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Abstract - This paper presents new theorems solving differential equations of nth-order, where the possibility of calculating 

solutions nearly in parallel is considered. These theorems are based on an engineering methodology that forwards the concept 

of solutions architecting according to an engineering approach, where the process of developing expressions and sub-

expressions of solutions is based on requirements engineering, analysis, design, and then developing the complete algebraic 

formulas of solutions to be scalable and projectable on any orders or degrees of equations. The new engineering methodology 

in this paper is initially developed to solve nth degree polynomial equations in general forms while using specific new unified 

formulas composed of radical expressions, which allow calculating the roots nearly in parallel. Then, this paper forwards this 

engineering methodology by using the roots of nth degree polynomial equations in general forms to solve differential equations 

of nth order. This methodology presents specific logic, statements, conditions, mathematical expressions, and new unified 

formulas that allow calculating the solutions of nth degree polynomials and nth-order differential equations. In addition, this 

paper presents the results of applying this engineered methodology to differential and polynomial equations of fourth degree, 

fifth degree, and sixth degree. This methodology is built on precise details that provide step-by-step logic and formulas to 

calculate the solutions, which allow concretizing multiple theorems, formulating the algebraic expressions of all solutions for 

different orders and degrees of equations, where the possibility of calculating the values of these solutions nearly in parallel 

while relying on distributed structures of terms. 

Keywords - Differential equations, New engineered methodology, Polynomial equations, Roots parallel calculations, Solutions architecting, 

Solving nth degree polynomials, Solving nth order differential equations. 

1. Introduction 
In the fields of mathematics, differential equations are specific forms of equations expressed by relying on derivatives, with 

at least one unknown function and its derivatives. 

 

Differential equations are widely used in physics, economics, biology, automation, industries, and engineering, because 

these differential equations formulate the relations between quantitative functions and their rates of change, which allow studying, 

analyzing, controlling, and even predicting the values and evolutions of these functions. 

 

These differential equations were introduced as a part of Calculus, which was invented in the 17th century by  Isaac Newton 

[1-3] and Gottfried Leibniz [2]. Since then, there have been many books and research papers tackling the solvability of 

differential equations and their classifications according to the properties of equations. 

 

Among the classes of differential equations, we have ordinary differentials [4], partial differentials [5], linear differentials 

[6], non-linear differentials [7], homogeneous differentials [8], and heterogeneous differentials [9]. In addition, there are other 

classes of differential equations that vary depending on context and properties of equations [10-12]. 

 

Ordinary differentials are a specific form of differential equations with exactly one unknown function and its derivatives 

based on one unknown variable, whereas partial differentials are more complex forms of differential equations handling multiple 

variables by at least one unknown function and its derivatives. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Gottfried_Leibniz
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Linear differentials are a category of differential equations that are linear in the unknown function and its derivatives, so 

they can be written in the form {(∑ 𝑎𝑖(𝑥) ∗ 𝑦
(𝑖)𝑖=𝑢

𝑖=0
) = 𝑏(𝑥)}. The expressions 𝑎0(𝑥), . . . ,  𝑎𝑛(𝑥) and 𝑏(𝑥) are 

arbitrary differentiable functions that do not need to be linear, whereas 𝑦′, . . . ,  𝑦(𝑛) are the consecutive derivatives of an unknown 

function y in term of the variable x. 

 

Nonlinear differentials are more complex forms of differential equations where the unknown function (or its derivatives) 

does not appear in a linear way. This means the equation cannot be expressed as a sum of terms where each term is a constant 

(or a function of independent variables) multiplied by either the unknown function of the dependent variable or one of its 

derivatives.  

 

A differential equation can be referred to as homogeneous in two scenarios. The first prospect is when we describe a first-

order differential equation as homogeneous if we can express it as follows: {𝑓(𝑥, 𝑦)𝑑𝑦 = 𝑔(𝑥, 𝑦)𝑑𝑥} 
where f and g are homogeneous functions of the same degree of x and y. The second prospect is when we describe a differential 

equation as being homogeneous if it is a homogeneous function of the unknown function and its derivatives. In simpler terms, 

this means that if we scale the input variables by a constant, the output of the function scales by a power of that constant. 

{𝑓(𝑡𝑥1, 𝑡𝑥2, … , 𝑡𝑥𝑚) = 𝑡
𝑘𝑓(𝑥1, 𝑥2, … , 𝑥𝑚)}. 

 

Heterogeneous differentials are differential equations where the right-hand side of the equation is not equal to zero, in case 

we dedicate this side of the equation to express only the independent variables. In simpler terms, it is a differential equation that 

includes a non-zero function of the independent variable(s) on one side of the equation or containing constant terms that are not 

multiplied by the function of the dependent variable or its derivatives. 

 

Among the most common methods to solve differential equations is converting them into polynomial forms of equations, 

then using the roots of these polynomials to express the solutions of differential equations. This method is built on the inductive 

relation between the order of differential equations and the degrees of polynomial equations. 

 

In order to help solve the nth-order differential equations, we need to start by converting them to polynomial forms of nth 

degree, then using the roots of these polynomials to express the solutions of corresponding differentials, which usually leads to 

using numerical analysis algorithms to find these roots, especially when the equations do not have symmetries and the nth degree 

is higher than four. 

 

Solving nth order differential equations and nth degree polynomials has been challenging for centuries for mathematicians, 

scientists, and researchers, particularly when looking for algebraic terms that may help express the roots of equations. This 

encountered challenge is due to the complexity of calculations that can outstrip the previsions of the human mind, especially 

when orders and degrees of equations are making them transcend above the quartic form. 

 

The complexity of mathematical calculations during the attempts to solve polynomial equations of high degrees is mainly 

due to using radicals while adopting particular approaches. In addition, reaching a point of having highly complex outcomes 

where the form of the resulting equation is far from foreseeing a simplification or reduction, will lead to conducting exhaustive 

changes on the used approach or even replacing it by adopting a different one. 

 

Adopting a specific approach to solve particular degrees or orders of equations leads to limitations in the resulting forms of 

equations, where simplifications and reductions are harder to conduct by comparison to the starting point. In addition, conducted 

calculations may expand at a high rate when searching for the solution while trying different approaches that may require 

restarting calculations from scratch. Furthermore, the induced complexity of the resulting forms of equations may lead to adopting 

a narrowed solution to be used on a specific form of polynomials or differential equations that have particular conditions stated 

by the values of included coefficients. 

 

As a result, discovering unified solution formulas for polynomials and differential equations in general forms and in complete 

forms is more challenging when relying on a research methodology where calculations and logic may need to be restarted from 

scratch when the approach is drastically modified or even replaced. 

 

Therefore, we rely on an engineering methodology where we construct the appropriate approach bit by bit based on patterns 

and characteristics that should be met. Then, we use this built approach to architect the adequate roots and to structure their 

https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/First_order_differential_equation
https://en.wikipedia.org/wiki/First_order_differential_equation
https://en.wikipedia.org/wiki/Homogeneous_function
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involved terms and sub-terms. Then, we forward logic and calculations toward engineering the mathematical formulas of all 

roots, in order to allow the calculation of all expected solutions nearly in parallel. 

 

Relying on this engineering methodology to solve polynomials and differential equations avoids us restarting the logic and 

calculations from scratch, and allows us to keep relying on the exact approach and results of calculations while conducting only 

slight modifications, when necessary, toward reaching the final forms of unified formulas. In addition, this engineering 

methodology allows us to project the exact approach and extend the same logic toward solving higher orders of differentials and 

higher degrees of polynomials. 

 

In this engineering methodology, the axis of focus is building and architecting the necessary formulas according to a scalable 

logic, where we start from requirements engineering toward designing the starting point, the path, the destination, and the 

structure of the expected final results. As a result, the calculations and adopted reasoning follow a pre-designed path toward 

structuring the unified formulas of nested roots. 

 

The advantage of this paper is presenting specific theorems listing algebraic formulas designed to solve fourth degree, fifth 

degree, and sixth degree polynomial equations in general forms by using radical expressions, where the possibility of calculating 

the values of all roots is nearly in parallel. Then, this paper presents theorems toward solving differential equations of fourth 

order, fifth order, and sixth order while providing the same convenience of calculating solutions nearly in parallel. 

