𝑚−1 + 1 = 2𝑘𝑚−1𝑛𝑚;  3𝑛𝑚 + 1 = 2𝑘𝑚𝑛1               (29) 

𝑛𝑙+1 =
∑ [3𝑖∗2

∑ 𝑅𝑂𝑇𝑙
𝑚(𝑘(𝑗)) 

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0

2
∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 −3𝑚

|  0 ≤ 𝑙 ≤ 𝑚 − 1 𝑎𝑛𝑑 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}}                (30) 

𝑅𝑂𝑇𝑙
𝑚(𝑘(𝑗)) = {

𝑘𝑗+𝑙 , 𝑖𝑓(𝑗 + 𝑙 ≤ 𝑚) 

𝑘𝑗+𝑙−𝑚, 𝑖𝑓(𝑗 + 𝑙 > 𝑚)

𝑘0 = 0, 𝑖𝑓(𝑗 = 0) 

             (31) 

Proof of Theorem 4 

 The proposed unified formula in (Equation 9) (Theorem 3) enables the calculation of the value of the first number 𝑛1 from 

a sequence of odd numbers {𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑚} that can create a Collatz loop. This proposed formula can be extended to 

calculate the values of other numbers 𝑛𝑖 in this sequence by relying on iterative rotations of this sequence in terms of order. 

For example, we rotate the sequence of odd numbers {𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑚−1, 𝑛𝑚} to the left by one step in order to have the 

sequence {𝑛2, 𝑛3, … , 𝑛𝑚−1, 𝑛𝑚, 𝑛1}, where each number is expressed as shown in (Equation 32). : 

3𝑛2 + 1 = 2𝑘2𝑛3;  3𝑛3 + 1 = 2𝑘3𝑛4; … ;  3𝑛𝑚−1 + 1 = 2𝑘𝑚−1𝑛𝑚;  3𝑛𝑚 + 1 = 2𝑘𝑚𝑛1;  3𝑛1 + 1 = 2𝑘1𝑛2             (32) 

As a result, we can calculate the value of the odd number 𝑛2 as shown in (Equation 33): 

𝑛2 =
2
∑ 𝑘(𝑗)

𝑗=𝑚−1
𝑗=0 +∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖
𝑗=2 ]𝑖=𝑚−2

𝑖=1 +3𝑚−1

2
∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 −3𝑚

            (33) 

This time, we rotate the sequence {𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑚−1, 𝑛𝑚} by two steps to the left, which gives us the resulting sequence 

{𝑛3, … , 𝑛𝑚−1, 𝑛𝑚, 𝑛1, 𝑛2} expressed in (Equation 34), where we can calculate the value of 𝑛3 as shown in (Equation 35): 

3𝑛3 + 1 = 2𝑘3𝑛4; … ;  3𝑛𝑚−1 + 1 = 2𝑘𝑚−1𝑛𝑚;  3𝑛𝑚 + 1 = 2𝑘𝑚𝑛1;  3𝑛1 + 1 = 2𝑘1𝑛2;  3𝑛2 + 1 = 2𝑘2𝑛3           (34) 

𝑛3 =
2
∑ 𝑘(𝑗)
𝑗=𝑚−1
𝑗=0 +3∗2𝑘1∗2

∑ 𝑘(𝑗)
𝑗=𝑚−1
𝑗=3 +∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖+1
𝑗=3 ]+3𝑚−1𝑖=𝑚−2

𝑖=2

2
∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 −3𝑚

| 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}}         (35) 

 We deduce that we use the same unified formula to calculate any odd number 𝑛𝑖 from the sequence 

{𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑚−1, 𝑛𝑚} that can create a Collatz loop. The only difference is made by rotating the sequence, iteratively, by 

"𝑠" steps to the left and respecting the new order of the resulting sequence. Therefore, we create the operator 𝑅𝑂𝑇𝑠
𝑚( ) to 

express the iterative rotation of order as shown in (Equation 36):  

𝑅𝑂𝑇𝑠
𝑚(𝑘𝑖) =  𝑘𝑗[𝑖𝑓 (𝑖 == 0){𝑗 = 0; } 𝑒𝑙𝑠𝑒{𝑖𝑓(𝑖 + 𝑠 > 𝑚){𝑗 = 𝑖 + 𝑠 − 𝑚; } 𝑒𝑙𝑠𝑒{𝑗 = 𝑖 + 𝑠; }}]           (36) 

 We can calculate the value of any number 𝑛𝑙+1 from the sequence {𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑚−1, 𝑛𝑚}, where the value of "𝑙" 

respects the condition (0 ≤ 𝑙 ≤ 𝑚 − 1), by relying on the operator 𝑅𝑂𝑇𝑠
𝑚( ) shown in (Equation 36), while using the 

presented expression in (Equation 37): 
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𝑛𝑙+1 =
∑ [3𝑖∗2

∑ 𝑅𝑂𝑇𝑙
𝑚(𝐾(𝑗)) 

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0

2
∑ 𝐾(𝑙)
𝑙=𝑚
𝑙=0 −3𝑚

                (37) 

The next stage is relying on recurrence (induction) to prove the given statement and proposed formulas in Theorem 4. 

We suppose that the used formula in (Equation 37) is correct to calculate a number 𝑛𝑙+1, by rotating the order of the sequence 

(Equation 29) by "𝑙" steps to the left, in order to obtain the shown sequence in (Equation 38). Then, we will prove by 

recurrence that we can use the same logic to calculate 𝑛𝑙+2 by rotating the resulting sequence in (Equation 38) by one other 

step to the left.  

3𝑅𝑂𝑇𝑙
𝑚(𝑛1) + 1 = 2𝑅𝑂𝑇𝑙

𝑚(𝐾(1))𝑅𝑂𝑇𝑙
𝑚(𝑛2);  3𝑅𝑂𝑇𝑙

𝑚(𝑛2) + 1 = 2𝑅𝑂𝑇𝑙
𝑚(𝐾(2))𝑅𝑂𝑇𝑙

𝑚(𝑛3); … ;  3𝑅𝑂𝑇𝑙
𝑚(𝑛𝑚−3) + 1 =

2𝑅𝑂𝑇𝑙
𝑚(𝐾(𝑚−3))𝑅𝑂𝑇𝑙

𝑚(𝑛𝑚−2);  3𝑅𝑂𝑇𝑙
𝑚(𝑛𝑚−2) + 1 = 2𝑅𝑂𝑇𝑙

𝑚(𝐾(𝑚−2))𝑅𝑂𝑇𝑙
𝑚(𝑛𝑚−1);  3𝑅𝑂𝑇𝑙

𝑚(𝑛𝑚−1) + 1 =

2𝑅𝑂𝑇𝑙
𝑚(𝐾(𝑚−1))𝑅𝑂𝑇𝑙

𝑚(𝑛𝑚); 3𝑅𝑂𝑇𝑙
𝑚(𝑛𝑚) + 1 = 2𝑅𝑂𝑇𝑙

𝑚(𝐾(𝑚))𝑅𝑂𝑇𝑙
𝑚(𝑛1)                 (38) 

We extend the used logic in this proof by rotating the shown sequence in (Equation 38) by one step to the left. As a result, we 

obtain the shown sequence in (Equation 39). 

3𝑅𝑂𝑇𝑙
𝑚(𝑛2) + 1 = 2𝑅𝑂𝑇𝑙

𝑚(𝐾(2))𝑅𝑂𝑇𝑙
𝑚(𝑛3);… ;  3𝑅𝑂𝑇𝑙

𝑚(𝑛𝑚−3) + 1 = 2𝑅𝑂𝑇𝑙
𝑚(𝐾(𝑚−3))𝑅𝑂𝑇𝑙

𝑚(𝑛𝑚−2);  3𝑅𝑂𝑇𝑙
𝑚(𝑛𝑚−2) + 1 =

2𝑅𝑂𝑇𝑙
𝑚(𝐾(𝑚−2))𝑅𝑂𝑇𝑙

𝑚(𝑛𝑚−1);  3𝑅𝑂𝑇𝑙
𝑚(𝑛𝑚−1) + 1 = 2𝑅𝑂𝑇𝑙

𝑚(𝐾(𝑚−1))𝑅𝑂𝑇𝑙
𝑚(𝑛𝑚); 3𝑅𝑂𝑇𝑙

𝑚(𝑛𝑚) + 1 =

2𝑅𝑂𝑇𝑙
𝑚(𝐾(𝑚))𝑅𝑂𝑇𝑙

𝑚(𝑛1);  3𝑅𝑂𝑇𝑙
𝑚(𝑛1) + 1 = 2𝑅𝑂𝑇𝑙

𝑚(𝐾(1))𝑅𝑂𝑇𝑙
𝑚(𝑛2)                   (39) 

As a result, we can calculate the value of the element 𝑅𝑂𝑇𝑙
𝑚(𝑛2) by using the shown formula in (Equation 40), which is 

based on extending the demonstrated formula in Theorem 3. 

𝑅𝑂𝑇𝑙
𝑚(𝑛2) =

2
∑ 𝑅𝑂𝑇𝑙

𝑚(𝐾(𝑗))
𝑗=𝑚−1
𝑗=0 +∑ [3𝑖∗2

∑ 𝑅𝑂𝑇𝑙
𝑚(𝐾(𝑗))

𝑗=𝑚−𝑖
𝑗=2 ]𝑖=𝑚−2

𝑖=1 +3𝑚−1

2
∑ 𝐾(𝑙)
𝑙=𝑚
𝑙=0 −3𝑚

                   (40) 

We deduce that we can re-express the shown formula in (Equation 40) to be presented as shown in (Equation 41). 

𝑅𝑂𝑇𝑙+1
𝑚 (𝑛1) = 𝑅𝑂𝑇𝑙

𝑚(𝑛2) =
∑ [3𝑖∗2

∑ 𝑅𝑂𝑇𝑙+1
𝑚 (𝐾(𝑗)) 

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0

2
∑ 𝐾(𝑙)

𝑙=𝑚
𝑙=0 −3𝑚

                    (41) 

Therefore, the proposed statements and formulas in Theorem 4 are correct by recurrence (induction). 

3.5. Fifth Unified Formula  

This subsection presents a new theorem proposing a fifth unified formula scaling the second proposed formula in Theorem 

2 by reversing its operations in terms of order, which allows for expressing an odd number in a function of its consecutive odd 

numbers according to the operations of the Collatz conjecture. 

Theorem 5 

Supposing a sequence of odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4 … , 𝑛𝑚} that create a Collatz branch, where the numerical process to 

pass from one number of this sequence to the following one is as stated by the operations of the Collatz conjecture, which are 

re-expressed in Theorem 1. The unified mathematical formula to calculate any number 𝑛𝑠 of this sequence in function of 

𝑛𝑚 where  (1 ≤ 𝑠 < 𝑚) is as shown in (Equation 42). 
  

𝑛𝑠 =
𝑛𝑚∗2

∑ 𝐾(−𝑙+𝑚−1)
𝑙=𝑚−1−𝑠
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(−𝑗+𝑚−2)
𝑗=𝑚−1−𝑠
𝑗=𝑖 ]𝑖=𝑚−1−𝑆

𝑖=0

3𝑚−𝑠  | 𝐾𝑠−1 = 0 ∗ 𝐾𝑠−1 𝑎𝑛𝑑 𝐾(𝑖≥𝑆) ∊ {ℕ − {0}}      (42) 

Proof of Theorem 5 

In the case of having a sequence of two odd numbers {𝑛𝑚−1, 𝑛𝑚} that create a Collatz branch, where the numerical 

process to pass from one odd number of this sequence to the following one is as described in (Equation 1) (Theorem 1); we 
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express the value of 𝑛𝑚−1 as follows: 3𝑛𝑚−1 + 1 = 2𝑘𝑚−1𝑛𝑚. Therefore, we can express this value of 𝑛𝑚−1 as shown in 

(Equation 43). 

𝑛(𝑠=𝑚−1) =
𝑛𝑚∗2

∑ 𝑘(−𝑙+𝑚−1)
𝑙=0
𝑙=0 −∑ [3𝑖∗2

∑ 𝑘(−𝑗+𝑚−2)
𝑗=𝑚−1−𝑠
𝑗=𝑖 ]𝑖=0

𝑖=0

3𝑚−𝑠 =
(𝑛𝑚∗2

𝑘(𝑚−1)−1)

3
 |𝑘𝑚−2 = 0 ∗ 𝑘𝑚−2      (43) 

As a result, the proposed formula in (Equation 42) (Theorem 5) is correct for the case of having a sequence of two 

consecutive odd numbers {𝑛𝑚−1, 𝑛𝑚} that creates a Collatz branch. 

In the case of having a sequence of consecutive three odd numbers {𝑛𝑚−2, 𝑛𝑚−1, 𝑛𝑚} that create a Collatz branch, where the 

numerical process to pass from one number of this sequence to the following one is as described in (Equation 1) (Theorem 

1); we express the values of 𝑛𝑚−1 and 𝑛𝑚−2, as follows: 3𝑛𝑚−2 + 1 = 2𝑘(𝑚−2)𝑛𝑚−1 𝑎𝑛𝑑 3𝑛𝑚−1 + 1 = 2𝑘(𝑚−1)𝑛𝑚.  

After replacing the value of 𝑛𝑚−1 by (𝑛𝑚−1 =
𝑛𝑚∗2

𝑘(𝑚−1)−1

3
) in order to identify the expression of (𝑛𝑚−2 =

2
𝑘(𝑚−2)∗𝑛(𝑚−1)−1

3
) in terms of 𝑛𝑚, we obtain the following formula presenting the value of 𝑛𝑚−2 in function of 𝑛𝑚: 𝑛𝑚−2 =

𝑛𝑚∗2
𝑘(𝑚−2)+𝑘(𝑚−1)−2

𝑘(𝑚−2)−3

9
. Therefore, we can express this value of 𝑛𝑚−2 as shown in (Equation 44). 

𝑛(𝑠=𝑚−2) =
𝑛𝑚 ∗ 2∑ 𝑘(−𝑙+𝑚−1)

𝑙=1
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(−𝑗+𝑚−2)
𝑗=𝑚−1−𝑠
𝑗=𝑖 ]𝑖=1

𝑖=0

3𝑚−𝑠
 |𝑘𝑚−3 = 0 ∗ 𝑘𝑚−3 

⟹ 𝑛𝑚−2 =
𝑛𝑚∗2

𝑘(𝑚−2)+𝑘(𝑚−1)−30∗2
𝑘(𝑚−3)+𝑘(𝑚−2)−31∗2

𝑘(𝑚−3)

9
 | 𝑘𝑚−3 = 0      (44) 

As a result, the proposed formula in (Equation 42) (Theorem 5) is correct for the case of having a sequence of three odd 

numbers {𝑛𝑚−2, 𝑛𝑚−1, 𝑛𝑚} that creates a Collatz branch. 

In the case of having a sequence of four odd numbers {𝑛𝑚−3, 𝑛𝑚−2, 𝑛𝑚−1, 𝑛𝑚} that create a Collatz branch, where the 

numerical process to pass from one odd number of this sequence to the following one is as described in (Equation 1) 

(Theorem 1); we express the values of 𝑛𝑚−3, 𝑛𝑚−2 and 𝑛𝑚−1 as follows: 3𝑛𝑚−3 + 1 = 2𝑘𝑚−3𝑛𝑚−2 𝑎𝑛𝑑 3𝑛𝑚−2 + 1 =

2𝑘𝑚−2𝑛𝑚−1 𝑎𝑛𝑑 3𝑛𝑚−1 + 1 = 2𝑘𝑚−1𝑛𝑚.  

After replacing the value of 𝑛𝑚−1 by (𝑛𝑚−1 =
2
𝑘(𝑚−1)𝑛𝑚−1

3
) in order to identify the expression of (𝑛𝑚−2 =

2
𝑘(𝑚−2)𝑛(𝑚−1)−1

3
) 

in terms of 𝑛𝑚, we obtain the result (𝑛𝑚−2 =
𝑛𝑚∗2

𝑘(𝑚−2)+𝑘(𝑚−1)−2
𝑘(𝑚−2)−3

9
). Then, we replace the value of 𝑛𝑚−2 by 

(𝑛𝑚−2 =
𝑛𝑚∗2

𝑘(𝑚−2)+𝑘(𝑚−1)−2
𝑘(𝑚−2)−3

9
) in order to identify the expression of (𝑛𝑚−3 =

2
𝑘(𝑚−3)𝑛(𝑚−2)−1

3
) in terms of 𝑛𝑚, 

which allows us to determine the expression of 𝑛𝑚−3 as follows: 𝑛𝑚−3 =

𝑛𝑚∗2
𝑘(𝑚−3)+𝑘(𝑚−2)+𝑘(𝑚−1)−2

𝑘(𝑚−3)+𝑘(𝑚−2)−3∗2
𝑘(𝑚−3)−9

27
. Therefore, we can express this value of 𝑛𝑚−3 as shown in (Equation 45). 

𝑛(𝑠=𝑚−3) =
𝑛𝑚 ∗ 2∑ 𝑘(−𝑙+𝑚−1)

𝑙=𝑚−1−𝑠
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(−𝑗+𝑚−2)
𝑗=𝑚−1−𝑠
𝑗=𝑖 ]𝑖=𝑚−1−𝑠

𝑖=0

3𝑚−𝑠
  | 𝑘𝑠−1 = 0 ∗ 𝑘𝑠−1 

⟹ 𝑛𝑚−3 =
𝑛𝑚 ∗ 2∑ 𝑘(−𝑙+𝑚−1)

𝑙=2
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(−𝑗+𝑚−2)
𝑗=2
𝑗=𝑖 ]𝑖=2

𝑖=0

33
  | 𝑘𝑚−4 = 0 ∗ 𝑘𝑚−4 

⟹ 𝑛𝑚−3 =
𝑛𝑚∗2

𝑘(𝑚−3)+𝑘(𝑚−2)+𝑘(𝑚−1)−30∗2
𝑘(𝑚−4)+𝑘(𝑚−3)+𝑘(𝑚−2)−31∗2

𝑘(𝑚−4)+𝑘(𝑚−3)−32∗2
𝑘(𝑚−4)

27
  | 𝑘𝑚−4 = 0  
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⟹ 𝑛𝑚−3 =
𝑛𝑚∗2

𝑘(𝑚−3)+𝑘(𝑚−2)+𝑘(𝑚−1)−2
𝑘(𝑚−3)+𝑘(𝑚−2)−3∗2

𝑘(𝑚−3)−9

27
                           (45) 

As a result, the proposed formula in (Equation 42) (Theorem 5) is correct for the case of having a sequence of four odd 

numbers {𝑛𝑚−3, 𝑛𝑚−2, 𝑛𝑚−1, 𝑛𝑚} that creates a Collatz branch. 

The next step in this proof is using recurrence (induction). Therefore, we suppose that the proposed formula in (Equation 

42) (Theorem 5) is correct for a sequence of (𝑝 − 1) odd numbers {𝑛𝑚−𝑝+2, 𝑛𝑚−𝑝+3, 𝑛𝑚−𝑝+4, … 𝑛𝑚−3, 𝑛𝑚−2, 𝑛𝑚−1, 𝑛𝑚} that 

create a Collatz branch, where the numerical process to pass from one number of this sequence to the following one is as 

described in (Equation 1) (Theorem 1). Then, we add another odd number 𝑛(𝑚−𝑝+1) to this sequence, and we try to verify 

whether the proposed formula in (Equation 42) (Theorem 5) extends itself correctly by expressing the value of 𝑛(𝑚−𝑝+1) in 

terms of 𝑛𝑚 . 

We suppose having a sequence of (𝑝) odd numbers {𝑛𝑚−𝑝+1, 𝑛𝑚−𝑝+2, 𝑛𝑚−𝑝+3, … 𝑛𝑚−3, 𝑛𝑚−2, 𝑛𝑚−1, 𝑛𝑚} that create a 

Collatz branch, where the numerical process to pass from one number of this sequence to the following one is as described in 

(Equation 1) (Theorem 1). Then, we suppose that the proposed formula in (Equation 42) (Theorem 5) is correct for each element 

𝑛𝑠 from this sequence, where the value of "𝑠" is in the following range (𝑚 − 𝑝 + 2 ≤ 𝑠 ≤ 𝑚 − 1). Therefore, we suppose that 

the calculated expression in (Equation 46) for 𝑛(𝑠=𝑚−𝑝+2) by using the proposed formula in (Equation 42) (Theorem 5) is 

correct. 

𝑛(𝑠=𝑚−𝑝+2) =
𝑛𝑚∗2

∑ 𝑘(−𝑙+𝑚−1)
𝑙=𝑚−1−𝑠
𝑙=0 −∑ [3𝑖∗2

∑ 𝑘(−𝑗+𝑚−2)
𝑗=𝑚−1−𝑠
𝑗=𝑖 ]𝑖=𝑚−1−𝑆

𝑖=0

3𝑚−𝑠   | 𝑘𝑠−1 = 0 ∗ 𝑘𝑠−1                      (46) 

Finally, we replace 𝑛(𝑚−𝑝+2) in the equation (𝑛(𝑚−𝑝+1) =
𝑛(𝑚−𝑝+2)∗2

𝑘(𝑚−𝑝+1)−1

3
) by its shown expression in (Equation 46) in 

order to present the number 𝑛(𝑚−𝑝+1) in function of 𝑛𝑚, which gives us the shown result in (Equation 47). 

𝑛(𝑠=𝑚−𝑝+1) =
2𝑘(𝑚−𝑝+1)𝑛(𝑚−𝑝+2) − 1

3
 

⟹ 𝑛𝑚−𝑝+1 =
2𝑘𝑚−𝑝+1 ∗ 2∑ 𝑘(−𝑙+𝑚−1)

𝑙=𝑝−3
𝑙=0 𝑛𝑚 − 2𝑘𝑚−𝑝+1 [3𝑝−3 + ∑ (3𝑖 ∗ 2

∑ 𝑘(−𝑗+𝑚−2)
𝑗=𝑝−4
𝑗=𝑖 )

𝑖=𝑝−4
𝑖=0 ] − 3𝑝−2

3𝑝−1
  | 𝑘𝑚−𝑝

= 0 ∗ 𝑘𝑚−𝑝 

⟹ 𝑛𝑚−𝑝+1 =
2𝑘𝑚−𝑝+1 ∗ 2∑ 𝑘(−𝑙+𝑚−1)

𝑙=𝑝−3
𝑙=0 𝑛𝑚 − 2𝑘𝑚−𝑝+1 ∗ 3𝑝−3 − ∑ (3𝑖 ∗ 2

∑ 𝑘(−𝑗+𝑚−2)
𝑗=𝑝−4
𝑗=𝑖 )

𝑖=𝑝−4
𝑖=0 − 3𝑝−2

3𝑝−1
  | 𝑘𝑚−𝑝

= 0 ∗ 𝑘𝑚−𝑝 

⟹ 𝑛𝑚−𝑝+1 =
2𝑘𝑚−𝑝+1 ∗ 2∑ 𝑘(−𝑙+𝑚−1)

𝑙=𝑝−3
𝑙=0 𝑛𝑚 − ∑ (3𝑖 ∗ 2

∑ 𝑘(−𝑗+𝑚−2)
𝑗=𝑝−3
𝑗=𝑖 )

𝑖=𝑝−3
𝑖=0 − 3𝑝−2

3𝑝−1
  | 𝑘𝑚−𝑝 = 0 ∗ 𝑘𝑚−𝑝 

⟹ 𝑛𝑚−𝑝+1 =
2∑ 𝑘(−𝑙+𝑚−1)

𝑙=𝑝−2
𝑙=0 𝑛𝑚 − ∑ [3𝑖 ∗ 2

∑ 𝑘(−𝑗+𝑚−2)
𝑗=𝑝−3
𝑗=𝑖 ] − 3𝑝−2𝑖=𝑝−3

𝑖=0

3𝑝−1
  | 𝑘𝑚−𝑝 = 0 

⟹ 𝑛𝑚−𝑝+1 =
2∑ 𝑘(−𝑙+𝑚−1)

𝑙=𝑝−2
𝑙=0 𝑛𝑚 − ∑ [3𝑖 ∗ 2

∑ 𝑘(−𝑗+𝑚−2)
𝑗=𝑝−2
𝑗=𝑖 ]

𝑖=𝑝−2
𝑖=0

3𝑝−1
  | 𝑘𝑚−𝑝 = 0 

⟹ 𝑛(𝑠=𝑚−𝑝+1) =
𝑛𝑚∗2

∑ 𝑘(−𝑙+𝑚−1)
𝑙=𝑚−1−𝑠
𝑙=0 −∑ [3𝑖∗2

∑ 𝑘(−𝑗+𝑚−2)
𝑗=𝑚−1−𝑠
𝑗=𝑖 ]𝑖=𝑚−1−𝑆

𝑖=0

3𝑚−𝑠   | 𝑘𝑠−1 = 0                              (47) 
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As a result, we deduce that Theorem 5 is true, because its proposed statements and proposed formula in (Equation 42)  are 

correct by recurrence to calculate the value of each element 𝑛𝑖 from a sequence containing (𝑝) elements of odd numbers 

{𝑛𝑚−𝑝+1, 𝑛𝑚−𝑝+2, 𝑛𝑚−𝑝+3, … 𝑛𝑚−3, 𝑛𝑚−2, 𝑛𝑚−1, 𝑛𝑚} that create a Collatz branch, where the numerical process to pass from 

one odd number of this sequence to the following one is as described in (Equation 1) (Theorem 1). 

3.6. Sixth Unified Formula  

This subsection presents a new theorem proposing a sixth unified formula re-expressing the statements of the Collatz 

conjecture by expressing only sequences of consecutive odd numbers, which is based on extending the first and the fifth 

proposed theorems in this paper. 

Theorem 6 
Supposing a sequence of odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4 … , 𝑛𝑚} that create a Collatz branch, where the numerical process to 

pass from one odd number of this sequence to the following one is as stated by the operations of the Collatz conjecture, which 

are re-expressed in Theorem 1. If this Collatz branch is based on conducting the operations of the Collatz conjecture by starting 

from the number 𝑛1 and converging into the number (𝑛𝑚 = 1) , then we can express 𝑛1 according to the general formula shown 

in (Equation 48). 

𝑛1 =
2
∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝐾0 = 0 𝑎𝑛𝑑 𝐾(𝑖≥1) ∊ {ℕ − {0}}                                (48) 

Proof of Theorem 6 

In order to prove this sixth theorem, we are going to extend Theorem 5 by scaling its presented formula in (Equation 42). 