 

This paper also presents the engineered requirements and techniques that lead to architect the results of proposed theorems, 

while allowing to scale the roots of nth degree polynomial equations toward calculating the solutions of nth order differential 

equations. 

 

This paper is a principal step in our work of solving nth order differential equations and nth degree polynomials based on 

projecting the presented methods and results in this paper on other equations where orders and degrees are higher than six, which 

will be presented in other articles. 

 

The proposed concept in this article about architecting solutions according to a distributed structure of terms can extend itself 

to different problems in geometry, number theory, and algebra in general, because this concept introduces an engineering 

methodology based on identifying patterns and characteristics that allow forwarding calculations and expressions toward specific 

converging points where the results are built step-by-step and not only searched. 

 

This engineering methodology was first used to develop the solutions of quartic polynomial equations in general forms [13], 

by building the unified formulas of the four roots of any quartic equation, which allow calculating the four solutions nearly 

simultaneously. Then, the same engineering methodology was scaled to solve quantic equations [14] in complete forms by 

proposing the necessary unified formulas of roots to calculate the five solutions nearly in parallel. In addition, this engineering 

methodology was used to solve sixth-degree polynomial equations [15] in complete form while providing the possibility of 

calculating the six solutions nearly in parallel. Therefore, this paper allows us to scale this engineering methodology and its 

results on nth order differential equations and nth degree polynomials. 

 

In addition, this paper presents new theorems developed to solve nth order differential equations and nth degree polynomial 

equations while providing necessary logic, conditions, parameters, and formulas to calculate the solutions nearly in parallel by 

extending the proposed methodologies. 

 

Furthermore, this paper presents new additional solutions for nth order differential equations that allow interconnecting 

many arbitrary points, which opens the way to scale up the range of using these differential equations in business analytics, data 

analytics, predictive analysis, and systems control. 

 

Because the content of this paper is original, and it embeds many new proposed formulas, mathematical expressions, and 

theorems which are built on extendable logic, this paper will focus on presenting these theorems and their formulas in a scaling 

manner, while relying on relevant proofs from the papers [13], [14], and [15]. 

 

The contents of this paper are structured as follows: Section 2 presents the used engineering methodology and its developed 

requirements and techniques to solve nth order differential equations. Section 3 presents the methodology used to solve nth 

degree polynomial equations. Section 4 presents six theorems developed to solve fourth-degree polynomial equations, allowing 

for the determination of the number of complex solutions. Section 5 presents developed theorems and formulas to solve fourth-
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order differential equations, allowing for determining the amount of expected complex functions among the solutions. Section 6 

presents two theorems developed to solve fifth-degree polynomial equations. Section 7, presenting developed theorems and 

formulas to solve fifth-order differential equations. Section 8, presenting two theorems developed to solve sixth-degree 

polynomial equations. Section 9, presenting developed theorems and formulas to solve sixth-order differential equations. Section 

10, presenting a developed theorem to solve nth degree polynomial equations. Section 11, presenting new developed theorems 

and formulas to solve nth order differential equations. Finally, Section 12 is for the conclusion. 

 

2. Methodology to Solve nth Order Differential Equations 
This section presents the requirements, the techniques, and the formulas to solve nth order differential Equations according 

to an organized method, step by step, while relying on the proposed methodology in this paper to solve nth degree polynomial 

equations.  

 

In addition, this section presents new unified solutions for nth order differential equations that allow interconnecting many 

arbitrary points, which allow scaling up their use in business analytics, data analytics, and predictive analysis by mapping 

variables and datums of collected data to each other while tracking macro transitions and micro variations among them. 

1. Expressing a differential equation of nth order according to the form ∑𝑐𝑖𝑓(𝑥)
(𝑖) = 𝐶 where 𝑓(𝑥)

(𝑖)
 is the derivation of order (𝑖), 

whereas 𝑐𝑖 and 𝐶 are arbitrary values. 

2. Supposing the function 𝑓(𝑥) is expressed as follows: 𝑓(𝑥) = 𝑒
𝑠𝑥+𝑎 + 𝑏. 

3. Expressing the derivative of order (𝑖) of the function 𝑓(𝑥) as follows 𝑓(𝑥)
(𝑘) = 𝑠𝑖𝑒𝑠𝑥+𝑎, where (𝑖 > 0). 

4. Converting the nth order differential equation to be presented as an nth degree polynomial form, which is expressed as 

follows: 𝑒𝑠𝑥+𝑎 ∗ ∑𝑐𝑖𝑠
𝑖 = 𝐶 − 𝑏𝑐0. 

5. In order to identify the value of the variable (𝑏), we consider the equation (𝑏𝑐0 + 𝑒
𝑠𝑥+𝑎 ∗ ∑𝑐𝑖𝑠

𝑖 = 𝐶) at the point of 

calculated root (𝑠 = 𝑠𝑘). 

6. Solving the equation (𝑏 ∗ 𝑐0 = 𝐶) in order to identify the value of the variable (𝑏), which is as follows: [𝑏 =
𝐶

𝑐0
] where 𝑐0 ≠

0. 

7. Solving the nth degree polynomial equation ∑𝑐𝑖𝑠
𝑖 = 0 in order to calculate n roots, which we can present in the form of the 

group {𝑠1; … ; 𝑠𝑛}. 
8. Using the proposed engineered methodology to solve the nth degree polynomial equation ∑𝑐𝑖𝑠

𝑖 = 0, or using numerical 

analysis. 

9. In order to calculate all the roots nearly in parallel for the polynomial equation ∑𝑐𝑖𝑠
𝑖 = 0, we use the proposed engineering 

methodology to solve nth degree polynomial equations. 

10. We identify an initialization condition for 𝑓(𝑥) where (𝑥 = 0). 

11. The initialization condition for 𝑓(𝑥) where (𝑥 = 0) should be presented as an arbitrary value, which is to be expressed as 

follows: 𝑓(𝑥=0) = 𝐼0. 

12. The value of the variable (𝑎) should be calculated by relying on the initialization condition. 

13. The value of the variable (𝑎) is to be identified by using the expression 𝑎 = log(𝐼0 − 𝑏), which allows calculating the value 

of the variable (𝑎) as follows: 𝑎 = log (𝐼0 −
𝐶

𝑐0
) where 𝑐0 ≠ 0. 

14. The solution of the nth order differential equation should be expressed as DSk = 𝑒
𝑠𝑘𝑥+log(𝐼0−

𝐶

𝑐0
)
+

𝐶

𝑐0
, where 𝑠𝑘 is a 

calculated root for the nth degree polynomial equation ∑𝑐𝑖𝑠
𝑖 = 0. 

15. When using the proposed engineering methodology to solve nth degree polynomials, we became able to calculate all the 

roots {𝑠1; … ; 𝑠𝑛} nearly in parallel, which allows calculating all the solutions {𝐷𝑆1; … ; 𝐷𝑆𝑛} of an nth order differential 

equation nearly in parallel. 

16. When having a differential equation of the nth order (∑𝑐𝑖𝑓(𝑥)
(𝑖) = 𝐶), we can identify T arbitrary values 

{𝐼𝑘  | 𝑘 ∊ ⟦0, 𝑇 − 1⟧ 𝑎𝑛𝑑 𝑇 ∊ ⟦1, 𝑛⟧}, where each arbitrary value 𝐼𝑘 is identified at a specific referencing point 𝑥𝑘 by using 

the expression 𝑓(𝑥𝑘) = 𝐼𝑘. 

17. If there is an amount of T different roots {𝑠𝑝1;  𝑠𝑝2; … ; 𝑠𝑝𝑇} for the nth degree polynomial equation (∑𝑐𝑖𝑠
𝑖 = 𝐶) 

corresponding to the nth order differential equation (∑𝑐𝑖𝑓(𝑥)
(𝑖) = 𝐶), then we can identify T arbitrary values 

{𝐼𝑘  | 𝑘 ∊ ⟦0, 𝑇 − 1⟧ 𝑎𝑛𝑑 𝑇 ∊ ⟦1, 𝑛⟧}, where each arbitrary value 𝐼𝑘 is identified at a specific referencing point 𝑥𝑘 which is 

logically relevant to the root 𝑠𝑝𝑘 in terms of distribution, behavior, or ratio of change.  
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18. After identifying T arbitrary values {𝐼𝑘  | 𝑘 ∊ ⟦0, 𝑇 − 1⟧ 𝑎𝑛𝑑 𝑇 ∊ ⟦1, 𝑛⟧}, where each arbitrary value 𝐼𝑘 is identified at a 

specific referencing point 𝑥𝑘 by using the expression 𝑓(𝑥𝑘) = 𝐼𝑘, we can interconnect these arbitrary points to each other 

by using the solutions of the differential equation. 

19. If there are two different roots {𝑠𝑎;  𝑠𝑏≠𝑎} for the nth degree polynomial equation (∑𝑐𝑖𝑠
𝑖 = 𝐶) corresponding to the nth order 

differential equation (∑𝑐𝑖𝑓(𝑥)
(𝑖) = 𝐶), then we can calculate other new solutions for the differential equation, which can be 

expressed as {𝐷𝑆𝑛+1
′ = 𝑅′(𝐼1)𝑒

𝑠𝑏𝑥 + (𝑅′(𝐼0) −
𝐶

𝑐0
− 𝑅′(𝐼1)) 𝑒

𝑥𝑆𝑎 +
𝐶

𝑐0
;  𝐷𝑆𝑛+2

′ = 𝑅′(𝐼1)𝑒
𝑥𝑆𝑎 + (𝑅′(𝐼0) −

𝐶

𝑐0
− 𝑅(𝐼1)) 𝑒

𝑥𝑆𝑏 +

𝐶

𝑐0
}. 

20. If there are three different roots {𝑠𝑎;  𝑠𝑏;  𝑠𝑐} for the nth degree polynomial equation (∑𝑐𝑖𝑠
𝑖 = 𝐶) corresponding to the nth 

order differential equation (∑𝑐𝑖𝑓(𝑥)
(𝑖) = 𝐶), then we can calculate other new solutions for the differential equation, which can 

be expressed as {𝐷𝑆(𝑛+𝑖>𝑛)
′ = 𝑅′(𝐼2)𝑒

𝑥𝑆3 + (𝑅′(𝐼1) − 𝑅(𝐼2))𝑒
𝑥𝑆2 + (𝑅′(𝐼0) −

𝐶

𝑐0
− 𝑅′(𝐼1)) 𝑒

𝑥𝑆1 +
𝐶

𝑐0
; 𝑤ℎ𝑒𝑟𝑒 𝑠𝑘 ∊

{𝑠𝑎;  𝑠𝑏;  𝑠𝑐} } 

21. If there is an amount of T different roots {𝑠𝑝1;  𝑠𝑝1; … ; 𝑠𝑝𝑇} for the nth degree polynomial equation (∑𝑐𝑖𝑠
𝑖 = 𝐶) 

corresponding to the nth order differential equation (∑𝑐𝑖𝑓(𝑥)
(𝑖) = 𝐶), then we can calculate other new solutions for the 

differential equation, which can be expressed as {𝐷𝑆(𝑛+𝑖>𝑛)
′ = 𝑅′(𝐼(𝑇−1))𝑒

𝑥𝑆𝑇 +∑ [(𝑅′(𝐼𝐿) − 𝑅′(𝐼(𝐿+1))) 𝑒
𝑥𝑆(𝐿+1)]

𝐿=𝑇−2

𝐿=1
+

(𝑅′(𝐼0) −
𝐶

𝑐0
− 𝑅′(𝐼1)) 𝑒

𝑥𝑆1 +
𝐶

𝑐0
; 𝑤ℎ𝑒𝑟𝑒 𝑠𝑘 ∊ {𝑠𝑝1;  𝑠𝑝1; … ; 𝑠𝑝𝑇} } 

 

3. Engineered Methodology to Solve nth Degree Polynomials 
The presented methodology in this paper to solve general forms of nth degree polynomial equations is based on architecting 

the roots of these equations according to a distributed structure of terms while relying on radical expressions. 

 

In addition, this engineering methodology relies on developing specific patterns into the structure of niched roots in order to 

help converge calculations, while eliminating degrees of polynomials. 

 

Furthermore, this developed methodology is built on an engineering logic where roots are predesigned before being 

expressed according to unified mathematical formulas, which support the structuring of expressions for all expected roots of the 

aimed polynomial equation.  

 

The presented methodology in this paper leads to defining a list of engineered requirements and techniques according to a 

scaled logic, which helps to develop the necessary unified formulas to calculate the roots of nth degree polynomial equations in 

general forms, while enabling the calculation of the values of possible roots nearly in parallel. 

 

The results of our engineered requirements, techniques, and formulas according to the developed methodology are described 

as follows: 

1. Roots should be expressed according to a distributed structure of terms {∑ Ti
𝑖=𝑢
𝑖=0 }, which will be multiplied by each other 

during calculations. 

2. Each included term in the distributed structure of roots should be expressed according to the simplest possible radicality. 

3. All included terms in the distributed structure of roots should either be constants or be radical expressions. 

4. The included constant terms in the distributed structure of roots should allow for eliminating specific parts with specific 

degrees from a polynomial equation. 

5. We adapt a polynomial equation of the nth degree {(∑ 𝑎𝑖𝑋
𝑖𝑖=𝑛

𝑖=0
) = 0} where {𝑎𝑛 ≠ 0} by presenting it as 

{(∑
𝑎𝑖

𝑎𝑛
𝑋𝑖

𝑖=𝑛

𝑖=0
) = 0}. 

6. We use the expression. {𝑋 =
−𝑎𝑛−1

𝑛𝑎𝑛
+
𝑌

𝑛
} to eliminate the term of degree (𝑛 − 1) from a polynomial equation of nth degree 

{(∑
𝑎𝑖

𝑎𝑛
𝑋𝑖

𝑖=𝑛

𝑖=0
) = 0} when (𝑛 − 1) is an odd value, or when this elimination simplifies calculations.  

7. All included radical terms in each root should have the same radicality, in order to converge the resulting expressions during 

calculations. Therefore, we choose them to have a radicality of the square root. 
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8. Each included radical term in the distributed structure of a root {∑ Ti
𝑖=𝑢
𝑖=0 } should be expressed according to a sum of simple 

radical terms {(∑ 𝑇𝑖
𝑖=𝑢
𝑖=0 ) = (∑ 𝑥𝑖

𝑖=𝑢
𝑖=0 ) = (∑ √𝑦𝑖

𝑖=𝑢

𝑖=0
)}, when the degree of the polynomial equation is equal to four. 

9. Each included radical term in the distributed structure of a root {∑ 𝑇𝑖
𝑖=𝑢
𝑖=0 } should be expressed according to a multiplication 

of at least two different sub-terms {(∑ 𝑇𝑖
𝑖=𝑢
𝑖=0 ) = (∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )} when the degree of the polynomial equation surpasses four. 

10. When the degree of the polynomial equation surpasses four, each included sub-term {𝑥𝑙} in the distributed structure of a root 

{(∑ 𝑇𝑖
𝑖=𝑢
𝑖=0 ) = (∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )} should appear in multiple distributed terms in order to allow further factorizations. 

11. When the degree of the polynomial equation surpasses four, each included sub-term {𝑥𝑙} in the distributed structure of terms 

{(∑ 𝑇𝑖
𝑖=𝑢
𝑖=0 ) = (∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )} should be presented according to a radical expression of a cubic root, a quadratic root, or a 

constant. 

12. Combinations among included sub-terms in a root should allow expressing the values of involved coefficients in a 

polynomial equation. 

13. The included sub-terms in the distributed structure of terms should allow neutralizing their contents when they are multiplied 

by each other in order to have simplified results. 

14. The included sub-terms in the distributed structure of terms should allow eliminating radicality when they are raised to the 

power of higher polynomial degrees. 

15. The included sub-terms in the distributed structure of terms should allow for the elimination of radicality when they are 

multiplied by each other. 

16. The included sub-terms in the distributed structure of terms should allow forward calculations to suppress terms that have 

odd values of polynomial degrees. 

17. The included sub-terms in the distributed structure of terms should allow forward calculations to either suppress terms of 

the highest degrees or suppress terms of the lowest degrees. 

18. The distributed structure of terms {(∑ 𝑇𝑖
𝑖=𝑢
𝑖=0 ) = (∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )} should include a sub-term {𝑥1} presented according to a radical 

expression of the cubic root, where 

(

 
 
𝑥1 =

√−𝑏
3
 +

1

3
√−

D

2
 + √(

D

2
)
2

+ (
C

3
)
33

+
1

3
√−

D

2
−√(

D

2
)
2

+ (
C

3
)
33

)

 
 

 . 