Based on Theorem five, which we already proved, when we have a sequence of odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4 … , 𝑛𝑚} that 

creates a Collatz branch, where the numerical process to pass from one odd number of this sequence to the following one is as 

stated by the operations of the Collatz conjecture (which are re-expressed in Theorem 1); we can calculate the value of an odd 

number 𝑛𝑠 of this sequence in terms of 𝑛𝑚 as shown in (Equation 49): 

𝑛𝑠 =
𝑛𝑚∗2

∑ 𝐾(−𝑙+𝑚−1)
𝑙=𝑚−1−𝑠
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(−𝑗+𝑚−2)
𝑗=𝑚−1−𝑠
𝑗=𝑖 ]𝑖=𝑚−1−𝑆

𝑖=0

3𝑚−𝑠   | 𝐾𝑠−1 = 0 ∗ 𝐾𝑠−1                 (49) 

Therefore, if the sequence of odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4 … , 𝑛𝑚}  is starting the conduction of Collatz operations from 𝑛1 and 

then converging into an odd number 𝑛𝑚 = 1; then we can express the number 𝑛1 as presented in (Equation 50): 

𝑛(𝑠=1) =
𝑛𝑚 ∗ 2∑ 𝐾(−𝑙+𝑚−1)

𝑙=𝑚−1−𝑠
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝐾(−𝑗+𝑚−2)
𝑗=𝑚−1−𝑠
𝑗=𝑖 ]𝑖=𝑚−1−𝑠

𝑖=0

3𝑚−𝑠
  | 𝐾𝑠−1 = 0 ∗ 𝐾𝑠−1 

⟹ 𝑛1 =
𝑛𝑚 ∗ 2∑ 𝐾(−𝑙+𝑚−1)

𝑙=𝑚−2
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝐾(−𝑗+𝑚−2)
𝑗=𝑚−2
𝑗=𝑖 ]𝑖=𝑚−2

𝑖=0

3𝑚−1
  | 𝐾0 = 0 

⟹ 𝑛1 =
2∑ 𝐾(𝑙)

𝑙=𝑚−1
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝐾(−𝑗+𝑚−2)
𝑗=𝑚−2
𝑗=𝑖 ]𝑖=𝑚−2

𝑖=0

3𝑚−1
  | 𝐾0 = 0 

⟹ 𝑛1 =
2
∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝐾0 = 0                                         (50) 

As a result, the proposed formula and the presented statements in Theorem 6 are correct. 

3.7. Seventh Unified Formula  

This subsection presents a new theorem proposing a seventh unified formula re-expressing the statements of the Collatz 

conjecture by expressing sequences of consecutive odd numbers and their neighbors, which is based on extending the first and 

the sixth proposed theorems in this paper. 
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Theorem 7 
Supposing a group "𝐿" containing natural numbers, where the minimum number in "𝐿" is {𝑛1 = 1} and the maximum 

number is {𝑛𝑚 = 𝑚}; as shown in (Equation 51). If every odd number 𝑛𝑠 from this group, "𝐿" is converging to a value (𝑃 = 1) 

inferior to itself when repeating the operations of the Collatz conjecture, whereas having (𝑛𝑠 ≤ 𝑛𝑚); then we can express 

every natural number "𝑛"  from the group "𝐿" where (𝑛 ≤ 𝑛𝑚−1) as shown in (Equation 52). 

𝐿 = {𝑛1 = 1; 𝑛2 = 2; 𝑛3 = 3; 𝑛4 =  4;… ; 𝑛𝑚−1 = (𝑚 − 1); 𝑛𝑚 = 𝑚}                                        (51) 

𝑛 = 2𝑅
2
∑ 𝐾(𝑙)

"𝑙=𝑡
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
"𝑗=𝑡−𝑖−1

𝑗=0 ]𝑖=𝑡−1
𝑖=0

3𝑡−1  | 𝑅 ∊ ℕ 𝑎𝑛𝑑 𝐾(0)
" = 0 𝑎𝑛𝑑 𝐾(2)

" ∊ ℤ  𝑎𝑛𝑑 𝐾(1)
" ∊ ℤ 𝑎𝑛𝑑 𝐾(𝑖∉{0,1,2})

" ∊

{ℕ − {0} } 𝑎𝑛𝑑(𝑅 + 𝐾1
") ≥ 0 𝑎𝑛𝑑 (𝑅 + 𝐾1

" + 𝐾2
") > 0                                          (52) 

Proof of Theorem 7 

In order to prove this theorem (Theorem 7), we are going to extend Theorem 6 by scaling its presented formula in (Equation 

48). 

We suppose having an odd number 𝑛𝑠 from the group "𝐿" where the minimum number in "𝐿" is {𝑛1 = 1} and the maximum 

number in "𝐿" is {𝑛𝑚 = 𝑚}. We also suppose that every odd number in the group "𝐿" is converging to the number “1” when 

repeating the operations of the Collatz conjecture. 

Since we supposed that 𝑛𝑠 is an odd number converging to the number “1” when we keep repeating the operations of the 

Collatz conjecture, whereas starting them on 𝑛𝑠, we can express the generated branch of Collatz by these operations as shown 

in (Equation 53). 

𝑛𝑠 = 𝑛1
′ ;  3𝑛1

′ + 1 = 2𝑘1𝑛2
′ ;  3𝑛2

′ + 1 = 2𝑘2𝑛3
′ ; … ;  3𝑛𝑡−1

′ + 1 = 2𝑘𝑡−1𝑛𝑡
′ = 2𝑘𝑡−1                                          (53) 

By relying on Theorem 6 and the shown expressions in (Equation 53), we can present the number 𝑛𝑠 as shown in 

(Equation 54). 

𝑛𝑠 = 𝑛1
′ =

2
∑ 𝑘(𝑙)
𝑙=𝑡−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑡−𝑖−2
𝑗=0 ]𝑖=𝑡−2

𝑖=0

3𝑡−1   | 𝑘0 = 0 𝑎𝑛𝑑 𝑘𝑖 ∊ {ℕ − {0}}                                        (54) 

Now, we calculate the value of the natural number "𝑛" where (𝑛 ∊ {𝐿 − {𝑛𝑚}}) and (𝑛 = 𝑛𝑠 − 𝑥), whereas having 

(𝑥 ∊ {ℕ − {0}} 𝑎𝑛𝑑 𝑥 =  
(2𝑞+3∗2𝑟−1)

3
 𝑎𝑛𝑑 𝑞 ∊ ℕ 𝑎𝑛𝑑 𝑟 ∊ ℕ). By selecting the values of "𝑞" and "𝑟" as natural numbers, the 

value of "𝑥" can be among the group {
(20+3∗20−1)

3
= 1; 

(20+3∗21−1)

3
= 2;  

(22+3∗21−1)

3
= 3;

(20+3∗22−1)

3
= 4;

(22+3∗22−1)

3
=

5;… ; 𝑛𝑠−1 }. As a result, we obtain the shown expression in (Equation 55).  

𝑛 = 𝑛𝑠 − 𝑥 ⟹ 𝑛 =
2∑ 𝑘(𝑙)

𝑙=𝑡−1
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑡−𝑖−2
𝑗=0 ]𝑖=𝑡−2

𝑖=0

3𝑡−1
− 𝑥 

⟹ 𝑛 =
2∑ 𝑘(𝑙)

𝑙=𝑡−1
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑡−𝑖−2
𝑗=0 ]𝑖=𝑡−2

𝑖=0

3𝑡−1
−

(2𝑞 + 3 ∗ 2𝑟 − 1)

3
 

⟹ 𝑛 =
2∑ 𝑘(𝑙)

𝑙=𝑡−1
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑡−𝑖−2
𝑗=0 ]𝑖=𝑡−2

𝑖=0 − (2𝑞 + 3 ∗ 2𝑟 − 1)3𝑡−2

3𝑡−1
 

⟹ 𝑛 =
2∑ 𝑘(𝑙)

𝑙=𝑡−1
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑡−𝑖−2
𝑗=0 ]𝑖=𝑡−3

𝑖=0 − 3𝑡−2 − (2𝑞 + 3 ∗ 2𝑟 − 1)3𝑡−2

3𝑡−1
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⟹ 𝑛 =
2
∑ 𝑘(𝑙)
𝑙=𝑡−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑡−𝑖−2
𝑗=0 ]𝑖=𝑡−3

𝑖=0 −2𝑞∗3𝑡−2−2𝑟∗3𝑡−1

3𝑡−1                                                        (55) 

The next step is adapting the shown expression in (Equation 55) by replacing "𝑞" with (𝑘(1)
′ = 𝑞) whereas conducting the 

following re-expressions {𝑘(1) = 𝑞 + 𝑘(2)
′ ;  𝑘(2≤𝑗≤𝑡−1) = 𝑘(𝑗+1)

′  𝑎𝑛𝑑 𝑘(0)
′ = 0}, which gives us the shown result in (Equation 

56). Since the value of 𝑘(1) is a natural number absolutely superior to zero, whereas we have(𝑘(1) = 𝑞 + 𝑘(2)
′ ), then we deduce 

{𝑘(2)
′ ∊ ℤ 𝑎𝑛𝑑 (𝑞 + 𝑘(2)

′ ) > 0}. 

⟹ 𝑛 =
2𝑞+∑ 𝑘(𝑙+1)

′𝑙=𝑡−1
𝑙=1 − ∑ [3𝑖 ∗ 2

𝑞+∑ 𝑘(𝑗+1)
′𝑗=𝑡−𝑖−2

𝑗=1 ]𝑖=𝑡−3
𝑖=0 − 2𝑞 ∗ 3𝑡−2 − 2𝑟 ∗ 3𝑡−1

3𝑡−1
 

⟹ 𝑛 =
2𝑘(1)

′ +∑ 𝑘(𝑙+1)
′𝑙=𝑡−1

𝑙=1 − ∑ [3𝑖 ∗ 2
𝑘(1)

′ +∑ 𝑘(𝑗+1)
′𝑗=𝑡−𝑖−2

𝑗=1 ]𝑖=𝑡−3
𝑖=0 − 2𝑘(1)

′

∗ 3𝑡−2 − 2𝑟 ∗ 3𝑡−1

3𝑡−1
 

⟹ 𝑛 =
2𝑘(1)

′ +∑ 𝑘(𝑙)
′𝑙=𝑡

𝑙=2 − ∑ [3𝑖 ∗ 2
𝑘(1)

′ +∑ 𝑘(𝑗)
′𝑗=𝑡−𝑖−1

𝑗=2 ]𝑖=𝑡−3
𝑖=0 − 2𝑘(1)

′

∗ 3𝑡−2 − 2𝑟 ∗ 3𝑡−1

3𝑡−1
 

⟹ 𝑛 =
2∑ 𝑘(𝑙)

′𝑙=𝑡
𝑙=1 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
′𝑗=𝑡−𝑖−1

𝑗=1 ]𝑖=𝑡−3
𝑖=0 − 2𝑘(1)

′

∗ 3𝑡−2 − 2𝑟 ∗ 3𝑡−1

3𝑡−1
 

⟹ 𝑛 =
2
∑ 𝑘(𝑙)

′𝑙=𝑡
𝑙=1 −∑ [3𝑖∗2

∑ 𝑘(𝑗)
′𝑗=𝑡−𝑖−1

𝑗=1 ]𝑖=𝑡−2
𝑖=0 −2𝑟∗3𝑡−1

3𝑡−1                                                                           (56) 

The following step is adapting the shown expression in (Equation 56) by replacing 𝑘(1)
′  with (𝑘(1)

′ = 𝑘(1)
" + 𝑟) whereas 

replacing 𝑘(𝑗>1)
′  with (𝑘(𝑗>1)

′ = 𝑘(𝑗)
" ) and using (𝑘(0)

" = 0), which gives us the shown result in (Equation 57). The values 

(𝑘(1)
′ = 𝑘(1)

" + 𝑟 ≥ 0), (𝑘(1)
′ = 𝑞), (𝑞 + 𝑘(2)

′ > 0) and (𝑘(𝑗>1)
′ = 𝑘(𝑗)

" ) are inducing the conditions (𝑘(1)
" + 𝑟 ≥ 0) and 

(𝑘(1)
" + 𝑟 + 𝑘(2)

" ) > 0 where the values of “𝑟” and “𝑞” are selected to be natural numbers. 

⟹ 𝑛 =
2𝑟+∑ 𝑘(𝑙)

"𝑙=𝑡
𝑙=1 − ∑ [3𝑖 ∗ 2

𝑟+∑ 𝑘(𝑗)
"𝑗=𝑡−𝑖−1

𝑗=1 ]𝑖=𝑡−2
𝑖=0 − 2𝑟 ∗ 3𝑡−1

3𝑡−1
 

⟹ 𝑛 =
2𝑟 ∗ 2∑ 𝑘(𝑙)

"𝑙=𝑡
𝑙=1 − 2𝑟 ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
"𝑗=𝑡−𝑖−1

𝑗=1 ]𝑖=𝑡−2
𝑖=0 − 2𝑟 ∗ 3𝑡−1

3𝑡−1
 

⟹ 𝑛 = 2𝑟
2
∑ 𝑘(𝑙)

"𝑙=𝑡
𝑙=1 −∑ [3𝑖∗2

∑ 𝑘(𝑗)
"𝑗=𝑡−𝑖−1

𝑗=1 ]𝑖=𝑡−2
𝑖=0 −3𝑡−1

3𝑡−1                                                        (57) 

Since we have (𝑘(0)
" = 0), we can re-express the shown value of "𝑛" in (Equation 57) as presented in (Equation 58). 

⟹ 𝑛 = 2𝑟
2∑ 𝑘(𝑙)

"𝑙=𝑡
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
"𝑗=𝑡−𝑖−1

𝑗=0 ]𝑖=𝑡−2
𝑖=0 − 20 ∗ 3𝑡−1

3𝑡−1
 

     ⟹ 𝑛 = 2𝑟
2
∑ 𝑘(𝑙)

"𝑙=𝑡
𝑙=0 −∑ [3𝑖∗2

∑ 𝑘(𝑗)
"𝑗=𝑡−𝑖−1

𝑗=0 ]𝑖=𝑡−1
𝑖=0

3𝑡−1                                                                 (58) 
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As a result, we deduce that we can express the natural number "𝑛" from the group {𝐿 − {𝑛𝑚}} according to the proposed 

formula in (Equation 58), whereas having 𝑟 ∊ ℕ 𝑎𝑛𝑑 𝑘(0)
" = 0 𝑎𝑛𝑑 𝑘(2)

" ∊ ℤ  𝑎𝑛𝑑 𝑘(1)
" ∊ ℤ 𝑎𝑛𝑑 𝑘(𝑖∉{0,1,2})

" ∊ {ℕ −

{0} } 𝑎𝑛𝑑(𝑟 + 𝑘1
") ≥ 0 𝑎𝑛𝑑 (𝑟 + 𝑘1

" + 𝑘2
" ) > 0. Therefore, the given statements and the proposed formulas in Theorem 7 are 

correct. 

4. New Theorems Providing Reciprocal Formulas for the Collatz Conjecture 
This section presents two theorems proving the reciprocal logic of the presented statements and proposed formulas in 

Theorem 6 and Theorem 7, which we will use principally to prove further theorems and formulas in this paper about the 

correctness of the Collatz conjecture. 

4.1. First Proposed Theorem for Reciprocity 

This subsection presents the eighth theorem, which we rely on to prove the reciprocity of Theorem 6 in this paper.  

This eighth theorem will allow us to prove in other sections that repeating the operations of the Collatz conjecture, whether 

starting them on any odd number or even number, will eventually converge to the number “1”. 

Theorem 8 

In the group of natural numbers ℕ, if any odd number 𝑛𝑠 is expressed as shown in (Equation 59), where all coefficients 

𝑘(𝑖≥1) are natural numbers different from zero and (𝑘0 = 0), then this odd number 𝑛𝑠 is converging to the number “1” when 

we keep repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠. 

𝑛𝑠 =
2
∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}}                      (59) 

Proof of Theorem 8 

In this proof, we will rely on the presented statements and proposed formulas in Theorem 1 and Theorem 5. 

Supposing an odd number (𝑛𝑠 = 𝑛1) expressed as shown in (Equation 59), where all coefficients 𝑘(𝑖≥1) are natural numbers 

different from zero, whereas (𝑘0 = 0). 

The first step is conducting Collatz operations on the odd number (𝑛𝑠 = 𝑛1) according to the presented formula in 

(Equation 1) (Theorem 1), which allows us to express 𝑛𝑠 as shown in (Equation 60). 

3𝑛𝑠 + 1 = 3𝑛1 + 1 = 2𝑘1𝑛2 | 𝑘1 ∊ {ℕ − {0}}   𝑎𝑛𝑑 𝑛2 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟                       (60) 

To simplify expressing the calculations and formulas, we use the shifting operator 𝑆𝐻𝐼𝐹𝑇𝑙
𝑚′

(𝑘(𝑗)) to shift the value of the 

coefficient 𝑘(𝑗) to the left by 𝑙 steps, whereas 𝑚′ is the maximum value to reach. 

𝑆𝐻𝐼𝐹𝑇𝑙
𝑚′

(𝑘(𝑗)) = {
𝑘0 = 0, 𝑖𝑓(𝑗 = 0)

𝑘𝑗+𝑙 , 𝑖𝑓( 𝑗 > 0 𝑎𝑛𝑑 0 < 𝑗 + 𝑙 ≤ 𝑚′) 
 

Based on the shown expressions in (Equation 60), we can present the odd number 𝑛2 as shown in (Equation 61), where 

we replace 𝑛𝑆 with its shown value in (Equation 59). 

𝑛2 =
(3𝑛𝑠 + 1)

2𝑘1
 ⟹ 𝑛2 = 3

2∑ 𝑘(𝑙)
𝑙=𝑚−1
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

2𝑘1 ∗ 3𝑚−1
+

1

2𝑘1
 

⟹ 𝑛2 =
2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0 + 3𝑚−2

2𝑘1 ∗ 3𝑚−2
 

⟹ 𝑛2 =
2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−3

𝑖=0 − 3𝑚−2 + 3𝑚−2

2𝑘1 ∗ 3𝑚−2
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⟹ 𝑛2 =
2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−3

𝑖=0

2𝑘1 ∗ 3𝑚−2
 

⟹ 𝑛2 =
2𝑘1 ∗ 2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=2 − 2𝑘1 ∗ ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇1
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−3
𝑗=0 ]𝑖=𝑚−3

𝑖=0

2𝑘1 ∗ 3𝑚−2
 

⟹ 𝑛2 = 2𝑘1

2∑ 𝑘(𝑙)
𝑙=𝑚−1
𝑙=2 − ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇1
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−3
𝑗=0 ]𝑖=𝑚−3

𝑖=0

2𝑘1 ∗ 3𝑚−2
 

⟹ 𝑛2 =
2
∑ 𝑘(𝑙)
𝑙=𝑚−1
𝑙=2 −∑ [3𝑖∗2

∑ 𝑆𝐻𝐼𝐹𝑇1
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−3
𝑗=0 ]𝑖=𝑚−3

𝑖=0

3𝑚−2                                                          (61) 

In this first step, the operator 𝑆𝐻𝐼𝐹𝑇𝑙
𝑚′

(𝑘(𝑗)) is allowing the shift in the sequence ∑ 𝑆𝐻𝐼𝐹𝑇1
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−3
𝑗=0  to the left 

by one step, in order to exclude the coefficient 𝑘1 from the sequence. 

The second step is conducting Collatz operations on the odd number 𝑛2 according to the presented formula in (Equation 

1) (Theorem 1), which allows us to express 𝑛2 as shown in (Equation 62). 

3𝑛2 + 1 = 2𝑘2𝑛3 | 𝑘2 ∊ {ℕ − {0}}  𝑎𝑛𝑑 𝑛3 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟                                                             (62) 

Based on the shown expressions in (Equation 62), we can present the odd number 𝑛3 as shown in (Equation 63), where 

we replace 𝑛2 with its shown value in (Equation 61). 

𝑛3 =
(3𝑛2 + 1)

2𝑘2
 ⟹ 𝑛3 = 3

2∑ 𝑘(𝑙)
𝑙=𝑚−1
𝑙=2 − ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇1
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−3
𝑗=0 ]𝑖=𝑚−3

𝑖=0

2𝑘2 ∗ 3𝑚−2
+

1

2𝑘2
 

⟹ 𝑛3 =
2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=2 − ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇1
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−3
𝑗=0 ]𝑖=𝑚−3

𝑖=0 + 3𝑚−3

2𝑘2 ∗ 3𝑚−3
 

⟹ 𝑛3 =
2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=2 − ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇1
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−3
𝑗=0 ]𝑖=𝑚−4

𝑖=0 − 3𝑚−3 + 3𝑚−3

2𝑘2 ∗ 3𝑚−3
 

⟹ 𝑛3 =
2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=2 − ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇1
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−3
𝑗=0 ]𝑖=𝑚−4

𝑖=0

2𝑘2 ∗ 3𝑚−3
 

⟹ 𝑛3 =
2𝑘2 ∗ 2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=3 − 2𝑘2 ∗ ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇2
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−4
𝑗=0 ]𝑖=𝑚−4

𝑖=0

2𝑘2 ∗ 3𝑚−3
 

⟹ 𝑛3 = 2𝑘2

2∑ 𝑘(𝑙)
𝑙=𝑚−1
𝑙=3 − ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇2
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−4
𝑗=0 ]𝑖=𝑚−4

𝑖=0

2𝑘2 ∗ 3𝑚−3
 

⟹ 𝑛3 =
2
∑ 𝑘(𝑙)
𝑙=𝑚−1
𝑙=3 −∑ [3𝑖∗2

∑ 𝑆𝐻𝐼𝐹𝑇2
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−4
𝑗=0 ]𝑖=𝑚−4

𝑖=0

3𝑚−3                                                     (63) 

In this second step, the operator 𝑆𝐻𝐼𝐹𝑇𝑙
𝑚′

(𝑘(𝑗)) is allowing the shift in the sequence ∑ 𝑆𝐻𝐼𝐹𝑇2
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−4
𝑗=0  to the 

left by two steps, in order to exclude the coefficients 𝑘1 and 𝑘2 from the sequence. 
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The third step is conducting Collatz operations on the odd number 𝑛3 according to the presented formula in (Equation 1) 

(Theorem 1), which allows us to express 𝑛3 as shown in (Equation 64). 

3𝑛3 + 1 = 2𝑘3𝑛4 | 𝑘3 ∊ {ℕ − {0}}  𝑎𝑛𝑑 𝑛4 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟                             (64) 

Based on the shown expressions in (Equation 64), we can present the odd number 𝑛4 as shown in (Equation 65), where 

we replace 𝑛3 with its shown value in (Equation 63). 

𝑛4 =
(3𝑛3 + 1)

2𝑘3
 ⟹ 𝑛4 = 3

2∑ 𝑘(𝑙)
𝑙=𝑚−1
𝑙=3 − ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇2
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−4
𝑗=0 ]𝑖=𝑚−4

𝑖=0

2𝑘3 ∗ 3𝑚−3
+

1

2𝑘3
 

⟹ 𝑛4 =
2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=3 − ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇2
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−4
𝑗=0 ]𝑖=𝑚−4

𝑖=0 + 3𝑚−4

2𝑘3 ∗ 3𝑚−4
 

⟹ 𝑛4 =
2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=3 − ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇2
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−4
𝑗=0 ]𝑖=𝑚−5

𝑖=0 − 3𝑚−4 + 3𝑚−4

2𝑘3 ∗ 3𝑚−4
 

⟹ 𝑛4 =
2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=3 − ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇2
𝑚−𝑖−1(𝑘(𝑗))

𝑗=𝑚−𝑖−4
𝑗=0 ]𝑖=𝑚−5

𝑖=0

2𝑘3 ∗ 3𝑚−4
 

⟹ 𝑛4 =
2𝑘3 ∗ 2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=4 − 2𝑘3 ∗ ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇3
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−5
𝑗=0 ]𝑖=𝑚−5

𝑖=0

2𝑘3 ∗ 3𝑚−4
 

⟹ 𝑛4 = 2𝑘3

2∑ 𝑘(𝑙)
𝑙=𝑚−1
𝑙=4 − ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇3
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−5
𝑗=0 ]𝑖=𝑚−5

𝑖=0

2𝑘3 ∗ 3𝑚−4
 

⟹ 𝑛4 =
2
∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=4 −∑ [3𝑖∗2

∑ 𝑆𝐻𝐼𝐹𝑇3
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−5
𝑗=0 ]𝑖=𝑚−5

𝑖=0

3𝑚−4                                              (65) 

In this third step, the operator 𝑆𝐻𝐼𝐹𝑇𝑙
𝑚′

(𝑘(𝑗)) is allowing the shift in the sequence ∑ 𝑆𝐻𝐼𝐹𝑇3
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−5
𝑗=0  to the left 

by three steps, in order to exclude the coefficients 𝑘1, 𝑘2 and 𝑘3 from the sequence. 

Now, we will rely on recurrence (induction) by supposing that 𝑛𝑡 is expressed as shown in (Equation 66), where 

(𝑡 ∊ ⟦1,𝑚 − 2⟧). Then, we calculate the value of (𝑛𝑡+1 =
(3𝑛𝑡+1)

2𝑘𝑡
), which is presented in (Equation 67). 