19. The distributed structure of terms should include two sub-terms {𝑥2, 𝑥3} presented according to radical expressions of 

quadratic roots, where 

(

 
 
𝑥2 = √−

𝑃

2
+𝑥1

2
+ √(

𝑃

2
+𝑥1

2
)

2

−
𝑄2

64𝑥1

)

 
 

 and 

(

 
 
𝑥3 = √−

𝑃

2
+𝑥1

2
− √(

𝑃

2
+𝑥1

2
)

2

−
𝑄2

64𝑥1

)

 
 

. 

20. In order to eliminate high-degree expressions in a polynomial equation, while allowing calculations to converge, we use a 

constant value {𝛼1} expressed by using included sub-terms in the distributed structure of the root, where {𝛼1 = ∑𝑥𝑖
2}. 

21. In order to eliminate average degree expressions in a polynomial equation, while allowing calculations to converge, we use 

a constant value {𝛼2} expressed by using included sub-terms in the distributed structure of the root, where {𝛼2 = ∑ 𝑥𝑖
2 𝑥𝑗

2
𝑖≠ 𝑗 } 

22. In order to eliminate low-degree expressions in a polynomial equation, while allowing calculations to converge, we use a 

constant value {𝛼3} expressed by using included sub-terms in the distributed structure of the root, where 

{𝛼3 = ∑ 𝑥𝑖𝑥𝑗𝑥𝑘𝑖≠ 𝑗≠𝑘 } 

23. In order to eliminate the lowest degree expressions in a polynomial equation, while allowing calculations to converge, we 

use a constant value {𝛼4} expressed by using included sub-terms in the distributed structure of the root, where 

{𝛼4 = ∑ 𝑥𝑖𝑥𝑗𝑥𝑘𝑖≠ 𝑗≠𝑘≠𝑙 𝑥𝑙}. 

24. In order to eliminate odd degrees of expressions in a polynomial equation, while allowing calculations to converge, we 

reformulate the solution {𝑋 = (∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )} to be presented as {𝑋 = (∑𝑥𝑖)
2 −∑𝑥𝑖

2 = (∑𝑥𝑖)
2 − 𝛼1}. 

25. In order to reduce the degree of expressions in a polynomial equation, while allowing calculations to converge, we 

reformulate the second-degree form {𝑋2 = (∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )
2
} to be presented as {𝑋2 = 𝛼2 +  2𝛼3(∑𝑥𝑖) + 6𝛼4}. 
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26. In order to reduce the degrees of complex expressions in a polynomial equation, while allowing calculations to converge, 

we reformulate the quartic form {𝑋4 = (∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )
4
} to be presented as {𝑋4 = 4(∑𝑥𝑖)

2 𝛼3
2  + 4𝛼3(∑𝑥𝑖)[𝛼2 + 6𝛼4] +

 [𝛼2 + 6𝛼4]
2}. 

27. We use the proposed constants. {𝛼1, 𝛼2, 𝛼3, 𝛼4} and the expression {𝑋 = (∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )} in order to re-express the polynomial 

equation  {(∑
𝑎𝑖

𝑎𝑛
𝑋𝑖

𝑖=𝑛

𝑖=0
) = 0} to be represented as {(∑ 𝛾𝑖𝑍

𝑖𝑖=𝑛

𝑖=0
) = 0} where {𝑍 = (∑𝑥𝑖)}. 

28. When the solution of an nth-degree polynomial equation is expressed as {𝑋 = (∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )}, we adopt a constant value 

{
𝛤

𝛼3
=

𝛤

∑ 𝑥𝑖𝑥𝑗𝑥𝑘𝑖≠ 𝑗≠𝑘
= 𝑉} where Γ is expressed as a function of {(∑𝑥𝑘)}; in order to converge calculations during the process 

of solving equations. 

29. The resulting polynomial expression at the final stages of forward calculations should have only one unknown variable 

expressed by including the use of one sub-term incorporated in the distributed structure of roots, which is to be considered 

as an unknown variable. 

30. The resulting polynomial form at the final stages of forward calculations should have a lower degree than the starting point, 

or should not have the term of constant value (the term with zero degree). Otherwise, the resulting polynomial form should 

not have any terms with odd degrees. 

31. The included sub-terms {𝑥𝑖} in the distributed structure of a root {(∑Ti = ∑𝑥𝑖) 𝑜𝑟 (∑Ti = ∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗  )} should also be used 

in the calculation of all other roots by changing the signs of these sub-terms, while exploiting the involved coefficients in 

the polynomial equation. 

32. Reusing the included sub-terms in the structure of a root while only changing their signs should allow calculating the values 

of different roots {𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑘 = ∑± Ti} nearly in parallel.  

 

4. Solving Fourth Degree Polynomial Equations 
This section presents the developed theorems and formulas to solve fourth-degree polynomial equations by using the 

proposed engineering methodology in this paper to solve nth degree polynomial equations in general forms and in complete 

forms. 

4.1. First proposed theorem for fourth-degree polynomials 

This section presents the first developed theorem to solve fourth-degree polynomial equations that are expressed according 

to the form: 𝑥4 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0, by converting this fourth-degree equation into the form of a third-degree polynomial, which 

we can express as follows: 𝑥0
3 +

𝑐

2
𝑥0
2 +

𝑐2−4𝑒

16
𝑥0 −

𝑑2

64
= 0. The proof of this theorem is detailed in [13]. 

Theorem 1 

A fourth-degree polynomial equation under the expression (Equation 1), where coefficients belong to the group of numbers 

ℝ, has four solutions. 

𝑥4 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0                           (1) 

−2 [√𝑥0
2
+ √𝑥1

2
+ √𝑥0

2
 ] = 𝑐                (2) 

For 𝑑 ≤ 0: −8√𝑥0√𝑥1√𝑥2 = 𝑑                (3) 

For 𝑑 ≥ 0: 8√𝑥0√𝑥1√𝑥2 = 𝑑                (4) 

𝑥0,1 =
−𝐵

3
 +

1

3
√−

𝐷;

2
 + √(

𝐷;

2
)
2

+ (
𝐶 ;

3
)
33

+
1

3
√−

𝐷;

2
− √(

𝐷;

2
)
2

+ (
𝐶 ;

3
)
33

 |  {𝐵 =
𝑐

2
  ;  𝐷; =

−27𝑑2−2𝑐3+72𝑐𝑒

64
  ;  𝐶 ; = −

3𝑐2+36𝑒

16
}    (5) 

𝑥0,1 =
−𝐵

3
 +

1

3
√−

𝐷;

2
 + √(

𝐷;

2
)
2

+ (
𝐶 ;

3
)
33

+
1

3
√−

𝐷;

2
− √(

𝐷;

2
)
2

+ (
𝐶 ;

3
)
33

 |  {𝐵 =
𝑐

2
 ;  𝐷; =

−2𝑐3+72𝑐𝑒

64
 ;  𝐶 ; = −

3𝑐2+36𝑒

16
}    (6) 
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If 𝑑 < 0, and by using the expressions of 𝑥0,1 in (Equation 5), 𝑐 in (Equation 2) and 𝑑 in (Equation 3), the four solutions for 

(Equation 1) are as shown in (Equation 7), (Equation 8), (Equation 9) and (Equation 10). 

Solution 1: 𝑆1,1 = √𝑥0,1 +
√−

𝑐

2
+𝑥0,1

2
+ √(

𝑐

2
+𝑥0,1

2
)
2

−
𝑑2

64𝑥0,1
 + √−

𝑐

2
+𝑥0,1

2
− √(

𝑐

2
+𝑥0,1

2
)
2

−
𝑑2

64𝑥0,1
                     (7) 

Solution 2: 𝑆1,2 = −√𝑥0,1 −
√−

𝑐

2
+𝑥0,1

2
+ √(

𝑐

2
+𝑥0,1

2
)
2

−
𝑑2

64𝑥0,1
 + √−

𝑐

2
+𝑥0,1

2
−√(

𝑐

2
+𝑥0,1

2
)
2

−
𝑑2

64𝑥0,1
                   (8) 

Solution 3: 𝑆1,3 = −√𝑥0,1 +
√−

𝑐

2
+𝑥0,1

2
+ √(

𝑐

2
+𝑥0,1

2
)
2

−
𝑑2

64𝑥0,1
− √−

𝑐

2
+𝑥0,1

2
− √(

𝑐

2
+𝑥0,1

2
)
2

−
𝑑2

64𝑥0,1
                   (9) 

Solution 4: 𝑆1,4 = √𝑥0,1 −
√−

𝑐

2
+𝑥0,1

2
+ √(

𝑐

2
+𝑥0,1

2
)
2

−
𝑑2

64𝑥0,1
− √−

𝑐

2
+𝑥0,1

2
− √(

𝑐

2
+𝑥0,1

2
)
2

−
𝑑2

64𝑥0,1
                 (10) 

If 𝑑 > 0, and by using the expressions of 𝑥0,1 in (Equation 5), 𝑐 in (Equation 2) and 𝑑 in (Equation 4), the four solutions for 

(Equation 1) are as shown in (Equation 11), (Equation 12), (Equation 13) and (Equation 14). 

Solution 1: 𝑆2,1 = −√𝑥0,1 −
√−

𝑐

2
+𝑥0,1

2
+ √(

𝑐

2
+𝑥0,1

2
)
2

−
𝑑2

64𝑥0,1
− √−

𝑐

2
+𝑥0,1

2
− √(

𝑐

2
+𝑥0,1

2
)
2

−
𝑑2

64𝑥0,1
                (11) 

Solution 2: 𝑆2,2 = −√𝑥0,1 +
√−

𝑐

2
+𝑥0,1

2
+ √(

𝑐

2
+𝑥0,1

2
)
2

−
𝑑2

64𝑥0,1
+ √−

𝑐

2
+𝑥0,1

2
− √(

𝑐

2
+𝑥0,1

2
)
2

−
𝑑2

64𝑥0,1
                (12) 

Solution 3: 𝑆2,3 = √𝑥0,1 −
√−

𝑐

2
+𝑥0,1

2
+ √(

𝑐

2
+𝑥0,1

2
)
2

−
𝑑2

64𝑥0,1
+√−

𝑐

2
+𝑥0,1

2
− √(

𝑐

2
+𝑥0,1

2
)
2

−
𝑑2

64𝑥0,1
                 13) 

Solution 4: 𝑆2,4 = √𝑥0,1 +
√−

𝑐

2
+𝑥0,1

2
+ √(

𝑐

2
+𝑥0,1

2
)
2

−
𝑑2

64𝑥0,1
−√−

𝑐

2
+𝑥0,1

2
− √(

𝑐

2
+𝑥0,1

2
)
2

−
𝑑2

64𝑥0,1
                 14) 

If 𝑑 = 0, and by using the expressions of 𝑥0,1 in (Equation 6) and 𝑐 in (Equation 2), the four solutions for (Equation 1) are as 

shown in (Equation 15), (Equation 16), (Equation 17), and (Equation 18). 

Solution 1: 𝑆3,1 = √𝑥0,1 + √−(
𝑐

2
+ 𝑥0,1)                 (15) 

Solution 2: 𝑆3,2 = −√𝑥0,1 − √−(
𝑐

2
+ 𝑥0,1)                 (16) 

Solution 3: 𝑆3,3 = −√𝑥0,1 + √−(
𝑐

2
+ 𝑥0,1)                 (17) 
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Solution 4: 𝑆3,4 = √𝑥0,1 − √−(
𝑐

2
+ 𝑥0,1)                   (18) 

4.2. Second Proposed Theorem for Fourth-Degree Polynomials 

This section presents the second developed theorem for fourth-degree polynomials that are expressed according to the form: 

𝑥4 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0. This theorem identifies whether this fourth-degree equation accepts complex solutions with imaginary 

parts different from zero. The proof of this theorem is detailed in [13]. 

Theorem 2 

Considering the fourth-degree polynomial equation 𝑥4 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0 where all coefficients belong to the group of 

numbers ℝ. If 𝑒 ≠  0 and 𝑐 > 0, then this fourth-degree polynomial equation accepts at least two complex solutions with 

imaginary parts different from zero. 

 

4.3. Third proposed theorem for fourth-degree polynomials 

This section presents the third developed theorem to solve fourth-degree polynomial equations that are expressed according 

to the form: 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0, where 𝑎 ≠ 0, by converting this fourth-degree equation into the form of a third-

degree equation, which we can express as follows: 𝑦0
3 +

𝑃

2
 𝑦0
2 +

𝑃2−4𝑅

16
 𝑦0  −

𝑄2

64
= 0. The proof of this theorem is detailed in 

[13]. 

Theorem 3 

A fourth-degree polynomial equation under the expressed form in (Equation 19), where coefficients belong to the group of 

numbers ℝ and 𝑎 ≠ 0, has four solutions. 

𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0 𝑤𝑖𝑡ℎ 𝑎 ≠ 0     (19) 

𝑃 = −6 (
𝑏

𝑎
)
2

+
16𝑐

𝑎
; 𝑄 = 8 (

𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+
64𝑑

𝑎
; 𝑅 = −3 (

𝑏

𝑎
)
4

+
16𝑐𝑏2

𝑎3
−
64𝑑𝑏

𝑎2
+
256𝑒

𝑎
       (20) 

𝑦0,1 = −
𝑃;

3
 +

1

3
√−

𝑅;

2
 + √(

𝑅;

2
)
2

+ (
𝑄;

3
)
33

+
1

3
√−

𝑅;

2
 + √(

𝑅;

2
)
2

+ (
𝑄;

3
)
33

 |  {𝑃; =
𝑃

2
 ;  𝑅; =

−27𝑄2−2𝑃3+72𝑃𝑅

64
 ;  𝑄; = −

3𝑃2+36𝑅

16
}            

(21) 

If (
8𝑏3

𝑎3
 −

32𝑐𝑏

𝑎2
 +

64𝑑

𝑎
) < 0, and by using 𝑦0,1 in (Equation 21), 𝑃 in (Equation 20) and 𝑄 in (Equation 20); the four solutions 

for (Equation 19) are as shown in (Equation 22), (Equation 23), (Equation 24) and (Equation 25). 

 

Solution 1: 𝑆1,1 = −
𝑏

4𝑎
+
1

4
√𝑦0,1 +

1

4
√−

𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
 +

1

4
√−

𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
       (22) 

Solution 2: 𝑆1,2 = −
𝑏

4𝑎
−
1

4
√𝑦0,1 −

1

4
√−

𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
 +

1

4
√−

𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
       (23) 

Solution 3: 𝑆1,3 = −
𝑏

4𝑎
−
1

4
√𝑦0,1 +

1

4
√−

𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
−
1

4
√−

𝑃

2
+𝑦0,1

2
−√(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
       (24) 

Solution 4: 𝑆1,4 = −
𝑏

4𝑎
+
1

4
√𝑦0,1 −

1

4
√−

𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
−
1

4
√−

𝑃

2
+𝑦0,1

2
−√(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
       (25) 
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If (
8𝑏3

𝑎3
 −

32𝑐𝑏

𝑎2
 +

64𝑑

𝑎
) > 0, and by using 𝑦0,1 in (Equation 21), 𝑃 in (Equation 20), and 𝑄 in (Equation 20); the four solutions 

for (Equation 19) are as shown in (Equation 26), (Equation 27), (Equation 28), and (Equation 29). 

Solution 1: 𝑆2,1 = −
𝑏

4𝑎
−
1

4
√𝑦0,1 −

1

4
√−

𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
−
1

4
√−

𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
       (26) 

Solution 2: 𝑆2,2 = −
𝑏

4𝑎
−
1

4
√𝑦0,1 +

1

4
√−

𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
+
1

4
√−

𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
       (27) 

Solution 3: 𝑆2,3 = −
𝑏

4𝑎
+
1

4
√𝑦0,1 −

1

4
√−

𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
+
1

4
√−

𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
       (28) 

Solution 4: 𝑆2,4 = −
𝑏

4𝑎
+
1

4
√𝑦0,1 +

1

4
√−

𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
−
1

4
√−

𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
       (29) 

If (
8𝑏3

𝑎3
 −

32𝑐𝑏

𝑎2
 +

64𝑑

𝑎
) = 0, and by using 𝑦0,1 in (Equation 21) and 𝑃 in (Equation 20); the four solutions for (Equation 19) 

are as shown in (Equation 30), (Equation 31), (Equation 32), and (Equation 33). 