𝑛𝑡 =
2
∑ 𝑘(𝑙)
𝑙=𝑚−1
𝑙=𝑡 −∑ [3𝑖∗2

∑ 𝑆𝐻𝐼𝐹𝑇𝑡−1
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−𝑡−1
𝑗=0 ]𝑖=𝑚−𝑡−1

𝑖=0

3𝑚−𝑡                                                (66) 

𝑛𝑡+1 =
(3𝑛𝑡 + 1)

2𝑘𝑡
 ⟹ 𝑛𝑡+1 = 3

2∑ 𝑘(𝑙)
𝑙=𝑚−1
𝑙=𝑡 − ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇𝑡−1
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−𝑡−1
𝑗=0 ]𝑖=𝑚−𝑡−1

𝑖=0

2𝑘𝑡 ∗ 3𝑚−𝑡
+

1

2𝑘𝑡
 

 ⟹ 𝑛𝑡+1 =
2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=𝑡 − ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇𝑡−1
𝑚−1(k(j))

𝑗=𝑚−𝑖−𝑡−1
𝑗=0 ]𝑖=𝑚−𝑡−1

𝑖=0 + 3𝑚−𝑡−1

2𝑘𝑡 ∗ 3𝑚−𝑡−1
 

⟹ 𝑛𝑡+1 =
2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=𝑡 − ∑ [3𝑖 ∗ 2

∑ SHIFTt−1
m−1(k(j))

𝑗=𝑚−𝑖−𝑡−1
𝑗=0 ]𝑖=𝑚−𝑡−2

𝑖=0 − 3𝑚−𝑡−1 + 3𝑚−𝑡−1

2𝑘𝑡 ∗ 3𝑚−𝑡−1
 



Yassine Larbaoui / IJMTT, 72(1), 28-89, 2026 

 

48 

⟹ 𝑛𝑡+1 =
2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=𝑡 − ∑ [3𝑖 ∗ 2

∑ SHIFTt−1
m−1(k(j))

𝑗=𝑚−𝑖−𝑡−1
𝑗=0 ]𝑖=𝑚−𝑡−2

𝑖=0

2𝑘𝑡 ∗ 3𝑚−𝑡−1
 

⟹ 𝑛𝑡+1 =
2𝑘𝑡 ∗ 2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=𝑡+1 − 2𝑘𝑡 ∗ ∑ [3𝑖 ∗ 2

∑ SHIFTt
m−1(k(j))

𝑗=𝑚−𝑖−𝑡−2
𝑗=0 ]𝑖=𝑚−𝑡−2

𝑖=0

2𝑘𝑡 ∗ 3𝑚−𝑡−1
 

⟹ 𝑛𝑡+1 = 2𝑘𝑡

2∑ 𝑘(𝑙)
𝑙=𝑚−1
𝑙=𝑡+1 − ∑ [3𝑖 ∗ 2

∑ 𝑆𝐻𝐼𝐹𝑇𝑡
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−𝑡−2
𝑗=0 ]𝑖=𝑚−𝑡−2

𝑖=0

2𝑘𝑡 ∗ 3𝑚−𝑡−1
 

⟹ 𝑛𝑡+1 =
2
∑ 𝑘(𝑙)
𝑙=𝑚−1
𝑙=𝑡+1 −∑ [3𝑖∗2

∑ 𝑆𝐻𝐼𝐹𝑇𝑡
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−𝑡−2
𝑗=0 ]𝑖=𝑚−𝑡−2

𝑖=0

3𝑚−𝑡−1                                               (67) 

According to the used method of recurrence (induction), we deduce that whatever the value of the natural number 𝑣 where 

(𝑣 ∊ ⟦1,𝑚 − 1⟧), the value of the odd number 𝑛𝑣 can be calculated as shown in (Equation 68), whereas having (𝑛𝑠 = 𝑛1). The 

operator 𝑆𝐻𝐼𝐹𝑇𝑙
𝑚′

(𝑘(𝑗)) is allowing the shift in the sequence 2
∑ 𝑆𝐻𝐼𝐹𝑇𝑣−1

𝑚−1(𝑘(𝑗))
𝑗=𝑚−𝑖−𝑣−1
𝑗=0  to the left by (𝑣 − 1) steps, in order to 

exclude all the coefficients {𝑘ℎ} (ℎ ∊ ⟦1, 𝑣 − 1⟧) from the sequence 

𝑛𝑣 =
2
∑ 𝑘(𝑙)
𝑙=𝑚−1
𝑙=𝑣 −∑ [3𝑖∗2

∑ 𝑆𝐻𝐼𝐹𝑇𝑣−1
𝑚−1(𝑘(𝑗))

𝑗=𝑚−𝑖−𝑣−1
𝑗=0 ]𝑖=𝑚−𝑣−1

𝑖=0

3𝑚−𝑣  |𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑗≥1) ∊ {ℕ − {0}}                            (68) 

𝑆𝐻𝐼𝐹𝑇𝑙
𝑚′

(𝑘(𝑗)) = {
𝑘0 = 0, 𝑖𝑓(𝑗 = 0)

𝑘𝑗+𝑙 , 𝑖𝑓( 𝑗 > 0 𝑎𝑛𝑑 0 < 𝑗 + 𝑙 ≤ 𝑚′)
 

Therefore, we can use the shown expression in (Equation 68) to calculate the value of the odd number 𝑛𝑚−1 as shown in 

(Equation 69), which we converge to by repeating the operations of the Collatz conjecture, whereas starting these operations 

on the odd number 𝑛𝑠 = 𝑛1. 

𝑛𝑚−1 =
2∑ 𝑘(𝑙)

𝑙=𝑚−1
𝑙=𝑚−1 − ∑ [3𝑖 ∗ 2

∑ SHIFTm−2
m−1(k(j))

𝑗=𝑚−𝑖−(𝑚−1)−1
𝑗=0 ]𝑖=𝑚−(𝑚−1)−1

𝑖=0

3𝑚−(𝑚−1)
 

⟹ 𝑛𝑚−1 =
2𝑘(𝑚−1) − ∑ [3𝑖 ∗ 2

∑ SHIFTm−2
m−1(k(j))

𝑗=−𝑖
𝑗=0 ]𝑖=0

𝑖=0

31
 

⟹ 𝑛𝑚−1 =
2𝑘(𝑚−1) − 30 ∗ 2

∑ SHIFTm−2
m−1(k(j))

𝑗=0
𝑗=0

31
=

2𝑘(𝑚−1) − 30 ∗ 2k(0)

31
 

⟹ 𝑛𝑚−1 =
2
𝑘(𝑚−1)−1

3
                                                                            (69) 

The next step is calculating the value of the odd number 𝑛𝑚 by conducting the operations of the Collatz conjecture on the 

odd numbers 𝑛𝑚−1 according to (Equation 1) (Theorem 1), which allows us to express the value of 𝑛𝑚 as shown in (Equation 

70). 

𝑛𝑚 =
(3𝑛𝑚−1 + 1)

2𝑘(𝑚−1)
 ⟹ 𝑛𝑚 = 3

2𝑘(𝑚−1) − 1

2𝑘(𝑚−1) ∗ 3
+

1

2𝑘(𝑚−1)
 

⟹ 𝑛𝑚 =
2𝑘(𝑚−1) − 1 + 1

2𝑘(𝑚−1)
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⟹ 𝑛𝑚 =
2𝑘(𝑚−1)

2𝑘(𝑚−1)
 

⟹ 𝑛𝑚 = 1                                                                                      (70) 

Therefore, we deduce that by repeating the operations of the Collatz conjecture, starting these operations on an odd number 

(𝑛𝑠 = 𝑛1); we eventually converge to an odd number (𝑛𝑚 = 1), where the generated Collatz branch "𝐿" by conducting these 

operations is as shown in (Equation 71). 

𝐿 = {𝑛𝑠 = 𝑛1, 𝑛2 =
(3𝑛1+1)

2𝑘1
, 𝑛3 =

(3𝑛2+1)

2𝑘2
, 𝑛4 =

(3𝑛3+1)

2𝑘3
, … , 𝑛𝑚−1, 𝑛𝑚 =

(3𝑛𝑚−1+1)

2𝑘𝑚−1
= 1}                                (71) 

As a result, we deduce that the presented statements and proposed formula in Theorem 8 are correct. 

4.2. Second Proposed Theorem for Reciprocity 

This subsection presents the ninth theorem, which we rely on to prove the reciprocity of Theorem 7 in this paper. 

This ninth theorem is based on scaling the proposed formulas and presented statements in Theorem 8, which we will use 

in other sections to prove, algebraically, that repeating the operations of the Collatz conjecture, starting these operations on any 

odd number or even number, will eventually converge to the number “1”. 

Theorem 9 

In the group of natural numbers ℕ, if any odd number 𝑛𝑠 is expressed as shown in (Equation 72), where all coefficients 

𝐾(𝑖>2)
"  are natural numbers different from zero, whereas (𝐾2

" ∊ ℤ), (𝐾1
" ∊ ℤ), (𝐾0

" = 0), (𝑅 + 𝐾1
") ≥ 0 and (𝑅 + 𝐾1

" + 𝐾2
") >

0; then the odd number 𝑛𝑠
′  shown in (Equation 73) (𝑛𝑠

′ = 𝑛𝑠 + 𝑦)  is converging to the number “1” when we keep repeating 

the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠
′ . 

𝑛𝑠 = 2𝑅
2
∑ 𝐾(𝑙)

"𝑙=𝑡
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
"𝑗=𝑡−𝑖−1

𝑗=0 ]𝑖=𝑡−1
𝑖=0

3𝑡−1  | 𝐾0
" = 0 𝑎𝑛𝑑  𝐾𝑖∉{0,1,2}

" ∊ {ℕ − {0}} 𝑎𝑛𝑑 𝐾2
" ∊  ℤ  𝑎𝑛𝑑 𝐾1

" ∊  ℤ 𝑎𝑛𝑑 𝑅 ∊

ℕ 𝑎𝑛𝑑 (𝑅 + 𝐾1
") ≥ 0 𝑎𝑛𝑑 (𝑅 + 𝐾1

" + 𝐾2
") > 0                                                   (72) 

𝑛𝑠
′ = 𝑛𝑠 + 𝑦 | 𝑦 ∊ {ℕ − {0}} 𝑎𝑛𝑑 𝑛𝑠

′  𝑀𝑂𝐷[2] = 1                                                         (73) 

Proof of Theorem 9 

In this proof, we suppose having an odd number 𝑛𝑠 expressed as shown in (Equation 74), where all coefficients 𝑘(𝑖>2)
"  are 

natural numbers different from zero, whereas having (𝑘2
" ∊ ℤ), (𝑘1

" ∊ ℤ) and (𝑘0
" = 0). 

𝑛𝑠 = 2𝑟
2
∑ 𝑘(𝑙)

"𝑙=𝑡
𝑙=0 −∑ [3𝑖∗2

∑ 𝑘(𝑗)
"𝑗=𝑡−𝑖−1

𝑗=0 ]𝑖=𝑡−1
𝑖=0

3𝑡−1  | 𝑘0
" = 0 𝑎𝑛𝑑  𝑘𝑖∉{0,1,2}

" ∊ {ℕ − {0}} 𝑎𝑛𝑑 𝑘2
" ∊  ℤ  𝑎𝑛𝑑 𝑘1

" ∊  ℤ 𝑎𝑛𝑑 𝑟 ∊

ℕ 𝑎𝑛𝑑 (𝑟 + 𝑘1
") ≥ 0 𝑎𝑛𝑑 (𝑟 + 𝑘1

" + 𝑘2
" ) > 0                                    (74) 

⟹ 𝑛𝑠 = 2𝑟
2∑ 𝑘(𝑙)

"𝑙=𝑡
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
"𝑗=𝑡−𝑖−1

𝑗=0 ]𝑖=𝑡−2
𝑖=0 − 20 ∗ 3𝑡−1

3𝑡−1
 

⟹ 𝑛𝑠 =
2𝑟 ∗ 2∑ 𝑘(𝑙)

"𝑙=𝑡
𝑙=1 − 2𝑟 ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
"𝑗=𝑡−𝑖−1

𝑗=1 ]𝑖=𝑡−2
𝑖=0 − 2𝑟 ∗ 3𝑡−1

3𝑡−1
 

⟹ 𝑛𝑠 =
2
𝑟+∑ 𝑘(𝑙)

"𝑙=𝑡
𝑙=1 −∑ [3𝑖∗2

𝑟+∑ 𝑘(𝑗)
"𝑗=𝑡−𝑖−1

𝑗=1 ]𝑖=𝑡−2
𝑖=0 −2𝑟∗3𝑡−1

3𝑡−1                                                 (75) 

The following step is adapting the shown expression in (Equation 75) by replacing 𝑘(1)
"  with (𝑘(1)

" = 𝑘(1)
′ − 𝑟) whereas 

replacing 𝑘(𝑗)
"  with (𝑘(𝑗>1)

" = 𝑘(𝑗>1)
′ ) and using (𝑘(0)

′ = 0), which gives us the shown result in (Equation 76).  
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⟹ 𝑛𝑠 =
2∑ 𝑘(𝑙)

′𝑙=𝑡
𝑙=1 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
′𝑗=𝑡−𝑖−1

𝑗=1 ]𝑖=𝑡−2
𝑖=0 − 2𝑟 ∗ 3𝑡−1

3𝑡−1
 

⟹ 𝑛𝑠 =
2∑ 𝑘(𝑙)

′𝑙=𝑡
𝑙=1 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
′𝑗=𝑡−𝑖−1

𝑗=1 ]𝑖=𝑡−3
𝑖=0 − 2𝑘(1)

′

∗ 3𝑡−2 − 2𝑟 ∗ 3𝑡−1

3𝑡−1
 

⟹ 𝑛𝑠 =
2𝑘(1)

′ +∑ 𝑘(𝑙)
′𝑙=𝑡

𝑙=2 − ∑ [3𝑖 ∗ 2
𝑘(1)

′ +∑ 𝑘(𝑗)
′𝑗=𝑡−𝑖−1

𝑗=2 ]𝑖=𝑡−3
𝑖=0 − 2𝑘(1)

′

∗ 3𝑡−2 − 2𝑟 ∗ 3𝑡−1

3𝑡−1
 

⟹ 𝑛𝑠 =
2
𝑘(1)
′ +∑ 𝑘(𝑙+1)

′𝑙=𝑡−1
𝑙=1 −∑ [3𝑖∗2

𝑘(1)
′ +∑ 𝑘(𝑗+1)

′𝑗=𝑡−𝑖−2
𝑗=1 ]𝑖=𝑡−3

𝑖=0 −2
𝑘(1)
′

∗3𝑡−2−2𝑟∗3𝑡−1

3𝑡−1                                   (76) 

The next step is adapting the shown expression in (Equation 76) by replacing 𝑘(1)
′  with (𝑞 = 𝑘(1)

′ ) whereas conducting the 

following re-expressions {𝑘(1) = 𝑞 + 𝑘(2)
′ ;  𝑘(2≤𝑗≤𝑡−1) = 𝑘(𝑗+1)

′  𝑎𝑛𝑑 𝑘(0) = 0}, which gives us the shown result in (Equation 

77). The values (𝑘(1)
′ = 𝑘(1)

" + 𝑟 ≥ 0), (𝑘(1)
′ = 𝑞) and (𝑘(1) = 𝑞 + 𝑘(2)

′ ), are relying on the conditions (𝑘(1)
" + 𝑟 ≥ 0) and 

(𝑘(1) = 𝑘(2)
" + 𝑟 + 𝑘(1)

" > 0), where the values of “𝑟” and “𝑞” are to be selected as natural numbers, whereas the value of 𝑘(1) 

is in the group {ℕ − {0}}. 

⟹ 𝑛𝑠 =
2𝑞+∑ 𝑘(𝑙+1)

′𝑙=𝑡−1
𝑙=1 − ∑ [3𝑖 ∗ 2

𝑞+∑ 𝑘(𝑗+1)
′𝑗=𝑡−𝑖−2

𝑗=1 ]𝑖=𝑡−3
𝑖=0 − 2𝑞 ∗ 3𝑡−2 − 2𝑟 ∗ 3𝑡−1

3𝑡−1
 

⟹ 𝑛𝑠 =
2∑ 𝑘(𝑙)

𝑙=𝑡−1
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑡−𝑖−2
𝑗=0 ]𝑖=𝑡−3

𝑖=0 − 2𝑞 ∗ 3𝑡−2 − 2𝑟 ∗ 3𝑡−1

3𝑡−1
 

⟹ 𝑛𝑠 =
2∑ 𝑘(𝑙)

𝑙=𝑡−1
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑡−𝑖−2
𝑗=0 ]𝑖=𝑡−3

𝑖=0 − 3𝑡−2 − (2𝑞 + 3 ∗ 2𝑟 − 1)3𝑡−2

3𝑡−1
 

⟹ 𝑛𝑠 =
2∑ 𝑘(𝑙)

𝑙=𝑡−1
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑡−𝑖−2
𝑗=0 ]𝑖=𝑡−2

𝑖=0 − (2𝑞 + 3 ∗ 2𝑟 − 1)3𝑡−2

3𝑡−1
 

⟹ 𝑛𝑠 =
2
∑ 𝑘(𝑙)

𝑙=𝑡−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑡−𝑖−2
𝑗=0 ]𝑖=𝑡−2

𝑖=0

3𝑡−1 −
(2𝑞+3∗2𝑟−1)

3
 | 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}}                       (77) 

 

Now, we re-express 
(2𝑞+3∗2𝑟−1)

3
 as (

(2𝑞+3∗2𝑟−1)

3
= 𝑦) where (𝑦 ∊ {ℕ − {0}} 𝑎𝑛𝑑 𝑦 =  

(2𝑞+3∗2𝑟−1)

3
 𝑎𝑛𝑑 𝑞 ∊ ℕ 𝑎𝑛𝑑 𝑟 ∊

ℕ). By selecting the values of "𝑞" and "𝑟" as natural numbers, the value of "𝑦" can be among the group 

{
(20+3∗20−1)

3
= 1; 

(20+3∗21−1)

3
= 2;  

(22+3∗21−1)

3
= 3;

(20+3∗22−1)

3
= 4;

(22+3∗22−1)

3
= 5;… ; 𝑛𝑠 − 1 }. As a result, we obtain the 

shown expression in (Equation 78). 

⟹ 𝑛𝑠 =
2∑ 𝑘(𝑙)

𝑙=𝑡−1
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑡−𝑖−2
𝑗=0 ]𝑖=𝑡−2

𝑖=0

3𝑡−1
− 𝑦 | 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}} 

⟹ 𝑛𝑠 + 𝑦 =
2
∑ 𝑘(𝑙)

𝑙=𝑡−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑡−𝑖−2
𝑗=0 ]𝑖=𝑡−2

𝑖=0

3𝑡−1  | 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}}       (78) 
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Based on (Equation 78), we deduce that the odd number 𝑛𝑠
′  {𝑛𝑠

′ = 𝑛𝑠 + 𝑦} is expressed as shown in (Equation 79), where 𝑛𝑠 

is an odd number and (𝑦 =  
(2𝑞+3∗2𝑟−1)

3
) is an even number. 

⟹ 𝑛𝑠
′  =

2
∑ 𝑘(𝑙)

𝑙=𝑡−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑡−𝑖−2
𝑗=0 ]𝑖=𝑡−2

𝑖=0

3𝑡−1  | 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}}                          (79) 

Based on the shown formula of the odd number 𝑛𝑠
′  in (Equation 79), we deduce that 𝑛𝑠

′  is expressed according to the 

proposed formula and presented statements in Theorem 8, which means that we eventually converge to the number “1” when 

we keep repeating the operations of the Collatz conjecture, whereas starting these operations on an odd number 𝑛𝑠
′ . 

As a result, we deduce that the presented statements and proposed formulas in Theorem 9 are correct. 

5. New Theorems Proving the Collatz Conjecture by Treating Possible Loops 
This section presents nine new theorems along with detailed poofs, which rely on the proposed formulas in the previous 

theorems in this paper, in order to demonstrate that there is no possible Collatz loop where the operations of the Collatz 

conjecture start from an odd number 𝑛1 and loop back to the same number, except the loop where (𝑛1 = 1). 

5.1. Proposed Theorem on Collatz Loops Consisted of One Element 

This subsection presents the tenth theorem in this paper, which treats possible Collatz loops consisting of one odd number 

according to the proposed formulas in Theorem 3 and Theorem 4 in this paper. 

Theorem 10 

In the group of Natural numbers ℕ, there is only one subgroup containing one odd number {𝑛1} that can create a Collatz loop 

where 3𝑛1 + 1 = 2𝑘1𝑛1 and 𝑘1 ∊ {ℕ − {0}}, and this unique subgroup is {𝑛1 = 1} as shown in (Equation 80). 

⩝ 𝐺 ∊ ℕ ; (𝑖𝑓 ∃{𝑛1} ∊ 𝐺  | 3𝑛1 + 1 = 2𝑘1𝑛1 𝑎𝑛𝑑 𝑘1 ∊ {ℕ − {0}} )  ⟹ ({𝑛1} = {1})                                (80) 

Proof of Theorem 10 

The proposed unified formula in (Equation 9) (Theorem 3) for Collatz loops is based on dividing the value of the numerator  

∑ [3𝑖 ∗ 2
∑ 𝑘(𝑗)

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0  on the value of the denominator [2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚]. Therefore, this proposed formula allows us to 

calculate values of real numbers.  

However, in order to have an integer number as a result of this formula (Equation 9 in Theorem 3), the value of the 

denominator should be less than or equal to the numerator, and also should be a divisor of an integer value. 

In the case of having the smallest Collatz loop, which consists of only one odd number {𝑛1}, the value of the number 𝑛1 is 

calculated as (𝑛1 =
1

2𝑘1−3
) where ( 𝑘1 ∊ {ℕ − {0}} ). Therefore, in order to have an integer value as a result of this expression, 

we need to start by having the condition. (2𝑘1 − 3) ≤ 1, which can also be expressed as follows: 2𝑘1 ≤ 4. Consequently, the 

value of 𝑘1 should be limited as follows: 1 ≤ 𝑘1 ≤ 2  

In addition, the value of the denominator (2𝑘1 − 3) should be dividing the value of the numerator (number 1) by a positive 

integer value, which means that there is only one value that can be given to 𝑘1 which is (𝑘1 = 2). Therefore, we can calculate 

the exact value of 𝑛1 as follows: 𝑛1 =
1

2𝑘1−3
= 1. 

As a result, Theorem 10 and its shown expression in (Equation 80) are correct, because there is only one subgroup 

consisting of one odd number {𝑛1} that can create a Collatz loop, and this subgroup is where {𝑛1 = 1} 

5.2. Proposed Theorem on Collatz Loops Consisted of Two Elements 

This subsection presents the eleventh theorem, which treats possible Collatz loops consisting of two odd numbers 

according to the proposed formulas in Theorem 3 and Theorem 4 in this paper. 
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Theorem 11 

In the group of Natural numbers ℕ, there is no subgroup of two different odd numbers {𝑛1, 𝑛2} that can create a Collatz 

loop where (3𝑛1 + 1 = 2𝑘1𝑛2) 𝑎𝑛𝑑 (3𝑛2 + 1 = 2𝑘2𝑛1) whereas having (𝑘𝑖 ∊ {ℕ − {0}}) as shown in (Equation 81), because 

the maximum value for 𝑛1 will be (max(𝑛1) =
11

7
). 

⩝ 𝐺 ∊ ℕ ; ∄{𝑛1, 𝑛2} ∊ 𝐺 | 𝑛1 ≠ 𝑛2 𝑎𝑛𝑑 3𝑛1 + 1 = 2𝑘1𝑛2 𝑎𝑛𝑑 3𝑛2 + 1 = 2𝑘2𝑛1 𝑎𝑛𝑑 𝑘𝑖 ∊ {ℕ − {0}}             (81) 

Proof of Theorem 11 

The proposed unified formulas in (Equation 9) and (Equation 29) (Theorem 3 and Theorem 4) for Collatz loops are based 

on dividing the values of specific numerators by specific denominators when calculating values of odd numbers involved in 

possible Collatz loops.  

Since both formulas in (Equation 9) and (Equation 29) (Theorem 3 and Theorem 4) are based on the same structure of 

terms, while rotating the order to calculate the values of consecutive odd numbers according to Theorem 4, we will focus on 

analyzing the division of the numerator  ∑ [3𝑖 ∗ 2
∑ 𝑘(𝑗)

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0  on the value of the denominator [2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚].  

Therefore, these proposed formulas in (Equation 9) and (Equation 29) allow for calculating the values of real numbers.  

However, in order to have an integer number as a result of these formulas (Equation 9 and Equation 29), the value of the 

denominator should be inferior (or equal) to the numerator and also should be divided by an integer value. 

In the case of having the second smallest Collatz loop, which consists of two different odd numbers {𝑛1, 𝑛2}, the value of 

the number 𝑛1 is calculated as (𝑛1 =
(2𝑘1+3)

2𝑘1+𝑘2−9
) whereas having (𝑘𝑖 ∊ {ℕ − {0}}) . Therefore, in order to have an integer value 

as a result of this expression of 𝑛1, we need to start by having the condition (2𝑘1+𝑘2 − 9) ≤ (2𝑘1 + 3), which can also be 

expressed as follows: 2𝑘1(2𝑘2 − 1) ≤ 12. Consequently, the values of 𝑘1 and 𝑘2 should be limited as follows: 1 ≤ 𝑘1 ≤ 3 and 

1 ≤ 𝑘2 ≤ (4 − 𝑘1).  

Therefore, it is impossible to have a Collatz loop consisting of two different odd numbers {𝑛1, 𝑛2}, where 𝑛1 is outside the 

range ⟦1;  2⟦, because the maximum real value for 𝑛1 is 
11

7
 where (𝑘1 = 3)  and (𝑘2 = 1). 

The maximum value of 𝑛1 is calculated by identifying the minimum positive value of the denominator [2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚], 

then identifying the maximum positive value of the numerator ∑ [3𝑖 ∗ 2
∑ 𝑘(𝑗)

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0 . 

As a result, the expression (Equation 81) and the presented statements by the eleventh theorem in this paper are correct, 

because there is no subgroup of two different odd numbers {𝑛1, 𝑛2} that can create a Collatz loop where 

(3𝑛1 + 1 = 2𝑘1𝑛2) 𝑎𝑛𝑑 (3𝑛2 + 1 = 2𝑘2𝑛1) 𝑎𝑛𝑑 (𝑘𝑖 ∊ {ℕ − {0}}). 

 

5.3. Proposed Theorem on Collatz Loops Consisted of Three Elements 

This subsection presents the twelfth theorem, which treats possible Collatz loops consisting of three odd numbers according 

to the proposed formulas in Theorem 3 and Theorem 4 in this paper. 

Theorem 12 

In the group of natural numbers ℕ, there is no subgroup of three different odd numbers {𝑛1, 𝑛2, 𝑛3} that can create a Collatz 

loop where (3𝑛1 + 1 = 2𝑘1𝑛2) 𝑎𝑛𝑑 (3𝑛2 + 1 = 2𝑘2𝑛3) 𝑎𝑛𝑑 (3𝑛3 + 1 = 2𝑘3𝑛1) 𝑎𝑛𝑑 (𝑘𝑖 ∊ {ℕ − {0}}) as shown in 

(Equation 82), because the maximum value for 𝑛1 will be (max(𝑛1) =
49

5
). 

⩝ 𝐺 ∊ ℕ ; ∄{𝑛1, 𝑛2, 𝑛3} ∊ 𝐺 |𝑛𝑖 ≠ 𝑛𝑗(𝑗≠𝑖) 𝑎𝑛𝑑 3𝑛1 + 1 = 2𝑘1𝑛2 𝑎𝑛𝑑 3𝑛2 + 1 = 2𝑘2𝑛3 𝑎𝑛𝑑 3𝑛3 + 1 = 2𝑘3𝑛1 𝑎𝑛𝑑 𝑘𝑖 ∊

{ℕ − {0}}        (82) 
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Proof of Theorem 12 

As mentioned in the proof of Theorem 11, both formulas in (Equation 9) and (Equation 29) (Theorem 3 and Theorem 4) 

are based on the same structure of terms, while rotating the order to calculate the values of consecutive odd numbers 

according to Theorem 4. Therefore, we will focus on analyzing the division of the numerator  ∑ [3𝑖 ∗ 2
∑ 𝑘(𝑗)

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0  on 

denominator [2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚], which generate values of real numbers.  

As it was mentioned in the proof of Theorem 11, in order to have an integer number as a result of the shown formulas in 

(Equation 9) and (Equation 29) (Theorem 3 and Theorem 4), the value of the denominator should be inferior (or equal) to the 

numerator, and also should be a divisor of an integer value. 