Solution 1: 𝑆3,1 = −
𝑏

4𝑎
+
1

4
√𝑦0,1 +

1

4
√−(

𝑃

2
+ 𝑦0,1)       (30) 

Solution 2: 𝑆3,2 = −
𝑏

4𝑎
−
1

4
√𝑦0,1 −

1

4
√−(

𝑃

2
+ 𝑦0,1)       (31) 

Solution 3: 𝑆3,3 = −
𝑏

4𝑎
−
1

4
√𝑦0,1 +

1

4
√−(

𝑃

2
+ 𝑦0,1)       (32) 

Solution 4: 𝑆3,4 = −
𝑏

4𝑎
+
1

4
√𝑦0,1 −

1

4
√−(

𝑃

2
+ 𝑦0,1)       (33) 

4.4. Fourth proposed theorem for fourth-degree polynomials 

This section presents the fourth developed theorem for fourth-degree polynomials that are expressed according to the form: 

𝑎𝑥4 + 𝑏𝑥2 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0 where 𝑎 ≠ 0. This theorem identifies whether this fourth-degree equation accepts at least two 

complex solutions with imaginary parts different from zero by relying on the value (−
6𝑏2

𝑎2
 +

16𝑐

𝑎
). The proof of this theorem is 

detailed in [13]. 

 

Theorem 4 

Considering the polynomial equation 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0 where all coefficients belong to the group of numbers 

ℝ, if 𝑎 ≠  0 and 𝑒 ≠  0 and (−
6𝑏2

𝑎2
 +

16𝑐

𝑎
) > 0; then, this fourth-degree polynomial equation accepts at least two complex 

solutions, where the imaginary parts are different from zero and dependent on the group of coefficients {𝑎, 𝑏, 𝑐}. 
 

4.5. Fifth proposed theorem for fourth-degree polynomials 

This section presents the fifth developed theorem for fourth-degree polynomials that are expressed according to the form: 

𝑎𝑥4 + 𝑏𝑥2 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0 where 𝑎 ≠ 0 and 𝑒 ≠ 0. This theorem identifies whether this fourth-degree equation accepts 

at least two complex solutions with imaginary parts different from zero by relying on the value (−
6𝑑2

𝑒2
 +

16𝑐

𝑒
). The proof of 

this theorem is detailed in [13]. 
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Theorem 5 

Considering the polynomial equation 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0 where all coefficients belong to the group of numbers 

ℝ, if 𝑎 ≠  0 and 𝑒 ≠ 0 and (−
6𝑑2

𝑒2
 +

16𝑐

𝑒
) > 0; then, this fourth-degree polynomial equation accepts at least two complex 

solutions, where the imaginary parts are different from zero and dependent on the group of coefficients {𝑐, 𝑑, 𝑒}. 
 

3.6. Sixth proposed theorem for fourth-degree polynomials 

This section presents the sixth developed theorem for fourth-degree polynomials that are expressed according to the form: 

𝑎𝑥4 + 𝑏𝑥2 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0 where 𝑎 ≠ 0 and 𝑒 ≠ 0. This theorem identifies whether this fourth-degree equation accepts 

four complex solutions with imaginary parts different from zero by relying on the values (−
6𝑏2

𝑎2
 +

16𝑐

𝑎
) and (−

6𝑑2

𝑒2
 +

16𝑐

𝑒
). The 

proofs of this theorem are detailed in [13]. 

Theorem 6 

Considering the polynomial equation 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0 where all coefficients belong to the group of numbers 

ℝ, if 𝑎 ≠  0 and 𝑒 ≠  0 and (−
6𝑏2

𝑎2
 +

16𝑐

𝑎
) > 0 and (−

6𝑑2

𝑒2
 +

16𝑐

𝑒
) > 0; then, this fourth-degree polynomial equation accepts 

four complex solutions with imaginary parts different from zero. 

 

5. Solving Fourth-Order Differential Equations 
This section presents the developed theorems and formulas to solve fourth-order differential equations by using the proposed 

methodologies in this paper to solve nth order differential equations and nth degree polynomial equations. 

 

5.1. First proposed theorem for fourth-order differential equations 

This section presents the first developed theorem to solve fourth-order differential equations that are expressed according to 

the form: 𝑎 ∗ 𝑓(4)(𝑥) + 𝑏 ∗ 𝑓(3)(𝑥) + 𝑐 ∗ 𝑓(2)(𝑥) + 𝑑 ∗ 𝑓(1)(𝑥) + 𝑒 ∗ 𝑓(0)(𝑥) = 𝐾 where 𝑎 ≠ 0, by supposing that the solution 

is expressed according to an exponential form, then converting the fourth-order differential equation into an equivalent 

polynomial form of fourth degree, where we use the presented theorems to solve fourth-degree equations in this paper. 

 

Theorem 7 

A fourth-order differential equation under the expressed form in (Equation 34), where coefficients belong to the group of 

numbers ℝ and 𝑎 ≠ 0, has multiple solutions presented as 𝑓(𝑥), which we can express according to the exponential form shown 

in (Equation 35). 

𝑎 ∗ 𝑓(4)(𝑥) + 𝑏 ∗ 𝑓(3)(𝑥) + 𝑐 ∗ 𝑓(2)(𝑥) + 𝑑 ∗ 𝑓(1)(𝑥) + 𝑒 ∗ 𝑓(0)(𝑥) = 𝐾  where a ≠ 0                 (34) 

 

𝑓(𝑥) = 𝑒𝑠𝑥+𝑢 + 𝑣                (35) 

 

The value of v, which is included in the solution f(x) shown in (Equation 35), is supposed to be an arbitrary value. We can 

calculate the arbitrary value of v by using the shown expression in (Equation 36). 

𝑣 =
𝐾

𝑒
                (36) 

 

The value of u, which is included in the solution f(x) shown in (Equation 35), is supposed to be an arbitrary value. We can 

calculate the value of u while relying on a condition for the initialization value 𝐼0 which is to be identified at the point 𝑥 = 0. 

Therefore, we can use the expression 𝑓(𝑥 = 0) = 𝐼0 in order to identify the arbitrary value of u as shown in (Equation 37). 

 

𝑢 = 𝑙𝑜𝑔 (𝐼0 −
𝐾

𝑒
)              (37) 

 

By supposing that the solution of the fourth-order differential equation is expressed according to the exponential form shown 

in (Equation 35), we can convert this differential equation into the form of a fourth-degree equation as shown in (Equation 38), 

where we can use the proposed solutions in Theorem 3 for fourth-degree polynomial equations in complete forms. 

𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0 𝑤𝑖𝑡ℎ 𝑎 ≠  0              (38) 

𝑃 = −6 (
𝑏

𝑎
)
2

+
16𝑐

𝑎
; 𝑄 = 8 (

𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+
64𝑑

𝑎
; 𝑅 = −3 (

𝑏

𝑎
)
4

+
16𝑐𝑏2

𝑎3
−
64𝑑𝑏

𝑎2
+
256𝑒

𝑎
              (39) 
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𝑦0,1 = −
𝑃;

3
 +

1

3
√−

𝑅;

2
 + √(

𝑅;

2
)
2

+ (
𝑄;

3
)
33

+
1

3
√−

𝑅;

2
 + √(

𝑅;

2
)
2

+ (
𝑄;

3
)
33

 |  {𝑃; =
𝑃

2
 ;  𝑅; =

−27𝑄2−2𝑃3+72𝑃𝑅

64
 ;  𝑄; = −

3𝑃2+36𝑅

16
}            

(40) 

𝑦0,2 = −
𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
       (41) 

𝑦0,3 = −
𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
      (42) 

If (
8𝑏3

𝑎3
 −

32𝑐𝑏

𝑎2
 +

64𝑑

𝑎
) < 0, and by using 𝑦0,1 in (Equation 40), 𝑦0,2 in (Equation 41), 𝑦0,3 in (Equation 42), 𝑃 in (Equation 

39) and 𝑄 in (Equation 39); the four solutions for the fourth-order differential equation show in (Equation 34) are as expressed 

in (Equation 43), (Equation 44), (Equation 45) and (Equation 46). 

 

Solution 1: 𝐷𝑆1,1(𝑥) =
𝐾

𝑒
+ (𝐼0 −

𝐾

𝑒
) 𝑒[−

𝑏

4𝑎
+
1

4√
𝑦0,1+

1

4√
𝑦0,2 +

1

4√
𝑦0,3]𝑥       (43) 

Solution 2: 𝐷𝑆1,2(𝑥) =
𝐾

𝑒
+ (𝐼0 −

𝑘

𝑒
) 𝑒[−

𝑏

4𝑎
−
1

4√
𝑦0,1−

1

4√
𝑦0,2 +

1

4√
𝑦0,3]𝑥       (44) 

Solution 3: 𝐷𝑆1,3(𝑥) =
𝐾

𝑒
+ (𝐼0 −

𝑘

𝑒
) 𝑒[−

𝑏

4𝑎
−
1

4√
𝑦0,1+

1

4√
𝑦0,2−

1

4√
𝑦0,3]𝑥       (45) 

Solution 4: 𝐷𝑆1,4(𝑥) =
𝐾

𝑒
+ (𝐼0 −

𝑘

𝑒
) 𝑒[−

𝑏

4𝑎
+
1

4√
𝑦0,1−

1

4√
𝑦0,2−

1

4√
𝑦0,3]𝑥       (46) 

If (
8𝑏3

𝑎3
 −

32𝑐𝑏

𝑎2
 +

64𝑑

𝑎
) > 0, and by using 𝑦0,1 in (Equation 40), 𝑦0,2 in (Equation 41), 𝑦0,3 in (Equation 42), 𝑃 in (Equation 39) 

and 𝑄 in (Equation 39); the four solutions for the fourth-order differential equation show in (Equation 34) are as expressed in 

(Equation 47), (Equation 48), (Equation 49) and (Equation 50). 

Solution 1: 𝐷𝑆2,1(𝑥) =
𝐾

𝑒
+ (𝐼0 −

𝐾

𝑒
) 𝑒[−

𝑏

4𝑎
−
1

4√
𝑦0,1−

1

4√
𝑦0,2−

1

4√
𝑦0,3]𝑥       (47) 

Solution 2: 𝐷𝑆2,2(𝑥) =
𝐾

𝑒
+ (𝐼0 −

𝐾

𝑒
) 𝑒[−

𝑏

4𝑎
−
1

4√
𝑦0,1+

1

4√
𝑦0,2 +

1

4√
𝑦0,3]𝑥       (48) 

Solution 3: 𝐷𝑆2,3(𝑥) =
𝐾

𝑒
+ (𝐼0 −

𝐾

𝑒
) 𝑒[−

𝑏

4𝑎
+
1

4√
𝑦0,1−

1

4√
𝑦0,2+

1

4√
𝑦0,3]𝑥       (49) 

Solution 4: 𝐷𝑆2,4(𝑥) =
𝐾

𝑒
+ (𝐼0 −

𝐾

𝑒
) 𝑒[−

𝑏

4𝑎
+
1

4√
𝑦0,1+

1

4√
𝑦0,2−

1

4√
𝑦0,3]𝑥       (50) 

If (
8𝑏3

𝑎3
 −

32𝑐𝑏

𝑎2
 +

64𝑑

𝑎
) = 0, and by using 𝑦0,1 in (Equation 40) and 𝑃 in (Equation 39); the four solutions for the fourth-order 

differential equation show in (Equation 34) are as expressed in (Equation 51), (Equation 52), (Equation 53), and (Equation 54). 

 

Solution 1: 𝐷𝑆3,1(𝑥) =
𝐾

𝑒
+ (𝐼0 −

𝐾

𝑒
) 𝑒

[−
𝑏

4𝑎
+
1

4√
𝑦0,1+

1

4
√−(

𝑃

2
+𝑦0,1)]𝑥

       (51) 

Solution 2: 𝐷𝑆3,2(𝑥) =
𝐾

𝑒
+ (𝐼0 −

𝐾

𝑒
) 𝑒

[−
𝑏

4𝑎
−
1

4√
𝑦0,1−

1

4
√−(

𝑃

2
+𝑦0,1)]𝑥

       (52) 

Solution 3: 𝐷𝑆3,3(𝑥) =
𝐾

𝑒
+ (𝐼0 −

𝐾

𝑒
) 𝑒

[−
𝑏

4𝑎
−
1

4√
𝑦0,1+

1

4
√−(

𝑃

2
+𝑦0,1)]𝑥

       (53) 
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Solution 4: 𝐷𝑆3,4(𝑥) =
𝐾

𝑒
+ (𝐼0 −

𝐾

𝑒
) 𝑒

[−
𝑏

4𝑎
+
1

4√
𝑦0,1−

1

4
√−(

𝑃

2
+𝑦0,1)]𝑥

       (54) 

5.2. Second Proposed Theorem for Fourth-Order Differential Equations 

This section presents the second developed theorem to solve fourth-order differential equations that are expressed according 

to the form: 𝑎 ∗ 𝑓(4)(𝑥) + 𝑏 ∗ 𝑓(3)(𝑥) + 𝑐 ∗ 𝑓(2)(𝑥) + 𝑑 ∗ 𝑓(1)(𝑥) + 𝑒 ∗ 𝑓(0)(𝑥) = 𝐾 where 𝑎 ≠ 0. This theorem identifies 

whether this fourth-order differential equation accepts at least two complex functions as solutions, where the imaginary parts are 

different from zero, by relying on the value (−
6𝑏2

𝑎2
 +

16𝑐

𝑎
). The proof of this theorem relies on the proof of Theorem 4 of this 

paper, which is detailed in [13]. 

Theorem 8 

Considering the differential equation 𝑎 ∗ 𝑓(4)(𝑥) + 𝑏 ∗ 𝑓(3)(𝑥) + 𝑐 ∗ 𝑓(2)(𝑥) + 𝑑 ∗ 𝑓(1)(𝑥) + 𝑒 ∗ 𝑓(0)(𝑥) = 𝐾  where all 

coefficients belong to the group of numbers ℝ, if 𝑎 ≠  0 and 𝑒 ≠  0 and (−
6𝑏2

𝑎2
 +

16𝑐

𝑎
) > 0; then, this fourth-order differential 

equation accepts at least two complex functions as solutions, where the imaginary parts of these functions are different from zero 

and principally dependent on the group of coefficients {𝑎, 𝑏, 𝑐}. 
 

5.3. Third proposed theorem for fourth-order differential equations 

This section presents the third developed theorem to solve fourth-order differential equations that are expressed according 

to the form: 𝑎 ∗ 𝑓(4)(𝑥) + 𝑏 ∗ 𝑓(3)(𝑥) + 𝑐 ∗ 𝑓(2)(𝑥) + 𝑑 ∗ 𝑓(1)(𝑥) + 𝑒 ∗ 𝑓(0)(𝑥) = 𝐾 where 𝑎 ≠ 0 and 𝑒 ≠  0. This theorem 

identifies whether this fourth-order differential equation accepts at least two complex functions as solutions where the 

imaginary parts are different from zero by relying on the value (−
6𝑑2

𝑒2
 +

16𝑐

𝑒
). The proof of this theorem relies on the proof of 

Theorem 5 of this paper, which is detailed in [13]. 

Theorem 9 

Considering the differential equation 𝑎 ∗ 𝑓(4)(𝑥) + 𝑏 ∗ 𝑓(3)(𝑥) + 𝑐 ∗ 𝑓(2)(𝑥) + 𝑑 ∗ 𝑓(1)(𝑥) + 𝑒 ∗ 𝑓(0)(𝑥) = 𝐾 where all 

coefficients belong to the group of numbers ℝ, if 𝑎 ≠  0 and 𝑒 ≠  0 and (−
6𝑑2

𝑒2
 +

16𝑐

𝑒
) > 0; then, this fourth-order differential 

equation accepts at least two complex functions as solutions, where the imaginary parts of these functions are different from zero 

and principally dependent on the group of coefficients {𝑐, 𝑑, 𝑒}. 
 

5.4. Fourth proposed theorem for fourth-order differential equations 

This section presents the fourth developed theorem to solve fourth-order differential equations that are expressed 

according to the form: 𝑎 ∗ 𝑓(4)(𝑥) + 𝑏 ∗ 𝑓(3)(𝑥) + 𝑐 ∗ 𝑓(2)(𝑥) + 𝑑 ∗ 𝑓(1)(𝑥) + 𝑒 ∗ 𝑓(0)(𝑥) = 𝐾 where 𝑎 ≠ 0 and 𝑒 ≠ 0. This 

theorem identifies whether this fourth-order differential equation accepts four complex functions as solutions, where the 

imaginary parts are different from zero, by relying on the values (−
6𝑏2

𝑎2
 +

16𝑐

𝑎
) and (−

6𝑑2

𝑒2
 +

16𝑐

𝑒
). The proof of this theorem 

relies on the proofs of Theorem 6 of this paper, which are detailed in [13]. 