 

In the case of having the third smallest loop of Collatz, which consists of three different odd numbers {𝑛1, 𝑛2, 𝑛3}, the 

value of the first number 𝑛1 the length of this sequence is calculated as (𝑛1 =
(2𝑘2+𝑘1+3∗2𝑘1+9)

2𝑘1+𝑘2+𝑘3−27
) whereas having 

(𝑘𝑖 ∊ {ℕ − {0}}). Therefore, in order to have an integer value as a result of this expression of 𝑛1, we need to start by having 

the condition (2𝑘1+𝑘2+𝑘3 − 27) ≤ (2𝑘2+𝑘1 + 3 ∗ 2𝑘1 + 9), which can also be expressed as follows: 2𝑘1(2𝑘3+𝑘2 − 2𝑘2 − 3) ≤

36. Consequently, the values of 𝑘1, 𝑘2 and 𝑘3 should be limited as follows: 1 ≤ 𝑘1 ≤ 5 and 1 ≤ 𝑘2 ≤ (6 − 𝑘1) and 1 ≤ 𝑘3 ≤
(7 − 𝑘1 − 𝑘2).  

Therefore, it is impossible to have a Collatz loop consisting of three different odd numbers {𝑛1, 𝑛2, 𝑛3},  where 𝑛1 is outside 

the range ⟦1;  9⟧, because the maximum value for 𝑛1 is 
49

5
 where (𝑘1 = 3), (𝑘2 = 1) and (𝑘3 = 1). 

The maximum value of 𝑛1 is calculated by identifying the minimum positive value of the denominator [2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚], 

then identifying the maximum positive value of the numerator ∑ [3𝑖 ∗ 2
∑ 𝑘(𝑗)

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0 . 

As a result, the expression (Equation 82) and the presented statements by the twelfth theorem in this paper are correct, 

because there is no subgroup of three different odd numbers {𝑛1, 𝑛2, 𝑛3} that can create a Collatz loop where 

(3𝑛1 + 1 = 2𝑘1𝑛2) 𝑎𝑛𝑑 (3𝑛2 + 1 = 2𝑘2𝑛3) 𝑎𝑛𝑑 (3𝑛3 + 1 = 2𝑘3𝑛1) 𝑎𝑛𝑑 (𝑘𝑖 ∊ {ℕ − {0}}). 

5.4. Proposed Theorem on Collatz Loops Consisted of Four Elements 

This subsection presents the thirteenth theorem, which treats possible Collatz loops consisting of four odd numbers 

according to the proposed formulas in Theorem 3 and Theorem 4 in this paper. 

Theorem 13 

In the group of Natural numbers ℕ, there is no subgroup of four different odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4} that can create a 

Collatz loop where (3𝑛1 + 1 = 2𝑘1𝑛2) 𝑎𝑛𝑑 (3𝑛2 + 1 = 2𝑘2𝑛3) 𝑎𝑛𝑑 (3𝑛3 + 1 = 2𝑘3𝑛4) 𝑎𝑛𝑑 (3𝑛4 + 1 = 2𝑘4𝑛1) 𝑎𝑛𝑑 (𝑘𝑖 ∊

{ℕ − {0}}) as shown in (Equation 83), because the maximum value for 𝑛1 will be (max(𝑛1) =
331

47
 ). 

⩝ 𝐺 ∊ ℕ ; ∄{𝑛1, 𝑛2, 𝑛3, 𝑛4} ∊ 𝐺 | 𝑛𝑖 ≠ 𝑛𝑗(𝑗≠𝑖) 𝑎𝑛𝑑 3𝑛1 + 1 = 2𝑘1𝑛2 𝑎𝑛𝑑 3𝑛2 + 1 = 2𝑘2𝑛3 𝑎𝑛𝑑 3𝑛3 + 1 =

2𝑘3𝑛4 𝑎𝑛𝑑 3𝑛4 + 1 = 2𝑘4𝑛1 𝑎𝑛𝑑 𝑘𝑖 ∊ {ℕ − {0}}        (83) 

Proof of Theorem 13 

As mentioned in the proof of Theorem 11, both formulas in (Equation 9) and (Equation 29) (Theorem 3 and Theorem 4) 

are based on the same structure of terms, while rotating the order to calculate the values of consecutive odd numbers according 

to Theorem 4. Therefore, we will focus on analyzing the division of the numerator  ∑ [3𝑖 ∗ 2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0  on the value 

of the denominator [2∑ 𝐾(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚], which generate values of real numbers.  

As it was mentioned in the proof of Theorem 11, in order to have an integer number as a result of the shown formulas in 

(Equation 9) and (Equation 29) (Theorem 3 and Theorem 4), the value of denominator should be less than (or equal) to the 

numerator, and also should be dividing it into an integer value. 
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In the case of having a loop of Collatz consisting of four different odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4}, the value of the first 

number 𝑛1, the length of this sequence is calculated as (𝑛1 =
(2𝑘3+𝑘2+𝑘1+3∗2𝑘2+𝑘1+9∗2𝑘1+27)

2𝑘1+𝑘2+𝑘3+𝑘4−81
) whereas having (𝑘𝑖 ∊ {ℕ − {0}}). 

Therefore, in order to have an integer value as a result of this expression of 𝑛1, we need to start by having the condition 

(2𝑘1+𝑘2+𝑘3+𝑘4 − 81) ≤ (2𝑘3+𝑘2+𝑘1 + 3 ∗ 2𝑘2+𝑘1 + 9 ∗ 2𝑘1 + 27), which can also be expressed as follows: 2𝑘1(2𝑘4+𝑘3+𝑘2 −

2𝑘3+𝑘2 − 3 ∗ 2𝑘2 − 9) ≤ 108. Consequently, the values of 𝑘1, 𝑘2, 𝑘3  and 𝑘4 should be limited as follows: 1 ≤ 𝑘1 ≤ 6 and 

1 ≤ 𝑘2 ≤ (7 − 𝑘1) and 1 ≤ 𝑘3 ≤ (8 − 𝑘1 − 𝑘2) and 1 ≤ 𝑘4 ≤ (9 − 𝑘1 − 𝑘2 − 𝑘3).  

 

Therefore, it is impossible to have a Collatz loop consisting of four different odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4},  where 𝑛1 is 

outside the range ⟦1;  7⟧, because the maximum value for 𝑛1 is 
331

47
 where (𝑘1 = 4), (𝑘2 = 1), (𝑘3 = 1) and (𝑘4 = 1). 

The maximum value of 𝑛1 is calculated by identifying the minimum positive value of the denominator [2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚], 

then identifying the maximum positive value of the numerator ∑ [3𝑖 ∗ 2
∑ 𝑘(𝑗)

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0 . 

As a result, the expression (Equation 83) and the presented statements by the thirteenth theorem in this paper are correct, 

because there is no subgroup of four different odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4} that can create a Collatz loop where 

(3𝑛1 + 1 = 2𝑘1𝑛2) 𝑎𝑛𝑑 (3𝑛2 + 1 = 2𝑘2𝑛3) 𝑎𝑛𝑑 (3𝑛3 + 1 = 2𝑘3𝑛4) 𝑎𝑛𝑑 (3𝑛4 + 1 = 2𝑘4𝑛1) 𝑎𝑛𝑑 (𝑘𝑖 ∊ {ℕ − {0}}). 

 

5.5. Proposed Theorem on Collatz Loops Consisted of Five Elements 

This subsection presents the fourteenth theorem, which treats possible Collatz loops consisting of five odd numbers 

according to the proposed formulas in Theorem 3 and Theorem 4 in this paper. 

Theorem 14 

In the group of Natural numbers ℕ, there is no subgroup of five different odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5} that can create 

a Collatz loop where (3𝑛1 + 1 = 2𝑘1𝑛2) 𝑎𝑛𝑑 (3𝑛2 + 1 = 2𝑘2𝑛3) 𝑎𝑛𝑑 (3𝑛3 + 1 = 2𝑘3𝑛4) 𝑎𝑛𝑑 (3𝑛4 + 1 =

2𝑘4𝑛5) 𝑎𝑛𝑑 (3𝑛5 + 1 = 2𝑘5𝑛1) 𝑎𝑛𝑑 (𝑘𝑖 ∊ {ℕ − {0}}) as shown in (Equation 84), because the maximum value for 𝑛1 will be 

(max(𝑛1) =
1121

13
). 

⩝ 𝐺 ∊ ℕ ; ∄{𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5} ∊ 𝐺 | 𝑛𝑖 ≠ 𝑛𝑗(𝑗≠𝑖) 𝑎𝑛𝑑 3𝑛1 + 1 = 2𝑘1𝑛2 𝑎𝑛𝑑 3𝑛2 + 1 = 2𝑘2𝑛3 𝑎𝑛𝑑 3𝑛3 + 1 =

2𝑘3𝑛4 𝑎𝑛𝑑 3𝑛4 + 1 = 2𝑘4𝑛5 𝑎𝑛𝑑 3𝑛5 + 1 = 2𝑘5𝑛1 𝑎𝑛𝑑 𝑘𝑖 ∊ {ℕ − {0}}       (84) 

Proof of Theorem 14 

As mentioned in the proof of Theorem 11, both formulas in (Equation 9) and (Equation 29) (Theorem 3 and Theorem 4) 

are based on the same structure of terms while rotating the structure to calculate the values of consecutive odd numbers 

according to Theorem 4.  

Therefore, we will focus on analyzing the division of the numerator  ∑ [3𝑖 ∗ 2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0  on the value of the 

denominator [2∑ 𝐾(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚], which generate values of real numbers.  

As it was mentioned in the proof of Theorem 11, in order to have an integer number as a result of the shown formulas in 

(Equation 9) and (Equation 29) (Theorem 3 and Theorem 4), the value of denominator should be less than (or equal) to the 

numerator, and also should be dividing it into an integer value. 

In the case of having a loop of Collatz consisting of five different odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5}, the value of the first 

number 𝑛1 the value of this sequence is calculated as shown in (Equation 85), where 𝑘𝑖 ∊ {ℕ − {0}}: 

𝑛1 =
(2𝑘4+𝑘3+𝑘2+𝑘1+3∗2𝑘3+𝑘2+𝑘1+9∗2𝑘2+𝑘1+27∗2𝑘1+81)

2𝑘1+𝑘2+𝑘3+𝑘4+𝑘5−243
                           (85) 

Therefore, in order to have an integer value as a result of this expression of 𝑛1 (Equation 85), we need to start by having 

the condition (2𝑘1+𝑘2+𝑘3+𝑘4+𝑘5 − 243) ≤ (2𝑘4+𝑘3+𝑘2+𝑘1 + 3 ∗ 2𝑘3+𝑘2+𝑘1 + 9 ∗ 2𝑘2+𝑘1 + 27 ∗ 2𝑘1 + 81), which can also be 
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expressed as follows: 2𝑘1(2𝑘5+𝑘4+𝑘3+𝑘2 − 2𝑘4+𝑘3+𝑘2 − 3 ∗ 2𝑘3+𝑘2 − 9 ∗ 2𝑘2 − 27) ≤ 324. Consequently, the values of 𝑘1, 

𝑘2, 𝑘3, 𝑘4  and 𝑘5 should be limited as follows: 1 ≤ 𝑘1 ≤ 8 and 1 ≤ 𝑘2 ≤ (9 − 𝑘1) and 1 ≤ 𝑘3 ≤ (10 − 𝑘1 − 𝑘2) and 1 ≤

𝑘4 ≤ (11 − 𝑘1 − 𝑘2 − 𝑘3) and 1 ≤ 𝑘5 ≤ (12 − 𝑘1 − 𝑘2 − 𝑘3 − 𝑘4).  

 

Therefore, it is impossible to have a Collatz loop consisting of five different odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5}, where 𝑛1 is 

outside the range ⟦1;  86⟧, because the maximum value for 𝑛1 is 
1121

13
 where 𝑘1 = 4, 𝑘2 = 1, 𝑘3 = 1, 𝑘4 = 1 and 𝑘5 = 1. 

The maximum value of 𝑛1 is calculated by identifying the minimum positive value of the denominator [2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚], then 

identifying the maximum positive value of the numerator ∑ [3𝑖 ∗ 2
∑ 𝑘(𝑗)

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0 . 

As a result, the expression (Equation 84) and the presented statements by the fourteenth theorem in this paper are correct, 

because there is no subgroup of five different odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5} that can create a Collatz loop where 

(3𝑛1 + 1 = 2𝑘1𝑛2) 𝑎𝑛𝑑 (3𝑛2 + 1 = 2𝑘2𝑛3) 𝑎𝑛𝑑 (3𝑛3 + 1 = 2𝑘3𝑛4) 𝑎𝑛𝑑 (3𝑛4 + 1 = 2𝑘4𝑛5) 𝑎𝑛𝑑 (3𝑛5 + 1 =

2𝑘5𝑛1) 𝑎𝑛𝑑 (𝑘𝑖 ∊ {ℕ − {0}}). 

 

5.6. Proposed Theorem on Collatz Loops Consisted of Six Elements 

This subsection presents the fifteenth theorem, which treats possible Collatz loops consisting of six odd numbers according 

to the proposed formulas in Theorem 3 and Theorem 4 in this paper. 

Theorem 15 

In the group of Natural numbers ℕ, there is no subgroup of six different odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6} that can create a 

Collatz loop where (3𝑛1 + 1 = 2𝑘1𝑛2) 𝑎𝑛𝑑 (3𝑛2 + 1 = 2𝑘2𝑛3) 𝑎𝑛𝑑 (3𝑛3 + 1 = 2𝑘3𝑛4) 𝑎𝑛𝑑 (3𝑛4 + 1 =

2𝑘4𝑛5) 𝑎𝑛𝑑 (3𝑛5 + 1 = 2𝑘5𝑛6) 𝑎𝑛𝑑 (3𝑛6 + 1 = 2𝑘6𝑛1) 𝑎𝑛𝑑 (𝑘𝑖 ∊ {ℕ − {0}}) as shown in (Equation 86), because the 

maximum value for 𝑛1 will be (max(𝑛1) =
6995

295
). 

⩝ 𝐺 ∊ ℕ ; ∄{𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6} ∊ 𝐺 | 𝑛𝑖 ≠ 𝑛𝑗(𝑗≠𝑖) 𝑎𝑛𝑑 3𝑛1 + 1 = 2𝑘1𝑛2 𝑎𝑛𝑑 3𝑛2 + 1 = 2𝑘2𝑛3 𝑎𝑛𝑑 3𝑛3 + 1 =

2𝑘3𝑛4 𝑎𝑛𝑑 3𝑛4 + 1 = 2𝑘4𝑛5 𝑎𝑛𝑑 3𝑛5 + 1 = 2𝑘5𝑛6 𝑎𝑛𝑑 3𝑛6 + 1 = 2𝑘6𝑛1 𝑎𝑛𝑑 𝑘𝑖 ∊ {ℕ − {0}}       (86) 

Proof of Theorem 15 

As mentioned in the proof of Theorem 11, both formulas in (Equation 9) and (Equation 29) (Theorem 3 and Theorem 4) 

are based on the same structure of terms, while rotating the order to calculate the value of consecutive odd numbers according 

to Theorem 4. Therefore, we will focus on analyzing the division of the numerator  ∑ [3𝑖 ∗ 2
∑ 𝑘(𝑗)

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0  on the value 

of the denominator [2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚], which generate values of real numbers.  

As it was mentioned in the proof of Theorem 11, in order to have an integer number as a result of the shown formulas in 

(Equation 9) and (Equation 29) (Theorem 3 and Theorem 4), the value of denominator should be less than (or equal) to the 

numerator, and also should be dividing it into an integer value. 

In the case of having a loop of Collatz consisting of six different odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6}, the value of the first 

number 𝑛1 of this sequence is calculated as shown in (Equation 87), whereas having (𝑘𝑖 ∊ {ℕ − {0}}). 

𝑛1 =
(2𝑘5+𝑘4+𝑘3+𝑘2+𝑘1+3∗2𝑘4+𝑘3+𝑘2+𝑘1+9∗2𝑘3+𝑘2+𝑘1+27∗2𝑘2+𝑘1+81∗2𝑘1+243)

2𝑘1+𝑘2+𝑘3+𝑘4+𝑘5+𝑘6−729
                           (87) 

Therefore, in order to have an integer value as a result of this expression of 𝑛1 (Equation 87), we need to start by having 

the condition (2𝑘1+𝑘2+𝑘3+𝑘4+𝑘5+𝑘6 − 729) ≤ (2𝑘5+𝑘4+𝑘3+𝑘2+𝑘1 + 3 ∗ 2𝑘4+𝑘3+𝑘2+𝑘1 + 9 ∗ 2𝑘3+𝑘2+𝑘1 + 27 ∗ 2𝑘2+𝑘1 + 81 ∗

2𝑘1 + 243), which can also be expressed as follows: 2𝑘1(2𝑘6+𝑘5+𝑘4+𝑘3+𝑘2 − 2𝑘5+𝑘4+𝑘3+𝑘2 − 3 ∗ 2𝑘4+𝑘3+𝑘2 − 9 ∗ 2𝑘3+𝑘2 −

27 ∗ 2𝑘2 − 81) ≤ 972.  
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Consequently, the values of 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5  and 𝑘6 should be limited as follows: 1 ≤ 𝑘1 ≤ 9 and 1 ≤ 𝑘2 ≤ (10 − 𝑘1) 

and 1 ≤ 𝑘3 ≤ (11 − 𝑘1 − 𝑘2) and 1 ≤ 𝑘4 ≤ (12 − 𝑘1 − 𝑘2 − 𝑘3) and 1 ≤ 𝑘5 ≤ (13 − 𝑘1 − 𝑘2 − 𝑘3 − 𝑘4) and 1 ≤ 𝑘6 ≤
(14 − 𝑘1 − 𝑘2 − 𝑘3 − 𝑘4 − 𝑘5).  

 

Therefore, it is impossible to have a Collatz loop consisting of six different odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6},  where 

𝑛1is outside the range ⟦1;  23⟧, because the maximum value for 𝑛1 is 
6995

295
 where (𝑘1 = 5), (𝑘2 = 1), (𝑘3 = 1), (𝑘4 = 1), 

(𝑘5 = 1) and  (𝑘6 = 1). 

 

As a result, the expression (Equation 86) and the presented statements by the fifteenth theorem in this paper are correct, 

because there is no subgroup of six different odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6} that can create a Collatz loop where 

(3𝑛1 + 1 = 2𝑘1𝑛2) 𝑎𝑛𝑑 (3𝑛2 + 1 = 2𝑘2𝑛3) 𝑎𝑛𝑑 (3𝑛3 + 1 = 2𝑘3𝑛4) 𝑎𝑛𝑑 (3𝑛4 + 1 = 2𝑘4𝑛5) 𝑎𝑛𝑑 (3𝑛5 + 1 =

2𝑘5𝑛6) 𝑎𝑛𝑑 (3𝑛6 + 1 = 2𝑘6𝑛1) 𝑎𝑛𝑑 (𝑘𝑖 ∊ {ℕ − {0}}). 

5.7. Proposed Theorem on Collatz Loops Consisted of Seven Elements 

This subsection presents the sixteenth theorem, which treats possible Collatz loops consisting of seven odd numbers 

according to the proposed formulas in Theorem 3 and Theorem 4 in this paper. 

Theorem 16 

In the group of Natural numbers ℕ, there is no subgroup of seven different odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7} that 

can create a Collatz loop where (3𝑛1 + 1 = 2𝑘1𝑛2) 𝑎𝑛𝑑 (3𝑛2 + 1 = 2𝑘2𝑛3) 𝑎𝑛𝑑 (3𝑛3 + 1 = 2𝑘3𝑛4) 𝑎𝑛𝑑 (3𝑛4 + 1 =

2𝑘4𝑛5) 𝑎𝑛𝑑 (3𝑛5 + 1 = 2𝑘5𝑛6) 𝑎𝑛𝑑 (3𝑛6 + 1 = 2𝑘6𝑛7) 𝑎𝑛𝑑 (3𝑛7 + 1 = 2𝑘7𝑛1) 𝑎𝑛𝑑 (𝑘𝑖 ∊ {ℕ − {0}}) as shown in 

(Equation 88), because the maximum value for 𝑛1 will be (max(𝑛1) =
43289

1909
). 

⩝ 𝐺 ∊ ℕ ; ∄{𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7} ∊ 𝐺 | 𝑛𝑖 ≠ 𝑛𝑗(𝑗≠𝑖) 𝑎𝑛𝑑 3𝑛1 + 1 = 2𝑘1𝑛2 𝑎𝑛𝑑 3𝑛2 + 1 = 2𝑘2𝑛3 𝑎𝑛𝑑 3𝑛3 + 1 =

2𝑘3𝑛4 𝑎𝑛𝑑 3𝑛4 + 1 = 2𝑘4𝑛5 𝑎𝑛𝑑 3𝑛5 + 1 = 2𝑘5𝑛6 𝑎𝑛𝑑 3𝑛6 + 1 = 2𝑘6𝑛7 𝑎𝑛𝑑 3𝑛7 + 1 = 2𝑘7𝑛1 𝑎𝑛𝑑 𝑘𝑖 ∊ {ℕ − {0}} (88) 

Proof of Theorem 16 

As mentioned in the proof of Theorem 11, both formulas in (Equation 9) and (Equation 29) (Theorem 3 and Theorem 4) are 

based on the same structure of terms, while rotating the order to calculate the values of consecutive odd numbers according to 

Theorem 4. Therefore, we will focus on analyzing the division of the numerator  ∑ [3𝑖 ∗ 2
∑ 𝑘(𝑗)

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0  on the value of 

the denominator [2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚], which generate values of real numbers.  

As it was mentioned in the proof of Theorem 11, in order to have an integer number as a result of shown formulas in 

(Equation. 9) and (Equation. 29) (Theorem 3 and Theorem 4), the value of denominator should be inferior (or equal) to the 

numerator, and also should be dividing it into an integer value. 

In the case of having a loop of Collatz consisting of seven different odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7}, the value of 

the first number 𝑛1 of this sequence is calculated as shown in (Equation 89), whereas having (𝑘𝑖 ∊ {ℕ − {0}}). 

𝑛1 =
(2𝑘6+𝑘5+𝑘4+𝑘3+𝑘2+𝑘1+3∗2𝑘5+𝑘4+𝑘3+𝑘2+𝑘1+9∗2𝑘4+𝑘3+𝑘2+𝑘1+27∗2𝑘3+𝑘2+𝑘1+81∗2𝑘2+𝑘1+243∗2𝑘1+729)

2𝑘1+𝑘2+𝑘3+𝑘4+𝑘5+𝑘6+𝑘7−2187
                     (89) 

Therefore, in order to have an integer value as a result of this expression of 𝑛1 (Equation 89), we need to start by having 

the condition (2𝑘1+𝑘2+𝑘3+𝑘4+𝑘5+𝑘6+𝑘7 − 2187) ≤ (2𝑘6+𝑘5+𝑘4+𝑘3+𝑘2+𝑘1 + 3 ∗ 2𝑘5+𝑘4+𝑘3+𝑘2+𝑘1 + 9 ∗ 2𝑘4+𝑘3+𝑘2+𝑘1 + 27 ∗

2𝑘3+𝑘2+𝑘1 + 81 ∗ 2𝑘2+𝑘1 + 243 ∗ 2𝑘1 + 729), which can also be expressed as follows: 2𝑘1(2𝑘7+𝑘6+𝑘5+𝑘4+𝑘3+𝑘2 −

2𝑘6+𝑘5+𝑘4+𝑘3+𝑘2 − 3 ∗ 2𝑘5+𝑘4+𝑘3+𝑘2 − 9 ∗ 2𝑘4+𝑘3+𝑘2 − 27 ∗ 2𝑘3+𝑘2 − 81 ∗ 2𝑘2 − 243) ≤ 2916. Consequently, the values of 

𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6 and 𝑘7 should be limited as follows: 1 ≤ 𝑘1 ≤ 11 and 1 ≤ 𝑘2 ≤ (12 − 𝑘1) and 1 ≤ 𝑘3 ≤ (13 − 𝑘1 − 𝑘2) 

and 1 ≤ 𝑘4 ≤ (14 − 𝑘1 − 𝑘2 − 𝑘3) and 1 ≤ 𝑘5 ≤ (15 − 𝑘1 − 𝑘2 − 𝑘3 − 𝑘4) and 1 ≤ 𝑘6 ≤ (16 − 𝑘1 − 𝑘2 − 𝑘3 − 𝑘4 − 𝑘5) 

and 1 ≤ 𝑘7 ≤ (17 − 𝑘1 − 𝑘2 − 𝑘3 − 𝑘4 − 𝑘5 − 𝑘6).  
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Therefore, it is impossible to have a Collatz loop consisting of seven different odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7},  

where 𝑛1 is outside the range ⟦1;  23⟧, because the maximum value for 𝑛1 is 
43289

1909
 where (𝑘1 = 6), (𝑘2 = 1), (𝑘3 = 1), 

(𝑘4 = 1), (𝑘5 = 1), (𝑘6 = 1) and  (𝑘7 = 1). 

As a result, the expression (Equation 88) and the presented statements by the sixteenth theorem in this paper are correct, 

because there is no subgroup of seven different odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7} that can create a Collatz loop where 

(3𝑛1 + 1 = 2𝑘1𝑛2) 𝑎𝑛𝑑 (3𝑛2 + 1 = 2𝑘2𝑛3) 𝑎𝑛𝑑 (3𝑛3 + 1 = 2𝑘3𝑛4) 𝑎𝑛𝑑 (3𝑛4 + 1 = 2𝑘4𝑛5) 𝑎𝑛𝑑 (3𝑛5 + 1 =

2𝑘5𝑛6) 𝑎𝑛𝑑 (3𝑛6 + 1 = 2𝑘6𝑛7) 𝑎𝑛𝑑 (3𝑛7 + 1 = 2𝑘7𝑛1) 𝑎𝑛𝑑 (𝑘𝑖 ∊ {ℕ − {0}}). 

5.8. Proposed Theorem on Limited Collatz Loops 

This subsection presents the seventeenth theorem, which treats possible Collatz loops consisting of "𝐿" odd numbers 

(𝐿 ∊ ⟦2;  64⟧) according to the proposed formulas in Theorem 3 and Theorem 4 in this paper.  

By having "𝐿" odd numbers in a possible Collatz loop, the range of these odd numbers can have a theoretical value that 

may exceed (
3

2
)

𝐿

. 

Theorem 17 

In the group of Natural numbers ℕ, there is no subgroup of "𝐿" (𝐿 ∊ ⟦2;  64⟧) different odd numbers 

{𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7, … , 𝑛𝐿−1, 𝑛𝐿} that can create a Collatz loop where (3𝑛1 + 1 = 2𝑘1𝑛2) 𝑎𝑛𝑑 (3𝑛2 + 1 =

2𝑘2𝑛3) 𝑎𝑛𝑑 (3𝑛3 + 1 = 2𝑘3𝑛4) 𝑎𝑛𝑑 (3𝑛4 + 1 = 2𝑘4𝑛5) 𝑎𝑛𝑑 (3𝑛5 + 1 = 2𝑘5𝑛6) 𝑎𝑛𝑑 (3𝑛6 + 1 = 2𝑘6𝑛7) 𝑎𝑛𝑑 (3𝑛7 + 1 =

2𝑘7𝑛8) 𝑎𝑛𝑑 … 𝑎𝑛𝑑 (3𝑛𝐿−1 + 1 = 2𝑘𝐿−1𝑛𝐿) 𝑎𝑛𝑑 (3𝑛𝐿 + 1 = 2𝑘𝐿𝑛1)  𝑎𝑛𝑑 (𝑘𝑖 ∊ {ℕ − {0}}), as shown in (Equation 90). 

(⩝ 𝐺 ∊ ℕ ) 𝑎𝑛𝑑 (⩝ 𝐿 ∊ ⟦2;  64⟧ ); ∄{𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7, … , 𝑛𝐿−1, 𝑛𝐿} ∊ 𝐺 |  ⩝ 𝑖 ∊ ⟦1, 𝐿 − 1⟧; 𝑛𝑖 ≠ 𝑛𝑗(𝑗≠𝑖) 𝑎𝑛𝑑 3𝑛𝑖 + 1 =

2𝑘𝑖𝑛𝑖+1 𝑎𝑛𝑑 3𝑛𝐿 + 1 = 2𝑘𝐿𝑛1 𝑎𝑛𝑑 𝑘𝑖 ∊ {ℕ − {0}}                   (90) 

Proof of Theorem 17 

As mentioned in the proof of Theorem 11, both formulas in (Equation 9) and (Equation 29) (Theorem 3 and Theorem 4) 

are based on the same structure of terms, while rotating the order to calculate the values of consecutive odd numbers. Therefore, 

we will focus on analyzing the division of the numerator  ∑ [3𝑖 ∗ 2
∑ 𝑘(𝑗)

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0  on the value of the denominator 

[2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚], which generate values of real numbers.  

As it was mentioned in the proof of Theorem 11, in order to have an integer number as a result of shown formulas in 

(Equation. 9) and (Equation. 29) (Theorem 3 and Theorem 4), the value of denominator should be inferior (or equal) to the 

value of numerator, and also should be dividing it into an integer value. 

As long as we forward calculations toward identifying a finite (or infinite) Collatz loop consisting of "𝑚" different odd 

numbers. {𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7, … , 𝑛𝑚−1, 𝑛𝑚}, we will always need to have a value for the denominator [2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚] 

less than the value of the numerator  ∑ [3𝑖 ∗ 2
∑ 𝑘(𝑗)

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0 . 

As a result, we can identify the shown condition in (Equation 91). 

[2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚] ≤ ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−1
𝑗=0 ]

𝑖=𝑚−1

𝑖=0

  

⟹ 2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−1
𝑗=0 ]

𝑖=𝑚−1

𝑖=0

≤ 3𝑚 

⟹ 2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−1
𝑗=0 ]

𝑖=𝑚−2

𝑖=0

≤ 3𝑚 + 3𝑚−1 



Yassine Larbaoui / IJMTT, 72(1), 28-89, 2026 

 

58 

⟹ 2𝑘1 [2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=2 − 3𝑚−2 − ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−1
𝑗=2 ]𝑖=𝑚−3

𝑖=0 ] ≤ 3𝑚 [
4

3
]                                 (91) 

Considering that every coefficient 𝑘(𝑖≠0) is a natural number different from zero (𝑘𝑖 ∊ {ℕ − {0}}) and (𝑘0 = 0); the 

minimum value for 𝑘𝑖 is one when (1 ≤ 𝑖 ≤ 𝑚), whereas the expected Collatz loop will consist of "𝑚" elements. Therefore, 

the minimum value of [∑ 𝑘(𝑖)
𝑖=𝑚
𝑖=2 ] is (𝑚 − 1). 

 

The maximum value of the coefficient 𝑘1 is also identified by having the minimum positive value for the denominator 

[2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚] where (3𝑚 ≤ 2𝑘1 ∗ 2∑ 𝑘(𝑙)

𝑙=𝑚
𝑙=2 ), which gives the shown result in (Equation 92). 

 

⟹ 2 ≤ 2𝑘1 ≤ 𝑐𝑒𝑖𝑙 (
3𝑚

2𝑚−1
)  𝑎𝑛𝑑 2𝑚−1 ≤ 2∑ 𝑘(𝑙)

𝑙=𝑚
𝑙=2  ≤ 𝑐𝑒𝑖𝑙 (

3𝑚

2𝑘1
)  

 

⟹ 1 ≤ 𝑘1 ≤ 𝑐𝑒𝑖𝑙 (𝑚 ∗
ln(3)

ln(2)
− (𝑚 − 1))   𝑎𝑛𝑑 (𝑚 − 1) ≤ ∑ 𝑘(𝑙)

𝑙=𝑚

𝑙=2

 ≤ 𝑐𝑒𝑖𝑙 (𝑚 ∗
ln(3)

ln(2)
− (𝑘1)) 

 

⟹ 𝑘1  ∊ ⟦1; 𝑐𝑒𝑖𝑙 (𝑚 ∗
𝑙𝑛(3)

𝑙𝑛(2)
− 𝑚 + 1) ⟧  𝑎𝑛𝑑 ∑ 𝑘(𝑙)

𝑙=𝑚
𝑙=2 ∊ ⟦(𝑚 − 1); 𝑐𝑒𝑖𝑙 (𝑚 ∗

𝑙𝑛(3)

𝑙𝑛(2)
− 𝑘1) ⟧                             (92) 

 

Since we reached the result (𝑘1  ∊ ⟦1; 𝑐𝑒𝑖𝑙 (𝑚 ∗
ln(3)

ln(2)
− 𝑚 + 1)⟧) and (∑ 𝑘(𝑙)

𝑙=𝑚
𝑙=2 ∊ ⟦(𝑚 − 1); 𝑐𝑒𝑖𝑙 (𝑚 ∗

ln(3)

ln(2)
− 𝑘1) ⟧), 

we deduce the minimum and maximum values of 𝑘1 shown in (Equation 93), whereas we deduce the minimum and maximum 

values of ∑ 𝑘(𝑙+1)
𝑙=𝑚−1
𝑙=1  shown in (Equation 94). 

𝑀𝐼𝑁(𝑘1) = 1;  𝑀𝐴𝑋(𝑘1) = 𝑐𝑒𝑖𝑙 (𝑚 ∗
𝑙𝑛(3)

𝑙𝑛(2)
− 𝑚 + 1)                                         (93) 

 

𝑀𝐼𝑁(∑ 𝑘(𝑙+1)
𝑙=𝑚−1
𝑙=1 ) = (𝑚 − 1);  𝑀𝐴𝑋(∑ 𝑘(𝑙+1)

𝑙=𝑚−1
𝑙=1 ) = 𝑐𝑒𝑖𝑙 (𝑚 ∗

𝑙𝑛(3)

𝑙𝑛(2)
)                                             (94) 

 
We deduce that when the value of "𝑚" goes to infinity, the value of 𝑘1is limited by having a maximum value that cannot 

exceed 60% of (𝑚), because of the shown result in (Equation 95). 

 

𝑀𝐴𝑋(𝑘1) = 𝑐𝑒𝑖𝑙 (𝑚 ∗
𝑙𝑛(3)

𝑙𝑛(2)
− 𝑚 + 1) ≈ 𝑐𝑒𝑖𝑙(𝑚 ∗ 0,5849625 + 1)                                        (95) 

 

We also deduce that the value of ∑ 𝑘(𝑙+1)
𝑙=𝑚−1
𝑙=1  is limited by having a maximum value that cannot exceed 159% of (𝑚) 

when the value of "𝑚" goes to infinity, because of the shown result in (Equation 96). 

 

𝑀𝐴𝑋(∑ 𝑘(𝑙+1)
𝑙=𝑚−1
𝑙=1 ) = [𝑐𝑒𝑖𝑙 (𝑚

𝑙𝑛(3)

𝑙𝑛(2)
)] ≈ 𝑐𝑒𝑖𝑙(𝑚 ∗ 1,5849625)                                             (96) 

 

Now, we express the formula to calculate the maximum value of 𝑛1 which is obtained when 𝑘1 is taking its MAX value 

shown in (Equation 95). Then, we use Python (Figure 4) to provide computational results highlighting the evolution of the 

maximum value of 𝑛1. 

 

The maximum value of 𝑛1 It is mainly defined by identifying the maximum value for the numerator 

∑ [3𝑖 ∗ 2
∑ 𝑘(𝑗)

𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0 , after determining the first positive value for the denominator (2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚). 

.  
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Fig. 4 Programmed codes in python to generate graphical illustrations of the maximum and minimum values of n_1. 

When the coefficient 𝑘1 takes its maximum value, the value of ∑ 𝑘(𝑙+1)
𝑙=𝑚−1
𝑙=1  will be at its minimum, which is (𝑚 − 1). 

As a result, the maximum value of 𝑛1 (Equation 97) is calculated by giving each coefficient 𝑘𝑖 a value equal to “1” when 

(2 ≤ 𝑖 ≤ 𝑚), whereas 𝑘1 is taking the maximum value of 𝑀𝐴𝑋(𝑘1). 

𝑀𝐴𝑋(𝑛1) =
∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0

2
∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 −3𝑚

 𝑤ℎ𝑒𝑟𝑒 𝑘1 = 𝑐𝑒𝑖𝑙 (𝑚 ∗
𝑙𝑛(3)

𝑙𝑛(2)
− 𝑚 + 1)  𝑎𝑛𝑑 (⩝ 𝑖 ∊ ⟦2,𝑚⟧ |  𝑘𝑖 = 1)       (97) 

The next step is expressing the formula to calculate the minimum value of  𝑛1 (Equation 98), which is obtained when 𝑘𝑚 is 

taking its MAX value.  

𝑀𝐼𝑁(𝑛1) =
∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0

2
∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 −3𝑚

 𝑤ℎ𝑒𝑟𝑒 𝑘𝑚 = 𝑐𝑒𝑖𝑙 (𝑚 ∗
𝑙𝑛(3)

𝑙𝑛(2)
− 𝑚 + 1)  𝑎𝑛𝑑 (⩝ 𝑖 ∊ ⟦1,𝑚 − 1⟧ |  𝑘𝑖 = 1)          (98) 

We can re-express the shown formula of 𝑀𝐴𝑋(𝑛1) in (Equation 97) to be as presented in (Equation 99):  

𝑀𝐴𝑋(𝑛1) =
3𝑚−1+∑ [3𝑖∗2(𝑚−2−𝑖+𝐾1)]𝑖=𝑚−2

𝑖=0

2(𝑚−1+𝐾1)−3𝑚  𝑤ℎ𝑒𝑟𝑒 𝐾1 = 𝑐𝑒𝑖𝑙 (𝑚 ∗
𝑙𝑛(3)

𝑙𝑛(2)
− 𝑚 + 1)        (99) 

We can re-express the shown formula of 𝑀𝐼𝑁(𝑛1) in (Equation 98) to be as presented in (Equation 100): 

𝑀𝐼𝑁(𝑛1) =
3𝑚−1+∑ [3𝑖∗2(𝑚−1−𝑖)]𝑖=𝑚−2

𝑖=0

2(𝑚−1+𝐾𝑚)−3𝑚 =
∑ [3𝑖∗2(𝑚−1−𝑖)]𝑖=𝑚−1

𝑖=0

2(𝑚−1+𝐾𝑚)−3𝑚  𝑤ℎ𝑒𝑟𝑒 𝐾𝑚 = 𝑐𝑒𝑖𝑙 (𝑚 ∗
𝑙𝑛(3)

𝑙𝑛(2)
− 𝑚 + 1)       (100) 
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We used the Python programming language to program the shown code in Figure 4, in order to compute the values of 

𝑀𝐴𝑋(𝑛1) and 𝑀𝐼𝑁(𝑛1) when "𝑚" goes from 2 to 64, whereas "𝑚" is the number of elements in prospect Collatz loops.  

 

When we vary the value of "𝑚" in the range ⟦2;  64⟧, the maximum value 𝑀𝐴𝑋(𝑛1) among all values illustrated in Figure 

5, is the value (851995363565), which is obtained when 𝑚 = 63, whereas all the numbers in the range 

(⟦1;  18446744073709551616⟧ = ⟦1; 264⟧) are already verified by computation that they converge toward the value “1” 

when we keep repeating the operations of the Collatz conjecture on them [10, 32]. Therefore, there is no Collatz loop consisting 

of "𝑚" elements where "𝑚" is in the range ⟦2;  64⟧. As a result, the expression (Equation 90) and the presented statements in 

Theorem 17 are correct, which means there is no Collatz loop of "𝑚" elements that can contradict the Collatz conjecture, where 

"𝑚" is in the range ⟦2;  64⟧. 

 

Fig. 5 Computed graphs showing the evolution of maximum and minimum values of n_1 in function of the amount M of odd numbers in potential 

Collatz loops. 

 

5.9. Proposed Theorem on General Collatz Loops in the Group N 

This subsection presents the eighteenth theorem in this paper, which treats possible Collatz loops consisting of L odd 

numbers (𝐿 ∊ {ℕ} ) according to the proposed formulas in Theorems 3 and 4 in this paper. 
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Theorem 18 

In the group of Natural Numbers {ℕ}, there is no subgroup of L (𝐿 ∊ {ℕ − {1}} )  odd numbers 

{𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7, … , 𝑛𝐿−1, 𝑛𝐿} that can create a Collatz loop where 3𝑛1 + 1 = 2𝑘1𝑛2 𝑎𝑛𝑑 3𝑛2 + 1 =

2𝑘2𝑛3 𝑎𝑛𝑑 3𝑛3 + 1 = 2𝑘3𝑛4 𝑎𝑛𝑑 3𝑛4 + 1 = 2𝑘4𝑛5 𝑎𝑛𝑑 3𝑛5 + 1 = 2𝑘5𝑛6 𝑎𝑛𝑑 3𝑛6 + 1 = 2𝑘6𝑛7 𝑎𝑛𝑑 3𝑛7 + 1 =

2𝑘7𝑛8 𝑎𝑛𝑑 … 𝑎𝑛𝑑 3𝑛𝐿−1 + 1 = 2𝑘𝐿−1𝑛𝐿 𝑎𝑛𝑑 3𝑛𝐿 + 1 = 2𝑘𝐿𝑛1 . 

(⩝ 𝐺 ∊ ℕ ) 𝑎𝑛𝑑 (⩝ 𝐿 ∊ {ℕ − {0,1}}  ); ∄{𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7, … , 𝑛𝐿−1, 𝑛𝐿} ∊ 𝐺 |   ⩝ 𝑖 ∊ ⟦1, 𝐿 − 1⟧ 3𝑛𝑖 + 1 =
2𝑘𝑖𝑛𝑖+1 𝑎𝑛𝑑 3𝑛𝐿 + 1 = 2𝑘𝐿𝑛1       (101) 

Proof of Theorem 18 

In the proof of Theorem 17, we demonstrated that in the group of Natural Numbers {ℕ}, there is no subgroup of L 

(𝐿 ∊ ⟦2, 64⟧ ) odd numbers {𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7, … , 𝑛𝐿−1, 𝑛𝐿} that can create a Collatz loop. For that, we relied on 

calculating the maximum value and the minimum value of 𝑛1 as shown in (Equation 99) and (Equation 100). 

In Theorem 3 and Theorem 4, we proved that if an odd number 𝑛1 is included in a possible Collatz loop 

{𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7, … , 𝑛𝑚−1, 𝑛𝑚} expressed as shown in (Equation 102), then the value of this odd number 𝑛1 can be 

calculated by using (Equation 103). Therefore, we can re-express the odd number 𝑛1 to be as presented in (Equation 104). 

3𝑛1 + 1 = 2𝑘1𝑛2;  3𝑛2 + 1 = 2𝑘2𝑛3;  3𝑛3 + 1 = 2𝑘3𝑛4; … ;  3𝑛𝑚−1 + 1 = 2𝑘𝑚−1𝑛𝑚;  3𝑛𝑚 + 1 = 2𝑘𝑚𝑛1        ( 102) 

𝑛1 =
∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−1
𝑗=0 ]𝑖=𝑚−1

𝑖=0

2
∑ 𝑘(𝑙)

𝑙=𝑚
𝑙=0 −3𝑚

 | 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}}       (103) 

⟹ 𝑛1 (2∑ 𝑘(𝑙)
𝑙=𝑚
𝑙=0 − 3𝑚) = ∑ [3𝑖 ∗ 2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−1
𝑗=0 ]

𝑖=𝑚−1

𝑖=0

 | 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}} 

⟹ 𝒏𝟏 =
𝒏𝟏∗2

∑ 𝑘(𝑙)
𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}}      (104) 

Proving that there is no Collatz loop consisting of “𝑚” elements, where (𝑚 > 2), is based on demonstrating that the value 

of 𝑛1 on the right-hand side of the shown equation in (Equation 104), it is always equal to “1”, and it is different from the value 

of 𝑛1 shown on the left-hand side of the same equation. 

In Theorem 20, we prove that if an odd number 𝑛𝑠 is eventually converging toward “1” when conducting the operations of the 

Collatz conjecture on it, then the odd number (2𝑛𝑠 + 1) is also converging toward “1” when we keep repeating the Collatz 

operation, whereas starting these operations on (2𝑛𝑠 + 1). 

In Theorem 21, we prove that if an odd number 𝑛𝑠 is eventually converging toward “1” when conducting the operations of the 

Collatz conjecture on it, then the odd number (2𝑛𝑠 + 3) is also converging toward “1” when we keep repeating the Collatz 

operation, whereas starting these operations on (2𝑛𝑠 + 3). 

In Theorem 20 and Theorem 21, the odd numbers {𝑛𝑠; 2𝑛𝑠 + 1; 2𝑛𝑠 + 3 } are proven to converge toward the number “1” when 

repeating Collatz operations by proving that each one among them is expressed according to the shown formula in (Equation 

105). 

𝑛 =
2
∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝐾0 = 0 𝑎𝑛𝑑 𝐾(𝑖≥1) ∊ {ℕ − {0}}                       (105) 

In Theorem 25, all odd numbers are proven to be expressed according to the shown formula in (Equation 105) by scaling 

Theorem 20 and Theorem 21. Therefore, based on Theorem 8, every odd number “𝑛” in the group of natural numbers ℕ 

converges to the number “1” by repeating the conduction of Collatz operations, whereas starting these operations on “𝑛”, 

because these odd numbers are expressed as shown in (Equation 105). As a result, the expression (Equation 101) and the 
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presented statements in Theorem 18 are correct, because there is no Collatz loop consisting of “𝑚” elements (odd numbers) 

where 𝑚 ∊ {ℕ − {0}} except the Collatz loop, where (𝑚 = 1). 

6. New Theorems Proving the Collatz Conjecture by Treating Convergence 
This section provides foundation theorems proving that when starting Collatz operations on any odd number, calculations 

do not diverge and they actually converge to values inferior to the starting number. Then, this section presents more general 

theorems built on the foundations, which allow us to prove that when repeating Collatz operations, starting them on any natural 

number different from zero, calculations eventually lead to the number “1”. 

6.1. Proposed Theorem for One-Step Convergence of Collatz Operations 

This subsection presents a theorem identifying when a one-step operation of the Collatz conjecture on an odd number 𝑛1 

will actually converge to a value 𝑛2 inferior than 𝑛1. The presented results in this subsection are based on the statements and 

formulas of Theorem 1 in this paper, which re-express the operations of the Collatz conjecture. 

Theorem 19 

 Supposing two odd numbers 𝑛1 and 𝑛2 connected according to the operations of the Collatz conjecture, which we can 

express as follows:  𝑛2 =
3𝑛1+1

2𝑘1
. If we have 𝑘1 superior or equal “2” (𝑘1 ≥ 2) and we have 𝑛1 absolutely superior to “1” (𝑛1 >

1); then we will have (𝑛2 < 𝑛1) as shown in (Equation 106). 

⩝ {𝑛1, 𝑛2} ∊ {ℕ − {0}} 𝑤ℎ𝑒𝑟𝑒 {𝑛1, 𝑛2} 𝑎𝑟𝑒 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑎𝑛𝑑 𝑛2 =
3𝑛1 + 1

2𝑘1
 𝑎𝑛𝑑 𝑛1 > 1; 𝐼𝑓  𝑘1 ≥ 2 𝑖𝑠 𝑡𝑟𝑢𝑒 ⟹ 𝑛2 < 𝑛1 

 (106) 

Proof of Theorem 19 

 When having a group of two consecutive odd numbers {𝑛1, 𝑛2} connected according to the operations of the Collatz 

conjecture, we can express these two odd numbers by using the first proposed formula (Equation 1) in Theorem 1 of this paper 

as follows: 𝑛2 =
3𝑛1+1

2𝑘1
which we demonstrated in the proof of Theorem 1. 

By having  𝑛2 =
3𝑛1+1

2𝑘1
 and supposing the condition 𝑛1 > 1 is true; we have the following logic that leads to the shown result 

in (Equation 107): 

𝐼𝑓  𝑘1 ≥ 2 𝑖𝑠 𝑡𝑟𝑢𝑒 ⟹ 𝑛2 =
3𝑛1 + 1

2𝑘1
≤

3𝑛1 + 1

22
 

⟹ 𝑛2 =
3𝑛1 + 1

2𝑘1
≤

3𝑛1 + 1

4
 

⟹ 4𝑛2 = 4
3𝑛1 + 1

2𝑘1
≤ 3𝑛1 + 1 

⟹ 4𝑛2 − 4𝑛1 ≤ −𝑛1 + 1 

⟹ 𝑛2 − 𝑛1 < 0 (𝑠𝑖𝑛𝑐𝑒 𝑤𝑒 𝑠𝑢𝑝𝑝𝑜𝑠𝑒𝑑 𝑛1 > 1)  

⟹ 𝑛2 < 𝑛1 (𝑠𝑖𝑛𝑐𝑒 𝑤𝑒 𝑠𝑢𝑝𝑝𝑜𝑠𝑒𝑑 𝑛1 > 1)                                                                      (107) 

As a result, (Equation 106) and the proposed statements in Theorem 19 are correct. 

 

6.2. First Proposed Theorem for Multi-Step Convergence of Collatz Operations 

This subsection presents a theorem proving that if we have a group of odd numbers 𝐿1 (𝐿1 ∊ ℕ), where every odd number 

(𝑛𝑠) in this group is converging to inferior values than itself when repeating the operations of the Collatz conjecture, while 

starting these operations on 𝑛𝑠, then, we will have other odd numbers expressed as (2𝑛𝑠 + 1)  also converging to inferior values 

than themselves when repeating the operations of the Collatz conjecture, whereas starting on them. 
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Theorem 20 

Supposing a group 𝐿1 containing odd numbers, where the minimum odd number in 𝐿1 is {𝑛1 = 1} and the maximum odd 

number is {𝑛ℎ = 2(ℎ − 1) + 1}; as shown in (Equation 108). If every odd number 𝑛𝑠 from this group (𝐿1) is converging to a 

value (𝑃1 = 1) inferior to itself when repeating the operations of the Collatz conjecture, whereas starting these operations on 

𝑛𝑠; then every odd number (𝑛𝑠1 = 2𝑛𝑠 + 1) is also converging to an inferior value (𝑃1 = 1) (where 𝑃1 ≤ 𝑛ℎ) when repeating 

the operations of the Collatz conjecture, whereas starting on 𝑛𝑠1 . 

𝐿1 = {𝑛1 = 1; 𝑛2 = 3; 𝑛3 = 5; 𝑛4 = 7;… ; 𝑛ℎ−1 =  2(ℎ − 2) + 1; 𝑛ℎ = 2(ℎ − 1) + 1}        (108) 

Proof of Theorem 20 

To prove Theorem 20, we start by considering 𝑛𝑠 from the group 𝐿1 where 𝑛𝑠 is converging to the number “1” when 

repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠. Therefore, we will adopt the group 

𝐿′ expressing the odd numbers generated when starting Collatz operations on the odd numbers 𝑛𝑠, which is to be expressed as 

shown in (Equation 109).  

𝐿′ = {𝑛1
′ = 𝑛𝑠 ; 𝑛2

′ = 
3𝑛1

′ +1

2𝐾1
;  𝑛3

′ = 
3𝑛2

′ +1

2𝐾2
;  𝑛4

′ = 
3𝑛3

′ +1

2𝐾3
; … ; 𝑛𝑚−1

′ ;  𝑛𝑚
′ =

3𝑛𝑚−1
′ +1

2𝐾𝑚−1
= 𝑃 = 1}          (109) 

The next step is relying on Theorem 6 to express 𝑛𝑠 by using the presented formula in (Equation 110), which we already 

demonstrated in the proof of Theorem six. 

𝑛𝑠  = 𝑛1
′ =

2
∑ 𝐾(𝑙)

𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝐾0 = 0 𝑎𝑛𝑑 𝐾𝑖≥1 ∊ {ℕ − {0}}         (110) 

Now, we consider the odd number (𝑛𝑠1 = 2𝑛𝑠 + 1) , which we need to prove that it is expressed according to the proposed 

formula (Equation 59) in Theorem 8. Therefore, we will prove that (𝑛𝑠1
′ = 𝑛𝑠1 − 4) is expressed according to the proposed 

formula (Equation 72) in Theorem 9; because Theorem 9 is forwarding Theorem 8. 

We calculate the value of (𝑛𝑠1
′ = 𝑛𝑠1

− 4 = 2𝑛𝑠 − 3) whereas replacing 𝑛𝑠 with its shown expression in (Equation 110), 

which allows us to obtain (Equation 111). 

𝑛𝑠1
′ = 2𝑛𝑠 − 3  ⟹  𝑛𝑠1

′ = 2(
2∑ 𝐾(𝑙)

𝑙=𝑚−1
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1
  ) − 3 

⟹ 𝑛𝑠1
′ = (

2 ∗ 2∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 − 2 ∗ ∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1
  ) − 3 

⟹ 𝑛𝑠1
′ =

2 ∗ 2∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 − 2 ∗ ∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0 − 3𝑚

3𝑚−1
   

⟹ 𝑛𝑠1
′ =

2 ∗ 2∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 − 2 ∗ ∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0 − 9 ∗ 3𝑚−2

3𝑚−1
   

⟹ 𝑛𝑠1
′ =

2 ∗ 2∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 − 2 ∗ ∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ] − 2 ∗ 3𝑚−2𝑖=𝑚−3

𝑖=0 − 9 ∗ 3𝑚−2

3𝑚−1
   

⟹ 𝑛𝑠1
′ =

2 ∗ 2∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 − 2 ∗ ∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ] − 11 ∗ 3𝑚−2𝑖=𝑚−3

𝑖=0

3𝑚−1
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⟹ 𝑛𝑠1
′ =

2∗2
∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 −2∗∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]−8∗3𝑚−2−3∗3𝑚−2𝑖=𝑚−3

𝑖=0

3𝑚−1                                                      (111) 

The next step is adapting the shown expression in (Equation 111) by replacing the number "8" with (2𝐾(1)
′

= 23) whereas 

conducting the following re-expressions {𝐾(1)
′ = 3; 𝐾(𝑗=1) = 𝐾(𝑗+1)

′ + 2;  𝐾(2≤𝑗≤𝑚−1) = 𝐾(𝑗+1)
′  𝑎𝑛𝑑 𝐾(0)

′ = 0}, which gives us 

the shown result in (Equation 112). The value (𝐾(𝑗=1) = 𝐾(𝑗+1)
′ + 2) is leading to the result (𝐾(2)

′ ∊ ⟦−1,+∞⟦ ), because 

(𝐾(1) ∊ {ℕ − {0}}). 

⟹ 𝑛𝑠1
′ =

2𝐾(1)
′ −2 ∗ 2∑ 𝐾(𝑙)

𝑙=𝑚−1
𝑙=0 − 2𝐾(1)

′ −2 ∗ ∑ [3𝑖 ∗ 2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−2
𝑗=0 ] − 2𝐾(1)

′

∗ 3𝑚−2 − 3𝑚−1𝑖=𝑚−3
𝑖=0

3𝑚−1
   

⟹ 𝑛𝑠1
′ =

2𝐾1
′−2 ∗ 22+∑ 𝐾(𝑙+1)

′𝑙=𝑚−1
𝑙=1 − 2𝐾1

′−2 ∗ ∑ [3𝑖 ∗ 2
2+∑ 𝐾(𝑗+1)

′𝑗=𝑚−𝑖−2
𝑗=1 ] − 2𝐾1

′
∗ 3𝑚−2 − 3𝑚−1𝑖=𝑚−3

𝑖=0

3𝑚−1
   

⟹ 𝑛𝑠1
′ =

2𝐾(1)
′ +∑ 𝐾(𝑙+1)

′𝑙=𝑚−1
𝑙=1 − ∑ [3𝑖 ∗ 2

𝐾(1)
′ +∑ 𝐾(𝑗+1)

′𝑗=𝑚−𝑖−2
𝑗=1 ] − 2𝐾(1)

′

∗ 3𝑚−2 − 3𝑚−1𝑖=𝑚−3
𝑖=0

3𝑚−1
 

⟹ 𝑛𝑠1
′ =

2𝐾(1)
′ +∑ 𝐾(𝑙)

′𝑙=𝑚
𝑙=2 − ∑ [3𝑖 ∗ 2

𝐾(1)
′ +∑ 𝐾(𝑗)

′𝑗=𝑚−𝑖−1
𝑗=2 ] − 2𝐾(1)

′

∗ 3𝑚−2 − 3𝑚−1𝑖=𝑚−3
𝑖=0

3𝑚−1
 

⟹ 𝑛𝑠1
′ =

2∑ 𝐾(𝑙)
′𝑙=𝑚

𝑙=1 − ∑ [3𝑖 ∗ 2
∑ 𝐾(𝑗)

′𝑗=𝑚−𝑖−1
𝑗=1 ] − 2𝐾(1)

′

∗ 3𝑚−2 − 3𝑚−1𝑖=𝑚−3
𝑖=0

3𝑚−1
 

⟹ 𝑛𝑠1
′ =

2
∑ 𝐾(𝑙)

′𝑙=𝑚
𝑙=1 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
′𝑗=𝑚−𝑖−1

𝑗=1 ]−3𝑚−1𝑖=𝑚−2
𝑖=0

3𝑚−1                                                                          (112) 

Since we have (𝐾(0)
′ = 0), we can re-express the shown value of 𝑛𝑠1

′  in (Equation 112) to be presented as shown in 

(Equation 113): 

⟹ 𝑛𝑠1
′ =

2∑ 𝐾(𝑙)
′𝑙=𝑚

𝑙=0 − ∑ [3𝑖 ∗ 2
∑ 𝐾(𝑗)

′𝑗=𝑚−𝑖−1
𝑗=0 ] − 3𝑚−1𝑖=𝑚−2

𝑖=0

3𝑚−1
 

⟹ 𝑛𝑠1
′ =

2
∑ 𝐾(𝑙)

′𝑙=𝑚
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
′𝑗=𝑚−𝑖−1

𝑗=0 ]𝑖=𝑚−1
𝑖=0

3𝑚−1                                                                     (113) 

Based on the shown expression in (Equation 113), we can present the value of 𝑛𝑠1
′  as shown in (Equation. 114). 

⟹ 𝑛𝑠1
′ = 2𝑅

2
∑ 𝐾(𝑙)

′𝑙=𝑚
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
′𝑗=𝑚−𝑖−1

𝑗=0 ]𝑖=𝑚−1
𝑖=0

3𝑚−1  |𝑅 = 0 𝑎𝑛𝑑 𝐾(0)
′ = 0 𝑎𝑛𝑑 𝐾1

′ = 3 𝑎𝑛𝑑 𝐾(2)
′ ∊ ⟦−1,+∞⟦ 𝑎𝑛𝑑 𝐾(𝑖∉{0,2})

′ ∊

{ℕ − {0} } 𝑎𝑛𝑑 (𝑅 + 𝐾1
′) ≥ 0 𝑎𝑛𝑑 (𝑅 + 𝐾1

′ + 𝐾2
′) > 0        (114) 

We deduce that (𝑛𝑠1
′ = 𝑛𝑠1 − 4) is expressed while respecting the presented statements and proposed formula (Equation 

72) in Theorem 9. Therefore, based on the statements of Theorem 9, the odd number (𝑛𝑠1
= 2𝑛𝑠 + 1) is converging to the 

number “1” when we keep repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠1
, because 

it is expressed according to the proposed formula (Equation 59) in Theorem 8. As a result, the given statements in Theorem 20 

are correct. 
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6.3. Second Proposed Theorem for Multi-Step Convergence of Collatz Operations 

This subsection presents a theorem proving that if we have a group of odd numbers 𝐿2 (𝐿2 ∊ ℕ), where every odd number 

(𝑛𝑠) in this group is converging to inferior values than itself when repeating the operations of the Collatz conjecture, whereas 

starting these operations on 𝑛𝑠; then, we will have other odd numbers expressed as (2𝑛𝑠 + 3) also converging to inferior values 

than themselves when repeating the operations of the Collatz conjecture, whereas starting on them. 

Theorem 21 

Supposing a group 𝐿2 containing odd numbers, where the minimum odd number in 𝐿2 is {𝑛1 = 1} and the maximum odd 

number is {𝑛ℎ = 2(ℎ − 1) + 1}; as shown in (Equation. 115). If every odd number 𝑛𝑠 from this group (𝐿2) is eventually 

converging to a value (𝑃2 = 1) inferior to itself when repeating the operations of the Collatz conjecture, whereas starting these 

operations on 𝑛𝑠; then every odd number (𝑛𝑠2 = 2𝑛𝑠 + 3) is also converging to an inferior value (𝑃2 = 1) (where 𝑃2 ≤ 𝑛𝑚) 

when repeating the operations of the Collatz conjecture, whereas starting them on 𝑛𝑠2 . 

𝐿2 = {𝑛1 = 1; 𝑛2 = 3; 𝑛3 = 5; 𝑛4 =  7;… ; 𝑛ℎ−1 = 2(ℎ − 2) + 1; 𝑛ℎ =  2(ℎ − 1) + 1}                (115) 

Proof of Theorem 21 

To prove Theorem 21, we start by considering 𝑛𝑠 from the group 𝐿2 where 𝑛𝑠 is converging to the number “1” when 

repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠. Therefore, we will adopt the group 

𝐿′ expressing the odd numbers generated when starting Collatz operations on the odd numbers 𝑛𝑠, which is expressed as shown 

in (Equation. 116):  

𝐿′ = {𝑛1
′ = 𝑛𝑠 ; 𝑛2

′ = 
3𝑛1

′ +1

2𝑘1
  ;  𝑛3

′ = 
3𝑛2

′ +1

2𝑘2
;  𝑛4

′ = 
3𝑛3

′ +1

2𝑘3
… ; 𝑛𝑚

′ = 𝑃2 = 1}               (116) 

The next step is relying on Theorem 6 to express 𝑛𝑠 by using the presented formula in (Equation 117), which we already 

demonstrated in the proof of Theorem six. 

𝑛𝑠  = 𝑛1
′ =

2
∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝐾0 = 0 𝑎𝑛𝑑 𝐾𝑖≥1 ∊ {ℕ − {0}}               (117) 

Now, we consider the odd number (𝑛𝑠2 = 2𝑛𝑠 + 3) , which we need to prove that it is expressed according to the 

proposed formula (Equation 59) in Theorem 8. Therefore, we will prove that (𝑛𝑠2
′ = 𝑛𝑠2 − 4) is expressed according to the 

proposed formula (Equation 72) in Theorem 9; because Theorem 9 is forwarding Theorem 8. 

We calculate the value of (𝑛𝑠2
′ = 𝑛𝑠2 − 4 = 2𝑛𝑠 − 1) while replacing 𝑛𝑠 with its shown expression in (Equation 117), which 

allows us to obtain (Equation 118). 

𝑛𝑠2
′ = 2𝑛𝑠 − 1  ⟹  𝑛𝑠2

′ = 2(
2∑ 𝐾(𝑙)

𝑙=𝑚−1
𝑙=0 − ∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1
  ) − 1 

⟹ 𝑛𝑠2
′ = (

2 ∗ 2∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 − 2 ∗ ∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1
  ) − 1 

⟹ 𝑛𝑠2
′ =

2 ∗ 2∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 − 2 ∗ ∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0 − 3𝑚−1

3𝑚−1
   

⟹ 𝑛𝑠2
′ =

2 ∗ 2∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 − 2 ∗ ∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0 − 3 ∗ 3𝑚−2

3𝑚−1
   



Yassine Larbaoui / IJMTT, 72(1), 28-89, 2026 

 

66 

⟹ 𝑛𝑠2
′ =

2 ∗ 2∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 − 2 ∗ ∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ] − 2 ∗ 3𝑚−2𝑖=𝑚−3

𝑖=0 − 3 ∗ 3𝑚−2

3𝑚−1
   

⟹ 𝑛𝑠2
′ =

2 ∗ 2∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 − 2 ∗ ∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ] − 5 ∗ 3𝑚−2𝑖=𝑚−3

𝑖=0

3𝑚−1
   

⟹ 𝑛𝑠2
′ =

2∗2
∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 −2∗∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]−2∗3𝑚−2−3∗3𝑚−2𝑖=𝑚−3

𝑖=0

3𝑚−1                                           (118) 

The next step is adapting the shown expression in (Equation 118) by replacing the number "2" with 2𝐾(1)
′

= 21 whereas 

conducting the following re-expressions {𝐾(1)
′ = 1; 𝐾(1≤𝑗≤𝑚−1) = 𝐾(𝑗+1)

′  𝑎𝑛𝑑 𝐾(0)
′ = 0}, which gives us the shown result in 

(Equation 119). The value (𝐾(𝑗=1) = 𝐾(𝑗+1)
′ ) is leading to the result (𝐾(2)

′ ∊ {ℕ − {0}}), because (𝐾(1) ∊ {ℕ − {0}}). 

 

⟹ 𝑛𝑠2
′ =

2𝐾(1)
′

∗ 2∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 − 2𝐾(1)

′

∗ ∑ [3𝑖 ∗ 2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−2
𝑗=0 ] − 2𝐾(1)

′

∗ 3𝑚−2 − 3𝑚−1𝑖=𝑚−3
𝑖=0

3𝑚−1
   

⟹ 𝑛𝑠2
′ =

2𝐾(1)
′ +∑ 𝐾(𝑙+1)

′𝑙=𝑚−1
𝑙=1 − ∑ [3𝑖 ∗ 2

𝐾(1)
′ +∑ 𝐾(𝑗+1)

′𝑗=𝑚−𝑖−2
𝑗=1 ] − 2𝐾(1)

′

∗ 3𝑚−2 − 3𝑚−1𝑖=𝑚−3
𝑖=0

3𝑚−1
 

⟹ 𝑛𝑠2
′ =

2𝐾(1)
′ +∑ 𝐾(𝑙)

′𝑙=𝑚
𝑙=2 − ∑ [3𝑖 ∗ 2

𝐾(1)
′ +∑ 𝐾(𝑗)

′𝑗=𝑚−𝑖−1
𝑗=2 ] − 2𝐾(1)

′

∗ 3𝑚−2 − 3𝑚−1𝑖=𝑚−3
𝑖=0

3𝑚−1
 

⟹ 𝑛𝑠2
′ =

2∑ 𝐾(𝑙)
′𝑙=𝑚

𝑙=1 − ∑ [3𝑖 ∗ 2
∑ 𝐾(𝑗)

′𝑗=𝑚−𝑖−1
𝑗=1 ] − 2𝐾(1)

′

∗ 3𝑚−2 − 3𝑚−1𝑖=𝑚−3
𝑖=0

3𝑚−1
 

⟹ 𝑛𝑠2
′ =

2
∑ 𝐾(𝑙)

′𝑙=𝑚
𝑙=1 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
′𝑗=𝑚−𝑖−1

𝑗=1 ]−3𝑚−1𝑖=𝑚−2
𝑖=0

3𝑚−1                                                      (119) 

Since we have (𝐾(0)
′ = 0), we can re-express the shown value of 𝑛𝑠2

′  in (Equation 119), in order to be presented as shown 

in (Equation 120): 

⟹ 𝑛𝑠2
′ =

2∑ 𝐾(𝑙)
′𝑙=𝑚

𝑙=0 − ∑ [3𝑖 ∗ 2
∑ 𝐾(𝑗)

′𝑗=𝑚−𝑖−1
𝑗=0 ] − 3𝑚−1𝑖=𝑚−2

𝑖=0

3𝑚−1
 

⟹ 𝑛𝑠2
′ =

2
∑ 𝐾(𝑙)

′𝑙=𝑚
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
′𝑗=𝑚−𝑖−1

𝑗=0 ]𝑖=𝑚−1
𝑖=0

3𝑚−1                                                        (120) 

Based on the expression (Equation 120), we can represent the value of 𝑛𝑠2
′  to be as shown in (Equation 121): 

⟹ 𝑛𝑠2
′ = 2𝑅

2
∑ 𝐾(𝑙)

′𝑙=𝑚
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
′𝑗=𝑚−𝑖−1

𝑗=0 ]𝑖=𝑚−1
𝑖=0

3𝑚−1  |𝑅 = 0 𝑎𝑛𝑑 𝐾(0)
′ = 0 𝑎𝑛𝑑 𝐾(𝑖≥1)

′ ∊ {ℕ − {0} } 𝑎𝑛𝑑 (𝑅 + 𝐾1
′) >

0 𝑎𝑛𝑑 (𝑅 + 𝐾1
′ + 𝐾2

′) > 0       (121) 

We deduce that (𝑛𝑠2
′ = 𝑛𝑠2

− 4) is expressed while respecting the presented statements and proposed formula (Equation 

72) in Theorem 9. Therefore, based on the statements of Theorem 9, the odd number (𝑛𝑠2 = 2𝑛𝑠 + 3) is converging to the 

number “1” when we keep repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠2 , because 



Yassine Larbaoui / IJMTT, 72(1), 28-89, 2026 

 

67 

it is expressed according to the proposed formula (Equation 59) in Theorem 8. As a result, the given statements in Theorem 21 

are correct. 

6.4. Third Proposed Theorem for Multi-Step Convergence of Collatz Operations 

This subsection presents a theorem proving that if we have a group of odd numbers 𝐿3 (𝐿3 ∊ ℕ), where every odd number 

(𝑛𝑠) in this group is converging to inferior values than itself when repeating the operations of the Collatz conjecture, whereas 

starting these operations on 𝑛𝑠; then, we will have even numbers expressed as 2𝑘𝑛𝑠 (𝑘 ∊ ⟦1, +∞⟦)  also converging to inferior 

values than themselves when repeating the operations of the Collatz conjecture, whereas starting on them. 

Theorem 22 

Supposing a group 𝐿3 containing odd numbers, where the minimum odd number in 𝐿3 is {𝑛1 = 1} and the maximum odd 

number is {𝑛ℎ = 2(ℎ − 1) + 1}; as shown in (Equation. 122). If every odd number 𝑛𝑠 from this group (𝐿3) is converging to a 

value (𝑃3 = 1) inferior to itself when repeating the operations of the Collatz conjecture, whereas starting these operations on 

𝑛𝑠; then every even number 2𝑘𝑛𝑠 (𝑘 ∊ ⟦1,+∞⟦)  is also converging to an inferior value (𝑃3 = 1) (where 𝑃3 ≤ 𝑛ℎ) when 

repeating the operations of the Collatz conjecture, whereas starting on 2𝑘𝑛𝑠. 

𝐿3 = {𝑛1 = 1; 𝑛2 = 3; 𝑛3 = 5; 𝑛4 =  7;… ; 𝑛ℎ−1 = 2(ℎ − 2) + 1; 𝑛ℎ =  2(ℎ − 1) + 1}                  (122) 

Proof of Theorem 22 

Supposing that every odd number 𝑛𝑠 from the group 𝐿3 is converging to the number (𝑃3 = 1) when repeating the 

operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠. 

In the case of having a number (𝑛𝑠3 = 2𝑘𝑛𝑠) 𝑤ℎ𝑒𝑟𝑒 (𝑘 ∊ ⟦1,+∞⟦), it will be even. Therefore, we will keep dividing this 

number. 𝑛𝑠3 on “2” until reaching the next odd number, which is 𝑛𝑠. Consequently, repeating the operations of the Collatz 

conjecture, starting on (𝑛𝑠3 = 2𝑘𝑛𝑠) will eventually converge to the number “1”. 

As a result, the given statements and formulas in Theorem 22 are correct, because every even number (𝑛𝑠3 = 2𝑘𝑛𝑠) will 

be converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas starting these 

operations on 𝑛𝑠3
. 

6.5. Fourth Proposed Theorem for Multi-Step Convergence of Collatz Operations 

This subsection presents a theorem proving that if we have a group of odd numbers 𝐿4 (𝐿4 ∊ 𝑁), where every odd number 

(𝑛𝑠) in this group is converging to inferior values than itself when repeating the operations of the Collatz conjecture, whereas 

starting these operations on 𝑛𝑠; then, we will have other even numbers and odd numbers expressed as {2𝑘𝑛𝑠, 2𝑛𝑠 + 1, 2𝑛𝑠 + 3}  

also converging to inferior values than themselves when repeating the operations of the Collatz conjecture, whereas starting on 

them. 

Considering the odd number (2𝑛𝑠 + 5); we can re-express it as (2𝑛𝑠 + 5 = 2𝑛𝑠+1 + 1) where {𝑛𝑠 = 2(𝑠 − 1) − 1} and 

{𝑛𝑠+1 = 2(𝑠) − 1} are two consecutive odd numbers. Therefore, the odd number (2𝑛𝑠 + 5) is already covered by the developed 

theorems. The same logic can be applied to the odd number (2𝑛𝑠 + 4𝑎 + 1 | 𝑎 ∊ ⟦1, +∞⟦) which we can express as 

(2𝑛𝑠 + 4𝑎 + 1 = 2𝑛𝑠+𝑎 + 1 | 𝑎 ∊ ⟦1, +∞⟦). 

Theorem 23 

Supposing having a group 𝐿4 containing odd numbers, where the minimum odd number in 𝐿4 is {𝑛1 = 1} and the maximum 

odd number is {𝑛𝑚 = 2(𝑚 − 1) + 1}; as shown in (Equation. 123). If every odd number 𝑛𝑠 from this group (𝐿4) is converging 

to a value (𝑃4 = 1) inferior to itself when repeating the operations of the Collatz conjecture, whereas starting these operations 

on 𝑛𝑠; then every natural number 𝑛𝑠
′   ({𝑛𝑠

′ = 2𝑘𝑛𝑠 𝑜𝑟 𝑛𝑠
′ = 2𝑛𝑠 + 1 𝑜𝑟 𝑛𝑠

′ = 2𝑛𝑠 + 3}(𝑘 ∊ ℕ))  is also converging to an 

inferior value (𝑃4 = 1) (where 𝑃4 ≤ 𝑛𝑚) when repeating the operations of the Collatz conjecture, whereas starting these 

operations on 𝑛𝑠
′ . 

 

𝐿4 = {𝑛1 = 1; 𝑛2 = 3; 𝑛3 = 5; 𝑛4 =  7;… ; 𝑛𝑚−1 = 2(𝑚 − 2) + 1; 𝑛𝑚 =  2(𝑚 − 1) + 1}       (123) 
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Proof of Theorem 23 

Supposing having the group 𝐿4 containing odd numbers where the minimum is {𝑛1 = 1} and the maximum is {𝑛𝑚 =

2(𝑚 − 1) + 1}, whereas supposing every odd number 𝑛𝑠 from this group (𝐿4) is converging to a value (𝑃4 = 1) inferior to 

itself when repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠. 

According to the subsection of Theorem 20, we proved that if an odd number 𝑛𝑠 is converging to the number “1” when 

repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠; then the odd number expressed as 

(𝑛𝑠
′ = 2𝑛𝑠 + 1) is also converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas 

starting on 𝑛𝑠
′ . 

According to the subsection of Theorem 21, we proved that if an odd number 𝑛𝑠 is converging to the number “1” when 

repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠; then the odd number expressed as 

(𝑛𝑠
′ = 2𝑛𝑠 + 3) is also converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas 

starting on 𝑛𝑠
′ . 

According to the subsection of Theorem 22, we proved that if an odd number 𝑛𝑠 is converging to the number “1” when 

repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠; then the even number expressed as 

(𝑛𝑠
′ = 2𝑘𝑛𝑠) (𝑤ℎ𝑒𝑟𝑒 𝑘 ∊ {ℕ − {0}}) is also converging to the number “1” when we keep repeating the operations of the 

Collatz conjecture, whereas starting on 𝑛𝑠
′ . 

Therefore, we deduce that the given statements by Theorem 23 are correct. 

6.6. Fifth Proposed Theorem for Multi-Step Convergence of Collatz Operations 

This subsection presents a theorem proving that if we have a group of natural numbers 𝐿5  (𝐿5 ∊ {𝑁 − {0}}), where every 

odd number (𝑛𝑠) in this group is converging to inferior values than itself when repeating the operations of the Collatz conjecture, 

whereas starting these operations on 𝑛𝑠; then, we will have a larger group 𝐿6 (𝐿6 ∊ {𝑁 − {0}}) twice the size of 𝐿5 where every 

natural number (𝑛𝑠
′  ∊ 𝐿6) is also converging to the number “1” when we keep repeating the operations of the Collatz 

conjecture, whereas starting on 𝑛𝑠
′  . 

 

Theorem 24 

Supposing a group 𝐿5 containing natural numbers, where the minimum number in 𝐿5 is {𝑛1 = 1} and the maximum number 

is {𝑛𝑚 = 𝑚}; as shown in (Equation. 124). If every odd number 𝑛𝑠 from this group (𝐿5) is converging to a value (𝑃5 = 1) 

inferior to itself when repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠; then every 

natural number 𝑛𝑠
′  from the group (𝐿6 = ⟦1, 2𝑛𝑚⟧) is also converging to the number “1” when we keep repeating the operations 

of the Collatz conjecture, whereas starting on 𝑛𝑠
′ . 

𝐿5 = {𝑛1 = 1; 𝑛2 = 2; 𝑛3 = 3; 𝑛4 =  4;… ; 𝑛𝑚−1 = (𝑚 − 1); 𝑛𝑚 =  𝑚}                              (124) 

Proof of Theorem 24 

Supposing that the group 𝐿5 is containing natural numbers where the minimum is {𝑛1 = 1} and the maximum is {𝑛𝑚 =

𝑚}, whereas supposing every odd number 𝑛𝑠 from this group (𝐿5) is converging to a value (𝑃5 = 1) inferior to itself when 

repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠. 

According to the subsection of Theorem 20, we proved that if the odd number 𝑛𝑠 is converging to the number “1” when 

repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠; then the odd number expressed as 

(𝑛𝑠
′ = 2𝑛𝑠 + 1) is also converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas 

starting on 𝑛𝑠
′ .  

Therefore, based on using Theorem 20, we deduce that every odd number (𝑛𝑠
′ = 2𝑛𝑠 + 1)  in the interval ⟦1, 2𝑛𝑚⟧ is 

converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas starting these 

operations on 𝑛𝑠
′ . 

According to the subsection of Theorem 21, we proved that if the odd number 𝑛𝑠 is converging to the number “1” when 

repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠; then the odd number expressed as 
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(𝑛𝑠
′ = 2𝑛𝑠 + 3) is also converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas 

starting on 𝑛𝑠
′ .  

Therefore, based on using Theorem 21, we deduce that every odd number expressed as (𝑛𝑠
′ = 2𝑛𝑠 + 3)  in the interval 

⟦1, 2𝑛𝑚⟧ is converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas starting 

these operations on 𝑛𝑠
′ . 

Considering the odd number (2𝑛𝑠 + 5); we can re-express it as (2𝑛𝑠 + 5 = 2𝑛𝑠+1 + 1) where {𝑛𝑠 = 2(𝑠′ − 1) − 1} and 

{𝑛𝑠+1 = 2(𝑠′) − 1} are two consecutive odd numbers. Therefore, the odd number (2𝑛𝑠 + 5) is already covered by the 

developed theorems. The same logic can be applied to the odd number (2𝑛𝑠 + 4𝑎 + 1 | 𝑎 ∊ ⟦1,+∞⟦) which we can express 

as (2𝑛𝑠 + 4𝑎 + 1 = 2𝑛𝑠+𝑎 + 1 | 𝑎 ∊ ⟦1, +∞⟦). 

According to the subsection of Theorem 22, we proved that if an odd number 𝑛𝑠 is converging to the number “1” when 

repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠; then every even number expressed 

as (𝑛𝑠
′ = 2𝑘𝑛𝑠) (where 𝑘 ∊ {𝑁 − {0}}) is also converging to the number “1” when we keep repeating the operations of the 

Collatz conjecture, whereas starting on 𝑛𝑠
′ . 

Therefore, based on using Theorem 22, we deduce that every even number 𝑛𝑠
′  in the interval ⟦1, 2𝑛𝑚⟧ is converging to the 

number “1” when we keep repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠
′ . 

As a result, we deduce that the given statements by Theorem 24 are correct. 

7. New Theorems Providing Algebraic Proofs on the Correctness of the Collatz Conjecture 
This section presents new theorems proving the correctness of the Collatz conjecture while proposing new unified formulas 

re-expressing this conjecture algebraically on natural numbers. 

7.1. First Proposed Theorem Proving Collatz Conjecture on Odd Numbers 

This subsection presents a theorem proving that all odd numbers are converging to the number “1” when we keep repeating 

the operations of the Collatz conjecture, whereas starting these operations on them, and they are all expressed according to a 

unified formula composed of distributed terms based on the group {2𝑘, 3𝑗}. 

Theorem 25 

Every odd number (𝑛𝑠1 ∊ ℕ) where we have (𝑛𝑠1 > 0), this number is converging to “1” when we keep repeating the 

operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠1 . This convergence is allowing us to express any 

odd number 𝑛𝑠1  (𝑛𝑠1 > 0) according to a unified formula composed of distributed terms as shown in (Equation 125). 

𝑛𝑠1  =
2
∑ 𝐾(𝑙)

𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝐾0 = 0 𝑎𝑛𝑑 𝐾(𝑖≥1) ∊ {ℕ − {0}}                           (125) 

Proof of Theorem 25 

Supposing having a group 𝐿1 containing natural numbers, where the minimum number in 𝐿1 is {𝑛1 = 1} and the maximum 

number is {𝑛𝑚 = 𝑚}.  

Supposing every odd number 𝑛𝑠1  from this group (𝐿1) is converging to a value (𝑃 = 1) inferior to itself when we keep 

repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠1; then, according to Theorem 24 in 

this paper, every odd number 𝑛𝑠1
′  from the group (𝐿2 = ⟦1, 21𝑛𝑚⟧) is also converging to the number “1” when we keep 

repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠1
′ . 

Now, we consider the group of natural numbers. (𝐿2 = ⟦1, 21𝑛𝑚⟧) where the minimum odd number is {𝑛1
′ = 1} and the 

maximum odd number is {2𝑛𝑚 − 1} 

Since every odd number 𝑛𝑠1
′  from this group (𝐿2) is converging to a value (𝑃′ = 1) inferior to itself when repeating the 

operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠1
′ ; then, according to Theorem 24 in this paper, 
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every odd number 𝑛𝑠1
"  from the group (𝐿3 = ⟦1, 22𝑛𝑚⟧) is also converging to the number “1” when we keep repeating the 

operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠1
" . 

The next step is relying on recurrence (induction) by considering the group of natural numbers (𝐿𝑗 = ⟦1, 2𝑗−1𝑛𝑚⟧) where 

the minimum odd number is {𝑛1
′ = 1} and the maximum odd number is {2𝑗−1𝑛𝑚 − 1}. 

Since every odd number 𝑛𝑠1
′  from the group (𝐿𝑗) is converging to a value (𝑃′ = 1) inferior to itself when repeating the 

operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠1
′ ; then, according to Theorem 24 in this paper, 

every odd number 𝑛𝑠1
"  from the group (𝐿𝑗+1 = ⟦1, 2𝑗𝑛𝑚⟧) is also converging to the number “1” when we keep repeating the 

operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠1
" . 

Therefore, by recurrence, we deduce that every odd number in the group (𝐿𝑗+1 = ⟦1, 2𝑗𝑛𝑚⟧) is converging to the number 

“1” when we keep repeating Collatz operations, which allow us to extend this deduction to the group 𝐿𝑗+1 where the value of 

the natural number “j” is going to infinity. 

Consequently, we deduce that every odd number 𝑛𝑠1
"  from the group {ℕ − {0}}  ({ℕ − {0}} = lim

𝑗→+∞
𝐿𝑗+1 =

lim
𝑗→+∞

⟦1, 2𝑗𝑛𝑚⟧) is converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas 

starting these operations on 𝑛𝑠1
" . 

Based on Theorem 6 in this paper, since every odd number 𝑛𝑠1
" from the group {ℕ − {0}}   ({ℕ − {0}} = lim

𝑗→+∞
𝐿𝑗+1 =

lim
𝑗→+∞

⟦1, 2𝑗𝑛𝑚⟧) is converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas 

starting these operations on 𝑛𝑠1
" ; we deduce that we can express 𝑛𝑠1

"  as shown in (Equation. 126): 

𝑛𝑠1
"  =

2
∑ 𝐾(𝑙)

𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝐾0 = 0 𝑎𝑛𝑑 𝐾(𝑖≥1) ∊ {ℕ − {0}}         (126) 

As a result, we deduce that the given statements and the proposed formula (Equation 125) in Theorem 25 are correct, 

which means that the given statements in the Collatz conjecture are correct for odd numbers, because every odd number 𝑛𝑠1
"  

from the group {ℕ − {0}} is converging to the number “1” when we keep repeating the operations of the Collatz conjecture, 

whereas starting these operations on 𝑛𝑠1
"  . 

7.2. Second Proposed Theorem Proving Collatz Conjecture on Even Numbers 

This subsection presents a theorem proving that all even numbers, except zero, converge to the number “1” when we keep 

repeating the operations of the Collatz conjecture, and they are all expressed according to a unified formula composed of 

distributed terms based on the group {2𝑘 , 3𝑗}. 

Theorem 26 

Every even number (𝑛𝑠2
∊ ℕ) where we have (𝑛𝑠2

> 0), this number is converging to “1” when we keep repeating the 

operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠2 . This convergence is allowing us to express any 

even number 𝑛𝑠2  (𝑛𝑠2 > 0) according to a unified formula composed of distributed terms as shown in (Equation 127). 

𝑛𝑠2
= 2𝑘

2
∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝐾0 = 0 𝑎𝑛𝑑 𝐾(𝑖≥1) ∊ {ℕ − {0}} 𝑎𝑛𝑑 𝑘 ∊ {ℕ − {0}}        (127) 

Proof of Theorem 26 

Supposing having a group 𝐿1 containing natural numbers, where the minimum number in 𝐿1 is {𝑛1 = 1} and the maximum 

number is {𝑛𝑚 = 𝑚}.  
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Supposing every odd number 𝑛𝑠 from this group (𝐿1) is converging to a value (𝑃 = 1) inferior to itself when we keep 

repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠; then, according to Theorem 24 in 

this paper, every odd number and even number 𝑛𝑠2
′   from the group (𝐿2 = ⟦1, 21𝑛𝑚⟧) is also converging to the number “1” 

when we keep repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠2
′ . 

Now, we consider the group of natural numbers (𝐿2 = ⟦1, 21𝑛𝑚⟧) where the minimum odd number is {𝑛1
′ = 1} and the 

maximum odd number is {2𝑛𝑚 − 1} 

Since every odd number 𝑛𝑠
′  from this group (𝐿2) is converging to a value (𝑃′ = 1) inferior to itself when repeating the 

operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠
′ ; then, according to Theorem 24 in this paper, every 

odd number and even number 𝑛𝑠2
"  from the group (𝐿3 = ⟦1, 22𝑛𝑚⟧) is also converging to the number “1” when we keep 

repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠2
" . 

The next step is relying on recurrence (induction) by considering the group of natural numbers (𝐿𝑗 = ⟦1, 2𝑗−1𝑛𝑚⟧) where 

the minimum odd number is {𝑛1
′ = 1} and the maximum odd number is {2𝑗−1𝑛𝑚 − 1}. 

Since every odd number 𝑛𝑠
′  from the group (𝐿𝑗) is converging to a value (𝑃′ = 1) inferior to itself when repeating the 

operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠
′  ; then, according to Theorem 24 in this paper, 

every odd number and even number 𝑛𝑠2
"  from the group (𝐿𝑗+1 = ⟦1, 2𝑗𝑛𝑚⟧) is also converging to the number “1” when we 

keep repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠2
" . 

Therefore, by recurrence, we deduce that every even number from the group (𝐿𝑗+1 = ⟦1, 2𝑗𝑛𝑚⟧) is converging to the 

number “1” when we keep repeating Collatz operations, which allow us to extend this deduction to the group 𝐿𝑗+1 where the 

value of the natural number “j” is going to infinity. 

Consequently, we deduce that every even number 𝑛𝑠2
"   from the group {ℕ − {0}} ({ℕ − {0}} = lim

𝑗→+∞
𝐿𝑗+1 =

lim
𝑗→+∞

⟦1, 2𝑗𝑛𝑚⟧) is converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas 

starting these operations on 𝑛𝑠2
" . 

Based on Theorem 6 and Theorem 25 in this paper, since every odd number 𝑛𝑠
"  from the group {ℕ − {0}}   

({ℕ − {0}} = lim
𝑗→+∞

𝐿𝑗+1 = lim
𝑗→+∞

⟦1, 2𝑗𝑛𝑚⟧) is converging to the number “1” when we keep repeating the operations of the 

Collatz conjecture, whereas starting these operations on 𝑛𝑠
" ; we deduce that we can express 𝑛𝑠

"  as shown in (Equation 128): 

𝑛𝑠
"  =

2
∑ 𝐾(𝑙)

𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ ℕ                                      (128) 

Therefore, we can express every even number 𝑛𝑠2
"  in the group {ℕ − {0}} ({ℕ − {0}} = lim

𝑗→+∞
𝐿𝑗+1 = lim

𝑗→+∞
⟦1, 2𝑗𝑛𝑚⟧) as 

shown in (Equation 129), since we can express every odd number in the same group as shown in (Equation 128). 

𝑛𝑠2
" = 2𝑘

2
∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}} 𝑎𝑛𝑑 𝑘 ∊ {ℕ − {0}}                 (129) 

 
As a result, we deduce that the given statements and the proposed formula (Equation 127) in Theorem 26 are correct, 

which means that the given statements in the Collatz conjecture are correct for even numbers, because every even number 𝑛𝑠2
"  

from the group {ℕ − {0}} is converging to the number “1” when we keep repeating the operations of the Collatz conjecture, 

whereas starting these operations on 𝑛𝑠2
" . 
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7.3. Third Proposed Theorem Proving Collatz Conjecture on Natural Numbers 

This section presents a theorem proving that all natural numbers, except zero, converge to the number “1” when we keep 

repeating the operations of the Collatz conjecture, and they are all expressed according to a unified formula composed of 

distributed terms based on the group {2𝑘 , 3𝑗}. 

Theorem 27 

Every natural number (𝑛𝑠 ∊ ℕ) where we have (𝑛𝑠 > 0), this number is converging to “1” when we keep repeating the 

operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠. This convergence is allowing us to express any 

natural number 𝑛𝑠 (𝑛𝑠 > 0) according to a unified formula composed of distributed terms as shown in (Equation 130). 

𝑛𝑠  = 2𝑘′
2
∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝐾0 = 0 𝑎𝑛𝑑 𝐾(𝑖≥1) ∊ {ℕ − {0}} 𝑎𝑛𝑑 𝑘′ ∊ ℕ                      (130) 

Proof of Theorem 27 

Supposing having a group 𝐿1 containing natural numbers, where the minimum number in 𝐿1 is {𝑛1 = 1} and the maximum 

number is {𝑛𝑚 = 𝑚}.  

Supposing every odd number 𝑛𝑠 from this group (𝐿1) is converging to a value (𝑃 = 1) inferior to itself when we keep 

repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠; then, according to Theorem 21 in 

this paper, every natural number 𝑛𝑠
′  from the group (𝐿2 = ⟦1, 21𝑛𝑚⟧) is also converging to the number “1” when we keep 

repeating the operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠
′ . 

Now, we consider the group of natural numbers (𝐿2 = ⟦1, 21𝑛𝑚⟧) where the minimum odd number is {𝑛1
′ = 1} and the 

maximum odd number is {2𝑛𝑚 − 1}. 

Since every odd number 𝑛𝑠
′  from this group (𝐿2) is converging to a value (𝑃′ = 1) inferior to itself when repeating the 

operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠
′ ; then, according to Theorem 21 in this paper, every 

natural number 𝑛𝑠
"  from the group (𝐿3 = ⟦1, 22𝑛𝑚⟧) is also converging to the number “1” when we keep repeating the 

operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠
" . 

The next step is relying on recurrence (induction) by considering the group of natural numbers (𝐿𝑗 = ⟦1, 2𝑗−1𝑛𝑚⟧) where 

the minimum odd number is {𝑛1
′ = 1} and the maximum odd number is {2𝑗−1𝑛𝑚 − 1}. 

Since every odd number 𝑛𝑠
′  from the group (𝐿𝑗) is converging to a value (𝑃′ = 1) inferior to itself when repeating the 

operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠
′ ; then, according to Theorem 21 in this paper, every 

natural number 𝑛𝑠
"  from the group (𝐿𝑗+1 = ⟦1, 2𝑗𝑛𝑚⟧) is also converging to the number “1” when we keep repeating the 

operations of the Collatz conjecture, whereas starting these operations on 𝑛𝑠
" . 

Therefore, by recurrence, we deduce that every natural number in the group (𝐿𝑗+1 = ⟦1, 2𝑗𝑛𝑚⟧) is converging to the 

number “1” when we keep repeating Collatz operations, which allow us to extend this deduction to the group 𝐿𝑗+1 where the 

value of the natural number “j” is going to infinity. 

Consequently, we deduce that every natural number 𝑛𝑠
"  from the group {ℕ − {0}}  ({ℕ − {0}} = lim

𝑗→+∞
𝐿𝑗+1 = lim

𝑗→+∞
⟦1, 2𝑗𝑛𝑚⟧) 

is converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas starting these 

operations on 𝑛𝑠
" . 

Based on the proposed formulas in Theorem 25 and Theorem 26 in this paper, we can express every natural number 𝑛𝑠
"  where 

(𝑛𝑠
" > 0)  as shown in (Equation. 131). 

𝑛𝑠
"  = 2𝑘′

2
∑ 𝑘(𝑙)
𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝑘(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝑘0 = 0 𝑎𝑛𝑑 𝑘(𝑖≥1) ∊ {ℕ − {0}} 𝑎𝑛𝑑 𝑘′ ∊ ℕ                      (131) 
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As a result, we deduce that the given statements and the proposed formula in Theorem 27 are correct, which means that 

the given statements in the Collatz conjecture are correct on natural numbers, because every natural number 𝑛𝑠
"  from the group 

{ℕ − {0}} is converging to the number “1” when we keep repeating the operations of the Collatz conjecture, whereas starting 

these operations on 𝑛𝑠
" . 

 

8. New Results Providing Insights on Prime Numbers basing on the Collatz Conjecture 
This section uses the presented unified formulas in this paper for the Collatz conjecture, in order to analyze characteristics 

of prime numbers, including their distribution.  

8.1. Using the Collatz conjecture on prime numbers 

Prime numbers have been intriguing for mathematicians for centuries, with the vision of finding unified formulas 

expressing them was always an axis of focus [19].  

There have been many patterns in algebra leading toward identifying some prime numbers like Mersenne primes [20], 

whereas the majority of prime numbers were not solidly linked into one conclusive pattern reinforced by algebraic proofs. 

Some published papers focused on counting the number of prime numbers and their distribution instead of identifying the 

values of primes themselves [21-22], since there has been no visible unified thread allowing the algebraic calculation of all 

prime numbers with perfect precision. However, there are some other analytic methods and probabilistic methods to 

approximate prime numbers and their distribution. 

The importance of prime numbers surpasses theoretical concepts by using them in cryptography [23], where encrypted 

data becomes more secure when using prime numbers for the generation of encryption keys, especially by using massive prime 

values or massive pseudoprime numbers in asymmetric cryptography [24]. 

The Collatz conjecture allows us to interconnect all natural numbers according to a tree (Figure 1), which inspired us 

toward developing unified formulas in this paper in order to re-express the operations of the Collatz conjecture. As a result, we 

were able to develop a unified formula interconnecting all odd numbers by re-expressing the operations of the Collatz 

conjecture as presented in Theorem 25, Theorem 8, and Theorem 6. 

In the tree presenting the Collatz conjecture in Figure 1, natural numbers are interconnected according to branches. 

Therefore, Theorem 25 in this paper presents a unified formula (Equation 132) interconnecting all odd numbers, whereas prime 

numbers are expected to be distributed according to different branches as shown in Figure 1. 

𝑛 =
2
∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝐾0 = 0 𝑎𝑛𝑑 𝐾(𝑖≥1) ∊ {ℕ − {0}}                           (132) 

In order to study the characteristics of prime numbers over the shown branches illustrating the Collatz conjecture according 

to a tree in (Figure 1), we will rely on analyzing the included variables and sub-expressions in the unified formula (Equation 

132), which we demonstrated in the proofs of Theorem 6 and Theorem 8. 

8.2. Using the Collatz Conjecture to Identify Patterns of Prime Numbers 

This subsection specifies six expressions deduced from the unified formula (Equation 132), which will allow analyzing 

potential patterns among prime numbers. These expressions are as presented from (Equation 133) up to (Equation 138). 

𝑃1 = ∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0                           (133) 

𝑃2 = 𝑚 − 1                          (134) 

𝑃3 = [2∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 ]                          (135) 

𝑃4 = [3𝑚−1]                            (136) 

𝑃5 = [2∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 − 𝑛 ∗ 3𝑚−1]                            (137) 
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𝑃6 = ∑ [3𝑖 ∗ 2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0                              (138) 

The first promising expression deduced from the shown formula in (Equation 132) is as presented in (Equation 140), 

which generates a specific pattern expressed by (Equation 141). 

𝑟𝑛 = [∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 ] 𝑀𝑂𝐷 [𝑛 − 1]                             (139) 

Fig. 6 Programmed codes in python to calculate values of PATTERN_n and graphically illustrate their evolutions. 
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𝑅𝑛 = 2[(𝑛−1)−𝑟𝑛] ∗ ∑ [3𝑖 ∗ 2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0                               (140) 

𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 = [𝑅𝑛] 𝑀𝑂𝐷 [𝑛]                            (141) 

We use the Python programming language, as shown in Figure 6, to create the codes that allow computing the results of 

the shown expressions in (Equation 139), (Equation 140), and (Equation 141), which allows calculating the values of the 

deduced pattern in (Equation 141). As a result, we obtain the graphical evolutions of the pattern as shown in Figure 7.  

The graphical evolutions in Figure 7 show a specific pattern of static values mainly repeated among prime numbers, where 

the value of ([𝑅𝑛]𝑀𝑂𝐷[𝑛]) is equal to “1” when “n” is a prime number. 

There are a few odd numbers {s} which are not prime numbers, but they still give values of pattern equal to “1” 

([𝑅𝑠]𝑀𝑂𝐷[𝑠] = 1). However, these odd numbers are rare in the obtained results from the shown codes in Figure 6 and the 

illustrated pattern in Figure 7. In addition, these rare odd numbers, which are not primes, do not appear in the pattern until 

reaching the range ⟦28, +∞⟦, like the value (341) where ([𝑅341]𝑀𝑂𝐷[341] = 1), and these non-prime numbers are presenting 

a negligible quantity in the horizontal line of pattern (where 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 = 1) by comparison to the quantity of prime numbers 

in the same line. 

The shown expression of 𝑅𝑛 in (Equation 141) is proposed in this paper as an alternative to using  (2𝑛−1𝑀𝑂𝐷[𝑛]), whereas 

the expression (2𝑛−1𝑀𝑂𝐷[𝑛]) was proposed by Pierre de Fermat [25-26], which was also forwarded by scaling up its logic 

toward verifying massive Mersenne primes [27-28], especially by using the Lucas-Lehmer primality test. 

The proposed pattern for 𝑅𝑛 This paper is composed of lower exponential values and is also composed of distributed terms, 

in comparison to the term. (2𝑛−1𝑀𝑂𝐷[𝑛]).  

The composition of the expression (𝑅𝑛𝑀𝑂𝐷[𝑛]) makes it take lower values at the computational level than 

(2𝑛−1𝑀𝑂𝐷[𝑛]) when "𝑛" goes to infinity, and also allows calculating the values of distributed terms (∑ [3𝑖 ∗𝑖=𝑚−2
𝑖=0

2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−2
𝑗=0 ])  by using a reduction pattern and parallel computation [29], which can minimize the computation time 

exponentially. 

The advantage of the proposed pattern (𝑅𝑛𝑀𝑂𝐷[𝑛]) in this paper, we are allowed to identify potential prime numbers, 

especially infinite primes, because we can compute the calculation of each distributed term ([3𝑖 ∗ 2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−2
𝑗=0 ]𝑀𝑂𝐷[𝑛]) 

according to a separate thread in parallel with other terms, while having the possibility of using reduction patterns, we can 

replace the value of  ([2∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 − 3(𝑚−1) ∗ 𝑛]  𝑀𝑂𝐷 [𝑛]) with the sum of terms ([∑ [3𝑖 ∗𝑖=𝑚−2

𝑖=0

2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−2
𝑗=0 𝑀𝑂𝐷 [𝑛]]]  𝑀𝑂𝐷 [𝑛]). As a result, the proposed pattern (𝑅𝑛𝑀𝑂𝐷[𝑛]) can exponentially reduce the computation 

time of verifying infinity prime numbers by comparison to using (2𝑛−1𝑀𝑂𝐷[𝑛]). 

 

Furthermore, the pattern (𝑅𝑛𝑀𝑂𝐷[𝑛]) can be expressed over less RAM (Random Access Memory) space than 

(2𝑛−1𝑀𝑂𝐷[𝑛]), because we can calculate each term ([3𝑖 ∗ 2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−2
𝑗=0 ]𝑀𝑂𝐷[𝑛]) from the proposed pattern according to a 

converging reduction pattern while using parallel threads, whereas each one among these terms ([3𝑖 ∗ 2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−2
𝑗=0 ] 𝑀𝑂𝐷[𝑛]) 

can have a lower exponential value than (2𝑛−1𝑀𝑂𝐷[𝑛]), which can massively optimize the use of RAM space while reducing 

the computation time. 
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Fig. 7 Computed graphs showing the evolution of the values of PATTERN_n in function of odd numbers. 

 

Therefore, we are proposing four new conjectures based on the operations of the Collatz conjecture and the proposed 

unified formulas in this paper to verify whether an odd number may be a prime or not, while preparing the proofs of these four 

new conjectures to be published in a future article. 

When verifying a possible prime number by using the proposed conjectures in this paper, the exponential value of (3𝑖) 

can be less than the exponential value of (2𝑛−1) because the value of (𝑖) is in the range ⟦0,𝑚⟧, whereas 𝑚 is the number of 
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the coefficients {𝐾(𝑖)}. In addition, the exponential value of (2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−2
𝑗=0 ) can also be less than the exponential value of 

(2𝑛−1), whereas we will have the possibility of computing the distributed terms (∑ [3𝑖 ∗ 2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−2
𝑗=0 𝑀𝑂𝐷[𝑛]]𝑖=𝑚−2

𝑖=0 ) by 

using a reduction pattern and parallel computation to identify the values of the proposed patterns. 

The advantage of these four new conjectures in this paper is relying on the Collatz conjecture to verify finite and infinite 

prime numbers while consuming less computing time by allowing more parallel computation of distributed terms, whereas 

using reduction patterns. In addition, these four new conjectures are designed to allow the reduction of the use of RAM 

(Random Access Memory) space, where the value of the new proposed patterns can occupy portions of memory space by 

comparison to the pattern (2𝑛−1𝑀𝑂𝐷[𝑛]). 

Conjecture 1 

If (𝑛) is an odd number, then we can conduct the operations of the Collatz conjecture, which are re-expressed in 

Theorem 25, in order to present this odd number as shown in (Equation 142). 

After expressing the odd number (𝑛) as shown in (Equation 142), whereas expressing the values of 𝑟𝑛 and 𝑅𝑛 as 

consecutively shown in (Equation 143) and (Equation 144); if 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 shown in (Equation 145) is equal to “1”, then the 

odd number (𝑛) can be a prime number as shown in (Equation 146). 

To enhance the computation of the shown pattern expression (𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛) in (Equation 145) at the levels of exploiting 

memory space and processing time, we can re-express this pattern as shown in (Equation 147). 

𝑛 =
2
∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝐾0 = 0 𝑎𝑛𝑑 𝐾(𝑖≥1) ∊ {ℕ − {0}}                         (142) 

𝑟𝑛 = [∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 ] 𝑀𝑂𝐷 [𝑛 − 1]                           (143) 

𝑅𝑛 = 2[(𝑛−1)−𝑟𝑛] ∗ ∑ [3𝑖 ∗ 2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0                            (144) 

𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 = [𝑅𝑛] 𝑀𝑂𝐷 [𝑛]                           (145) 

𝑖𝑓 (𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 = 1) 𝑖𝑠 𝑡𝑟𝑢𝑒 ⟹ n𝑐𝑎𝑛 𝑏𝑒 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟                          (146) 

𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 ≡ [(2[(𝑛−1)−𝑟𝑛]𝑀𝑂𝐷 [𝑛]) ∗ ∑ [3𝑖 ∗ 2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−2
𝑗=0 𝑀𝑂𝐷 [𝑛]]𝑖=𝑚−2

𝑖=0 ]𝑀𝑂𝐷 [𝑛]                           (147) 

Conjecture 2 

If (𝑝) is an odd number, then we can conduct the operations of the Collatz conjecture, which are re-expressed in Theorem 

25, in order to present this odd number as shown in (Equation 148). 

After expressing the odd number (𝑝) as shown in (Equation 148), whereas expressing the values of 𝑟𝑝, 𝑟𝑝
′, 𝑠𝑝

′  and 𝑅𝑝
′  as 

consecutively shown from (Equation 149) up to (Equation 152); if 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑝
′   shown in (Equation 153) is equal to “1”, then 

the odd number (𝑝) can be a prime number as shown in (Equation 154). 

To enhance the computation of the shown pattern expression (𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑝
′) in (Equation 153) at the levels of exploiting 

memory space and processing time, we can re-express this pattern as shown in (Equation 155). 

 

𝑝 =
2
∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝐾0 = 0 𝑎𝑛𝑑 𝐾(𝑖≥1) ∊ {ℕ − {0}}                         (148) 

𝑟𝑝 = [∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 ] 𝑀𝑂𝐷 [𝑝 − 1]                         (149) 
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𝑟𝑝
′ = [(𝑝 − 1) − 𝑟𝑝] 𝑀𝑂𝐷 [𝑟𝑝]                    (150) 

𝑠𝑝
′ = 𝑚𝑎𝑡ℎ. 𝑓𝑙𝑜𝑜𝑟 [

((𝑝−1)−𝑟𝑝)

𝑟𝑝
] + 1                    (151) 

𝑅𝑝
′ = 2𝑟𝑝

′
∗ [∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0  ]
𝑠𝑝
′

                   (152) 

𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑝
′ = [𝑅𝑝

′ ] 𝑀𝑂𝐷 [𝑝]                    (153) 

𝑖𝑓 (𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑝
′ = 1) 𝑖𝑠 𝑡𝑟𝑢𝑒 ⟹ p𝑐𝑎𝑛 𝑏𝑒 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟                   (154) 

𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑝
′ ≡

[
 
 
 
 

(2𝑟𝑝
′
 𝑀𝑂𝐷 [𝑝]) ∗ [(∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0  𝑀𝑂𝐷 [𝑝]]𝑖=𝑚−2

𝑖=0 )

𝑠𝑝
′

𝑀𝑂𝐷 [𝑝]]

]
 
 
 
 

𝑀𝑂𝐷 [𝑝]                  (155) 

Conjecture 3 

If (𝑞) is an odd number, then we can conduct the operations of the Collatz conjecture, which are re-expressed in 

Theorem 25, in order to present this odd number as shown in (Equation 156). 

After expressing the odd number (𝑞) as shown in (Equation 156), whereas expressing the values of 𝑟𝑞
′ and 𝑅𝑞

′  as 

consecutively shown in (Equation 157) and (Equation 158); if 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑞
′  shown in (Equation 159) is equal to “1” or if it is 

equal (𝑞 − 1), then the odd number (𝑞) can be a prime number as shown in (Equation 160). 

To optimize the computation of the shown pattern expression (𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑞
′) in (Equation 159) at the levels of exploiting 

memory space and processing time, we can re-express this pattern as shown in (Equation 161). 

𝑞 =
2
∑ 𝐾(𝑙)

𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝐾0 = 0 𝑎𝑛𝑑 𝐾(𝑖≥1) ∊ {ℕ − {0}}                  (156) 

𝑟𝑞
′ = [∑ 𝐾(𝑙)

𝑙=𝑚−1
𝑙=0 ] 𝑀𝑂𝐷 [

𝑞−1

2
]                   (157) 

𝑅𝑞
′ = 2[

(𝑞−1)

2
−𝑟𝑞

′] ∗ ∑ [3𝑖 ∗ 2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0                    (158) 

𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑞
′ = [𝑅𝑞

′ ] 𝑀𝑂𝐷 [𝑞]                   (159) 

𝑖𝑓 (𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑞
′ = 1 𝑜𝑟 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑞

′ = 𝑞 − 1 ) 𝑖𝑠 𝑡𝑟𝑢𝑒 ⟹ "𝑞" 𝑐𝑎𝑛 𝑏𝑒 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟                 (160) 

𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑞
′ ≡ [(2[

(𝑞−1)

2
−𝑟𝑞

′] 𝑀𝑂𝐷 [𝑞]) ∗ ∑ [3𝑖 ∗ 2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−2
𝑗=0  𝑀𝑂𝐷 [𝑞]]𝑖=𝑚−2

𝑖=0 ]  𝑀𝑂𝐷 [𝑞]                  (161) 

Conjecture 4 

If (𝑣) is an odd number, then we can conduct the operations of the Collatz conjecture, which are re-expressed in Theorem 

25, in order to present this odd number as shown in (Equation 162). 

After expressing the odd number (𝑣) as shown in (Equation 162), whereas expressing the values of 𝑟𝑣 , 𝑟𝑣
′, 𝑠𝑣

′  and 𝑅𝑣
′  as 

consecutively shown from (Equation 163) up to (Equation 166); if 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑣
′  shown in (Equation 167) is equal to “1” or if 

it is equal (𝑣 − 1), then the odd number (𝑣) can be a prime number as shown in (Equation 168). 

To optimize the computation of the shown pattern expression (𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑣
′) in (Equation 167) at the levels of exploiting 

memory space and processing time, we can re-express this pattern as shown in (Equation 169). 
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𝑣 =
2
∑ 𝐾(𝑙)

𝑙=𝑚−1
𝑙=0 −∑ [3𝑖∗2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0

3𝑚−1   | 𝐾0 = 0 𝑎𝑛𝑑 𝐾(𝑖≥1) ∊ {ℕ − {0}}                          (162) 

𝑟𝑣 = [∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 ] 𝑀𝑂𝐷 [

𝑣−1

2
]                            (163) 

𝑟𝑣
′ = [

(𝑣−1)

2
− 𝑟𝑣]  𝑀𝑂𝐷 [𝑟𝑣]                            (164) 

𝑠𝑣
′ = 𝑚𝑎𝑡ℎ. 𝑓𝑙𝑜𝑜𝑟 [

(
(𝑣−1)

2
−𝑟𝑣)

𝑟𝑣
] + 1                            (165) 

𝑅𝑣
′ = 2𝑟𝑣

′
∗ [∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0 ]𝑖=𝑚−2

𝑖=0  ]
𝑠𝑣
′

                            (166) 

𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑣
′ = [𝑅𝑣

′ ] 𝑀𝑂𝐷 [𝑣]                            (167) 

𝑖𝑓 (𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑣
′ = 1 𝑜𝑟 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑣

′ = 𝑣 − 1 ) 𝑖𝑠 𝑡𝑟𝑢𝑒 ⟹ "𝑣" 𝑐𝑎𝑛 𝑏𝑒 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟                        (168) 

𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑣
′ ≡ [(2𝑟𝑣

′
 𝑀𝑂𝐷 [𝑣]) ∗ ([∑ [3𝑖 ∗ 2

∑ 𝐾(𝑗)
𝑗=𝑚−𝑖−2
𝑗=0  𝑀𝑂𝐷 [𝑣]]𝑖=𝑚−2

𝑖=0  ]

𝑠𝑣
′

 𝑀𝑂𝐷 [𝑣])]  𝑀𝑂𝐷 [𝑣]                          (169) 

8.3. Using the Collatz conjecture to analyze the distribution of prime numbers 

 This subsection identifies specific distribution patterns of prime numbers over the group of natural numbers ℕ while relying 

on the proposed formulas re-expressing the Collatz conjecture in this paper. 

 In the previous subsection, we proposed four conjectures identifying patterns of prime numbers, where the goal is to deduce 

whether an odd number can be a prime or not while relying on the proposed formulas re-expressing the Collatz conjecture in 

this paper. 

 The four patterns { 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑞
′  ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑝

′  ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑣
′} The four proposed conjectures presented in 

the previous subsection extend the pattern {2𝑛−1 𝑀𝑂𝐷 [𝑛]}  to verify whether an odd number "𝑛" can be a prime or not. In 

addition, these proposed patterns are enhancing the used mathematical expressions by relying on proposed formulas re-

expressing the Collatz conjecture in Theorem 25, Theorem 8, and Theorem 6 in this paper. 

 The four proposed patterns { 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑞
′  ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑝

′  ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑣
′} are composed of mathematical 

expressions with lower exponential values than {2𝑛−1 𝑀𝑂𝐷 [𝑛]}, and also composed of distributed terms {∑ [3𝑖 ∗𝑖=𝑚−2
𝑖=0

2
∑ 𝐾(𝑗)

𝑗=𝑚−𝑖−2
𝑗=0 ]}, which opens the way to minimize the use of RAM (Random Access Memory) space for exponential values, 

especially when the odd number “𝑛” is scaling up to infinity. In addition, these distributed terms allow the use of reduction 

patterns while deploying more parallel computation by relying on multithreading, parallel streams, and distributed computation 

on CPUs (Central Processing Units) and cores, which can minimize processing time. 

 In this subsection, we are going to use Conjecture 1 to identify possible prime numbers while counting them according to 

specific ranges expressed as ⟦0,𝑀𝐴𝑋𝐿⟧ where L∊ℕ. 

 The proposed formulas in Theorem 25, Theorem 8, and Theorem 6 in this paper re-express the Collatz conjecture while 

being composed of a distributed architecture of terms based on the group {2𝑖 , 3𝑘}. Therefore, we are going to count and analyze 

the distribution of prime numbers according to exponential ranges expressed as ⟦0, 2𝐿⟧ where L∊ℕ. We are selecting the 

smallest natural number {2} from the group {2𝑖 , 3𝑘} as an essence to divide ranges as ⟦0, 2𝐿⟧ in order to analyze the distribution 

of prime numbers. 

 Usually, we use the sieve algorithm to identify prime numbers in computation because of its perfect theoretical precision. 

However, this algorithm of sieve relies on saving arrays or lists representing the majority of natural numbers in memory while 
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identifying prime numbers among them, which can consume a lot of RAM (Random Access Memory) space that can exceed 

Gigabytes or even exceed dozens of Gigabytes when scaling up to infinity numbers. Therefore, it will be useful to rely on 

specific patterns to identify the primality of odd numbers without saving them in memory space before and after their 

verification. 

 

 In Conjecture 1, we identified a pattern allowing us to verify whether an odd number can be a prime number or not, where 

𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 shown in (Equation 136) is equal to “1” when majorly "𝑛" is a prime number, which we deduced from the shown 

results in Figure 7. 

 

All values of 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 in Figure 7, the edges are distributed according to a triangular shape, where the maximum edge 

can be expressed by a linear equation, whereas the minimum edge is identified by a static value (𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 = 1) obtained 

majorly when "𝑛" is a prime number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Section 1 of developed codes in Java programming language for comparison between using Conjecture 1 and Sieve algorithm to count the 

amount of prime numbers in the range ⟦𝟎, 𝟐𝒏⟧ 
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 The shown expression of 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 in (Equation 136) is based on 𝑅𝑛 which is presented in (Equation 135), whereas 𝑅𝑛 

consists of the subexpression {2[(𝑛−1)−𝑟𝑛]}. In addition, all odd numbers are expressed as shown in (Equation 133), which 

consists of the subexpression (2∑ 𝐾(𝑙)
𝑙=𝑚−1
𝑙=0 ). Therefore, we use the Java programming language to create the shown codes in 

{Figures 8, 9, and 10}, in order to count prime numbers in each range ⟦0, 2(𝑛)⟧, which generates the illustrated evolution in 

blue color shown in Figure 11. 

Fig. 9 Section 2 of developed codes in Java programming language for comparison between using Conjecture 1 and Sieve algorithm to count the 

amount of prime numbers in the range ⟦𝟎, 𝟐𝒏⟧ 
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Fig. 10 Section 3 of developed codes in Java programming language for comparison between using Conjecture 1 and Sieve algorithm to count the 

amount of prime numbers in the range ⟦𝟎, 𝟐𝒏⟧ 

 The results shown in blue in Figure 11 present the calculated amount of prime numbers (𝜋𝑐1(2
(𝑛))) expressed in (Equation 

171), which shows an exponential evolution of the number of prime numbers as a function of the natural number “𝑛”.  

 The presented function (𝜋𝑐1(2
(𝑛))), in (Equation 171), the expression is used Γ𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑖

 shown in (Equation 170) to 

identify the primality of odd numbers while relying on Conjecture 1. 

Γ𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑖
= {

1, 𝑖𝑓(𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑖 = 1) 

0, 𝑖𝑓(𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑖 ≠ 1) 
           (170) 

𝜋𝑐1(2
(𝑛)) = 1 + ∑ Γ𝑃𝐴𝑇𝑇𝐸𝑅𝑁(2𝑖+1)

2(𝑛−1)

𝑖=0
 | 𝑛 ∊ {ℕ − {0}}           (171) 

 The green color in Figure 11 presents the actual number of prime numbers in each range ⟦0, 2(𝑛)⟧ by using the sieve 

algorithm to calculate (πs(2
(𝑛)), whereas the red color presents the error difference [𝜋𝑐1(2

(𝑛)) − πs(2
(𝑛))]. 
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Fig. 11 Comparison graphs between using Conjecture 1 and Sieve algorithm to count the amount of prime numbers in the range ⟦𝟎, 𝟐𝒏⟧ 

 From the shown results in Figure 11, we deduce that counting prime numbers by using Conjecture 1 in each range ⟦0, 2(𝑛)⟧ 

is highly approximating the actual number of prime numbers identified by using the sieve algorithm, whereas the error 

difference between them is negligible by comparison to the actual number of primes. 

 Since the error difference [𝜋𝑐1(2
(𝑛)) − πs(2

(𝑛))] between approximated amount of prime numbers and actual amount of 

prime numbers is neglectable by comparison to the actual amount of primes (Figure 11), we deduce that we can use the proposed 

patterns in this paper as an official way to determine prime numbers whereas searching for specific criteria and testing 

conditions to eliminate the odd numbers that are generating the error difference in these proposed patterns. 

 Since the evolution of the number of prime numbers (π(2𝑛)) in function of the natural number “𝑛” is taking an exponential 

model as shown in Figure 12, we can approximate this amount (π(2𝑛)) as presented in (Equation 172), where the error function 

𝜀(𝑛) is presenting a negligible value by comparison to the exponential value (𝑒(𝛼𝑛+𝛽)). 
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π(2𝑛) = 𝑒(𝑛𝛼+𝛽) − 𝜀(𝑛)                              (172) 

The results shown in Figure 12 in blue color present the evolution of the values (𝐷𝑖𝑣 (π(2𝑛+1))) which is expressed as 

shown in (Equation  173). 

Fig. 12 Illustration graphs showing the evolution of primes counter [𝛑(𝟐𝒏)] and the coefficient [𝑫𝒊𝒗(𝛑(𝟐𝒏+𝟏))] in the range ⟦𝟎, 𝟐𝒏⟧ 

 

                                                                                                                       𝐷𝑖𝑣 (π(2𝑛+1)) =
π(2𝑛+1)−π(2𝑛)

π(2𝑛)
                         (173) 

 According to the shown results by red color in Figure 12, we find that the amount of prime numbers follows specific 

patterns when we count them in each range expressed as ⟦1, 2𝑛+1⟧, where the blue value of 𝐷𝑖𝑣 (π(2𝑛+1)) is converging toward 

a stable linear level when “𝑛” goes to higher values. 

 The blue function of 𝐷𝑖𝑣 (π(2𝑛+1)) Figure 12 has oscillating patterns at the starting values before converging toward a 

stable linear level when “𝑛” goes to higher values, where the oscillations attenuate, which inspires considering the inclusion of 

harmonic functions, not only to analyze the distribution of prime numbers but also to identify the precise values of possible 

primes. 

 The shown oscillations by 𝐷𝑖𝑣 (π(2𝑛+1)) in Figure 12, the inclusion of harmonic functions with specific frequencies in 

expressing the values of 𝐷𝑖𝑣 (π(2𝑛+1)), which is encouraging toward extending the results of this paper while considering the 

Zeta function of Riemann and related harmonics to the Riemann hypothesis [29-30].  

 As long as we keep counting prime numbers toward infinity while using the function π(2𝑛), the evolution keeps following 

an exponential behavior as shown in Figure 11 and Figure 12, whereas the value of  𝐷𝑖𝑣 (π(2𝑛+1)) (Equation 173) keeps 

converging toward a stable linear level with a specific limit, which we can approximate as shown in (Equation 174). 
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lim
𝑛→∞

𝐷𝑖𝑣 (π(2𝑛+1)) ≈ (𝑒𝛼 − 1)                      (174) 

 Since the function π(2𝑛+1) is having an exponential evolution, as shown in Figures 11 and 12, which we can express as 

(π(2𝑛+1) = 𝑒((𝑛+1)𝛼+𝛽) − 𝜀(𝑛)), therefore, we can calculate the space occupied under the evolution of π(2𝑛+1) in Figures 11 

and 12 by using the integral shown in (Equation 175). 

∫ π(2𝑖)𝑑𝑖
𝑛+1

0

= ∫ 𝑒(𝑖𝛼+𝛽)𝑑𝑖
𝑛+1

0

− ∫ 𝜀(𝑖)𝑑𝑖
𝑛+1

0

⟹ ∫ π(2𝑖)𝑑𝑖
𝑛+1

0

=
1

𝛼
[𝑒(𝑖𝛼+𝛽)]

0

𝑛+1
− ∫ 𝜀(𝑖)𝑑𝑖

𝑛+1

0

 

⟹ ∫ π(2𝑖)𝑑𝑖
𝑛+1

0
=

1

𝛼
(𝑒((𝑛+1)𝛼+𝛽) − 𝑒𝛽) − ∫ 𝜀(𝑖)𝑑𝑖

𝑛+1

0
                    (175) 

Based on the presented expression in (Equation 175), we deduce that we can express the value of 𝑒((𝑛+1)𝛼+𝛽) as shown in 

(Equation. 176). 

𝑒((𝑛+1)𝛼+𝛽) = 𝛼 ∫ π(2𝑖)𝑑𝑖
𝑛+1

0
+ 𝛼 ∫ 𝜀(𝑖)𝑑𝑖

𝑛+1

0
+ 𝑒𝛽                   (176) 

Since the value of π(2𝑛+2) is based on using the exponential function, we deduce that the integral 𝛼 ∫ π(2𝑖)𝑑𝑖
𝑛+1

0
 can be used to 

calculate the value of π(2𝑛+2), which can also allow us to present π(2𝑛+2) in terms of ∑ π(2𝑖)

𝑛+1

𝑖=1
Δ𝑖 . 

As a result, we can express the value of π(2𝑛+2) as shown in (Equation 177). 

π(2𝑛+2) = 𝛼𝑒𝛼 ∫ π(2𝑖)𝑑𝑖
𝑛+1

0
+ 𝛼𝑒𝛼 ∫ 𝜀(𝑖)𝑑𝑖

𝑛+1

0
+ 𝑒𝛼+𝛽 − 𝜀(𝑛+2)                    (177) 

 The presented expressions in (Equation 176) and (Equation 177) highlight the possibility of using the sum of previous 

values expressed as π(2𝑖) to approximate the value of π(2𝑛+2) for 10:10:00 AM prime counting. In addition, the shown 

expressions in (Equation 176) and (Equation 177) highlight the possibility of approximating π(2𝑖) by using an exponential 

function along with an error function 𝜀(𝑖) which have negligible values by comparison to π(2𝑖). Furthermore, the illustrated 

results in Figure 11 highlight that using the proposed conjecture in this paper (Conjecture 1) to identify possible prime numbers 

provides high precision in their identification, which allows approximating the number of prime numbers π(2𝑖) with exemplary 

precision. 

8.4. Resulted insights from using the Collatz conjecture on prime numbers 

 In the previous sub-sections, we relied on using the Collatz conjecture and the unified formula of Theorem 25 in this paper 

to identify patterns of prime numbers, while analyzing their distribution in the group of natural numbers ℕ. 

The resulting insights from the previous sub-section are as follows: 

1) The operations of the Collatz conjecture can be re-expressed according to unified formulas, which are presented in 

Theorem 25, Theorem 8, and Theorem 6 in this paper, along with proofs. 

2) All proposed unified formulas in this paper to re-express the operations of the Collatz conjecture are built on the group of 

numbers {2𝑖 , 3𝑘} where "𝑖" and "𝑘" are natural numbers. 

3) The proposed formula in Theorem 25 re-expresses the operation of the Collatz conjecture according to one unified form 

interconnecting all odd numbers. 

4) The proposed Theorems and formulas in this paper can be scaled up by forwarding the Collatz Conjecture and the sub-

expressions of the proposed formulas in order to architect specific new formulas that can either test primality or calculate 

successive series of prime numbers.  

5) We used the sub-expressions and variables included in the presented unified formula in Theorem 25 to identify possible 

prime numbers according to specific patterns. 

6) We proposed four new conjectures presenting four patterns { 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑞
′  ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑝

′  ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑣
′} to 

identify possible prime numbers by using Collatz operations and the proposed unified formula in Theorem 25. 
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7) The proposed four patterns  { 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑞
′  ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑝

′  ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑣
′}. 𝑇he four proposed conjectures are 

based on re-expressing the pattern  {2𝑛−1 𝑀𝑂𝐷 [𝑛]} to determine whether an odd number “s” can be a prime or not. 

8) The four proposed patterns  { 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑞
′  ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑝

′  ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑣
′} are expressed according to a 

distributed architecture of terms, which allows for computing them while using more reduction patterns and more parallel 

threads. 

9) The four proposed patterns  { 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑞
′  ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑝

′  ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑣
′} are expressed according to a 

distributed architecture of terms, where each term has a lower exponential value than the pattern {2𝑛−1 𝑀𝑂𝐷 [𝑛]}, which 

allows them to occupy less memory space as presented in the four proposed conjectures. 

10) Computing the four proposed patterns  { 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑞
′  ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑝

′  ;  𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑣
′}.  Using more reduction 

patterns and more parallel threads can optimize the exploitation of memory space and processing time. 

11) We used the proposed pattern 𝑃𝐴𝑇𝑇𝐸𝑅𝑁𝑛 in Conjecture 1, to count prime numbers (π𝑐1(2
𝐿)) in different ranges expressed 

as ⟦0, 2𝐿⟧ where 𝐿 ∊ {ℕ − {0}}. 

12) Counting prime numbers by using (π𝑐1(2
𝐿)), while relying on the proposed conjecture (Conjecture 1), is highly 

approximating the actual number of prime numbers in Figure 11, which we calculated by using the sieve algorithm 

(π𝑠(2
𝐿)). 

13) The error difference (π𝑐1(2
𝐿) − π𝑠(2

𝐿)) between counting prime numbers while using Conjecture 1 and counting them 

by using the sieve algorithm is negligible by comparison to the actual number of primes, as shown in Figure 11. 

14) We can use the proposed patterns in this paper as an official way to determine primes, whereas searching for specific 

criteria and testing conditions in order to eliminate the odd numbers that generate the error difference (π𝑐1(2
𝐿) − π𝑠(2

𝐿)) 

in proposed patterns. 

15) The number of prime numbers using the function (𝜋(2𝑛)) is having an exponential behavior with a negligible error, as 

shown in Figures 11 and 12. 

16) The number of prime numbers by using the function (𝜋(2𝑛)) can be formulated by relying on an exponential function 

while including the use of a negligible error as follows: π(2𝑛) = 𝑒(𝑛𝛼+𝛽) − 𝜀(𝑛). 

17) The exponential evolution of the counted amounts of prime numbers when using the function (𝜋(2𝑛)) are allowing us to 

calculate the function 𝐷𝑖𝑣 (π(2𝑛+1)) =
π

(2𝑛+1)
−π(2𝑛)

π(2𝑛)
 in order to analyze the distribution of primes. 

18) The function 𝐷𝑖𝑣 (π(2𝑛+1)) is converging toward a stable linear level when the value of “n” is scaling up toward higher 

values, as shown in Figure 12. 

19) The shown convergence of the function 𝐷𝑖𝑣 (π(2𝑛+1)) in Figure 12, when the values of “n” are increasing, it leads to 

expressing the stable linear level of convergence as follows: lim
𝑛→∞

𝐷𝑖𝑣 (π(2𝑛+1)) ≈ (𝑒𝛼 − 1). 

20) The shown function 𝐷𝑖𝑣 (π(2𝑛+1)) in Figure 12 shows oscillating evolutions at the starting values, whereas converging 

toward a more stable linear level when the values of “n” are increasing. 

21) The shown oscillations by the function 𝐷𝑖𝑣 (π(2𝑛+1)) in Figure 12, this can be explained by the inclusion of harmonic 

functions with different frequencies. 

22) The inclusion of harmonic functions in expressing the function 𝐷𝑖𝑣 (π(2𝑛+1)) can be forwarded to analyze the distribution 

of prime numbers while deploying these harmonics, or even be used to identify specific values of primes or other specific 

patterns interconnecting them. 

23) The inclusion of harmonic functions with different frequencies in expressing the function 𝐷𝑖𝑣 (π(2𝑛+1)) is leading toward 

extending the results of this paper while considering the Zeta function of Riemann and related harmonics to the Riemann 

hypothesis. 

24) Expressing the number of prime numbers (𝜋(2𝑛+1)) by using an exponential function (𝑒((𝑛+1)𝛼+𝛽) − 𝜀(𝑛+1)) is allowing 

us to calculate the space under this function by using the integral. 

25) Calculating the space under the exponential function (𝑒((𝑛+1)𝛼+𝛽) − 𝜀(𝑛+1)) is allowing us to include the use of integral 

as follows: ∫ π(2𝑖)𝑑𝑖
𝑛+1

0
=

1

𝛼
(𝑒((𝑛+1)𝛼+𝛽) − 𝑒𝛽) − ∫ 𝜀(𝑖)𝑑𝑖

𝑛+1

0
. 
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26) Using an integral to calculate the space under the function (𝑒((𝑛+1)𝛼+𝛽) − 𝜀(𝑛+1)) is opening the way to calculate the value 

of (𝜋(2𝑛+2)) as follows: π(2𝑛+2) = 𝛼𝑒𝛼 ∫ π(2𝑖)𝑑𝑖
𝑛+1

0
+ 𝛼𝑒𝛼 ∫ 𝜀(𝑖)𝑑𝑖

𝑛+1

0
+ 𝑒𝛼+𝛽 − 𝜀(𝑛+2). 

27) Using an integral to calculate the space under the function (𝑒((𝑛+1)𝛼+𝛽) − 𝜀(𝑛+1)) is opening the way to calculate the value 

of (𝜋(2𝑛+2)) while relying on the precedent values of (𝜋(2𝑖)) whereas  𝑖 ∊  ⟦1, 𝑛 + 1⟧  . 

28) Using an integral to calculate the space under the function (𝑒((𝑛+1)𝛼+𝛽) − 𝜀(𝑛+1)) is opening the way to calculate the value 

of (𝜋(2𝑛+2)) while relying on the precedent values of error (𝜀(𝑖)) whereas  𝑖 ∊  ⟦1, 𝑛 + 1⟧  . 

29) Using an integral to express the value of (𝜋(2𝑛+2)) is opening the way to present the value of (𝜋(2𝑛+2)) in terms of 

∑ π(2𝑖)

𝑛+1

𝑖=1
Δ𝑖 . 

30) Using an integral to express the value of (𝜋(2𝑛+2)) is opening the way to present the value of (𝜋(2𝑛+2)) in terms of the 

errors ∑ 𝜀(𝑖)
𝑛+1

𝑖=1
Δ𝑖 . 

9. Conclusion 
 This paper presents algebraic proofs of the correctness of the Collatz conjecture by starting with the development of 

specific unified formulas forwarding the statements and logic of the Collatz conjecture, then building these proofs based on 

these formulas while relying on recurrence (induction). 

 This paper provides specific unified formulas linking all odd numbers by using the operations of the Collatz conjecture. 

Then, it scales up these formulas to express any natural number according to the operations of the Collatz conjecture. 

 This paper proves that there is no divergence when we keep repeating the operations of the Collatz conjecture on any 

natural number different from zero. In addition, this paper demonstrates that there is no Collatz loop where the operations of 

the Collatz conjecture circulate back to the starting number, “𝑛1” of the loop, except the loop where (𝑛1 = 1). 

The proposed unified formulas in this paper are used to prove that if any odd number, “𝑛𝑠”  is expressed according to these 

formulas, then this odd number is converging toward the value “1” when we keep repeating the operations of the Collatz 

conjecture on it. In addition, we used these formulas to prove that if any odd number, “𝑛𝑠”  is expressed according to these 

formulas, then other odd numbers are expressed as “2𝑛𝑠 + 1”  and “2𝑛𝑠 + 3”  are also converging to the value “1” when we 

keep repeating the operations of the Collatz conjecture on them. Furthermore, we used these formulas to prove that if any odd 

number, “𝑛𝑠”  is expressed according to these formulas, then any even number expressed as “2𝑘𝑛𝑠 | 𝑘 ∊ {ℕ − 0}”  is also 

converging toward the value “1” when using these operations of the Collatz conjecture. 

This paper also uses the operations of the Collatz conjecture while relying on the proposed unified formulas to identify 

specific patterns revealing possible prime numbers, while analyzing their distribution over the group of natural numbers ℕ, 

which allowed highlighting different insights on the characteristics of prime numbers. 

This paper also presents computational results by providing developed codes in Python and Java programming languages 

to compute the proposed unified formulas and to illustrate specific graphs that guide the development of proofs and theorems, 

which also allowed highlighting specific patterns and characteristics of prime numbers. 
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