Theorem 10 

Considering the differential equation 𝑎 ∗ 𝑓(4)(𝑥) + 𝑏 ∗ 𝑓(3)(𝑥) + 𝑐 ∗ 𝑓(2)(𝑥) + 𝑑 ∗ 𝑓(1)(𝑥) + 𝑒 ∗ 𝑓(0)(𝑥) = 𝐾  where all 

coefficients belong to the group of numbers ℝ, if 𝑎 ≠  0 and 𝑒 ≠  0 and (−
6𝑏2

𝑎2
 +

16𝑐

𝑎
) > 0 and (−

6𝑑2

𝑒2
 +

16𝑐

𝑒
) > 0; then, this 

fourth-order differential equation accepts four complex functions as solutions, where the imaginary parts of these functions are 

different from zero. 

 

6. Solving Fifth Degree Polynomial Equations 
This section presents the developed theorems and formulas to solve fifth-degree polynomial equations by using the proposed 

engineering methodology in this paper to solve nth degree polynomial equations. 

 

6.1. First proposed theorem for fifth-degree polynomials 

This section presents the first developed theorem to solve fifth-degree polynomial equations that are expressed according to 

the form: Aw5 + Bw4 + Cw3 + Dw2 + Ew + F = 0  where A ≠ 0, by converting this quantic equation into the form of a fourth 

degree equation, which we can express as follows: 𝑧4 + Γ3𝑧
3 + Γ2𝑧

2 + Γ1𝑧 + Γ0 = 0. The proof of this theorem is detailed in 

[14]. 
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Aw5 + Bw4 + Cw3 + Dw2 + Ew + F = 0 with A ≠  0                  (55) 

𝑥5 + 𝑐𝑥3 + 𝑑𝑥2 + 𝑒𝑥 + 𝑓 = 0                  (56) 

𝑐 = −10
B2

A2
+ 25

C

A
                   (57) 

𝑑 = 20
B3

A3
− 75

CB

A2
+ 125

D

A
                  (58) 

𝑒 = −15
B4

A4
+ 75

CB2

A3
− 250

DB

A2
+ 625

E

A
                  (59) 

𝑓 = 4
B5

A5
− 25

CB3

A4
+ 125

DB2

A3
− 625

EB

A2
+ 3125

F

A
                  (60) 

𝑧4 + Γ3𝑧
3 + Γ2𝑧

2 + Γ1𝑧 + Γ0 = 0                  (61) 

Theorem 11 

After reducing the form of fifth degree polynomial shown in (Equation 55) to the presented form in (Equation 56) where 

coefficients are expressed in (Equation 57), (Equation 58), (Equation 59) and (Equation 60); the fifth degree polynomial equation 

shown in (Equation 56), where coefficients belong to the group of numbers ℝ, can be reduced to a fourth degree polynomial 

equation, which may be expressed as shown in (Equation 61). The reduction from a quantic polynomial to a quartic polynomial 

is conducted by supposing = 𝑥0𝑥1 + 𝑥0𝑥2 + 𝑥0𝑥3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 , whereas supposing 𝑧 = (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) is the 

solution for the fourth-degree polynomial equation in (Equation 61) by using Theorem 3 to solve quartic polynomials and by 

relying on the expression 𝑥3 = −
Γ3

4
 . The variable Γ3 is the solution for the polynomial equation shown in (Equation 62), whereas 

the coefficients of this equation are shown in (Equation 63), (Equation 64), and (Equation 65). The coefficients Γ2, Γ1 and Γ0 of 

the quartic equation (Equation 61) are determined by using calculated values of Γ3 and using the shown expressions in (Equation 

67), (Equation 68), and (Equation 69). As a result, we have eight calculated values as potential solutions for the fifth-degree 

polynomial equation shown in (Equation 56), where many of them are only redundancies of others, because there are only five 

official solutions to determine. 

 

The eight solutions to calculate for the quantum equation (Equation 56) are shown in the groups (Equation 70) and (Equation 

71). 

 

The proposed five values as official solutions for the fifth-degree polynomial equation shown in (Equation 56) are as 

presented in (Equation 72), (Equation 73), (Equation 74), (Equation 75), and (Equation 76).  

 

The proposed five values as official solutions for the fifth-degree polynomial equation shown in (Equation 55) are as 

presented in (Equation 77), (Equation 78), (Equation 79), (Equation 80), and (Equation 81). 

 

The group of expressions {Γ3,1 ;  Γ3,2 ; −Γ3,1 ;  −Γ3,2} are the identified four values of the variable Γ3 by using the presented 

expressions in (Equation 66), which are calculated as solutions for the fourth-degree polynomial equation shown in (Equation 

62). 

We use the expression {𝛼(1,Γ3,𝑖) =
Γ3,𝑖
4  −(16𝑑)2/(𝑒−𝑐2/4)

4Γ3,𝑖
2 } in order to simplify calculations, which allows obtaining the quartic 

equation shown in (Equation 62). 

The group of expressions {𝑆
(𝛤3,1,1)
;  ;  𝑆

(𝛤3,1,2)
;  ;  𝑆

(𝛤3,1,3)
;  ;  𝑆

(𝛤3,1,4)
; } are the identified four solutions for the fourth-degree 

polynomial equation shown in (Equation 61) by using Theorem 3 to calculate these four roots nearly in parallel. 

𝜆2Γ3
4  + 𝜆1Γ3

2  + 𝜆0 = 0                 (62) 
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𝜆2 = 1024
(𝑒−

𝑐2

4
)

16𝑑
;                   (63) 

𝜆1 = 512𝑐 − 40
(16𝑑)2

𝑒−
𝑐2

4

;                    (64) 

𝜆0 = −128
(16𝑑)2

(𝑒−
𝑐2

4
)
2 [𝑓 −

𝑐𝑑

2
];                    (65) 

Γ3 = ±√−
𝑃;

2
±√(

𝑃;

2
)
2

− 4𝑄; | 𝑃; =
𝜆1

𝜆2
  𝑎𝑛𝑑 𝑄; =

𝜆0

𝜆2
                     (66) 

Γ2 =
(16𝑑)2

2Γ3
2(𝑒−

𝑐2

4
)
                     (67) 

Γ1 = −
1

4
Γ3
3  +

3(16𝑑)2

16(𝑒−
𝑐2

4
)Γ3

                     (68) 

Γ0 = −
1

16
Γ3
4  −

(16𝑑)2

32(𝑒−
𝑐2

4
)
+
(𝑓−

𝑐𝑑

2
)(16𝑑)2

2Γ3
2(𝑒−

𝑐2

4
)
2 +

(16𝑑)4

16Γ3
4(𝑒−

𝑐2

4
)
2                     (69) 

𝑁{Γ3,1} = {
1

2
[𝑆 ;(Γ3,1,1)

2  − 𝛼(1,Γ3,1)] ,
1

2
[𝑆 ;(Γ3,1,2)

2  − 𝛼(1,Γ3,1)] ,
1

2
[𝑆 ;(Γ3,1,3)

2  − 𝛼(1,Γ3,1)] ,
1

2
[𝑆 ;(Γ3,1,4)

2  − 𝛼(1,Γ3,1)]}                     (70) 

𝑁{Γ3,2} = {
1

2
[𝑆 ;(Γ3,2,1)

2  − 𝛼(1,Γ3,2)] ,
1

2
[𝑆 ;(Γ3,2,2)

2  − 𝛼(1,Γ3,2)] ,
1

2
[𝑆 ;(Γ3,2,3)

2  − 𝛼(1,Γ3,2)] ,
1

2
[𝑆 ;(Γ3,2,4)

2  − 𝛼(1,Γ3,2)]}                     (71) 

𝑠1 =
1

2
[𝑆 ;(Γ3,1,1)

2  − 𝛼(1,Γ3,1)]                     (72) 

𝑠2 =
1

2
[𝑆 ;(Γ3,1,2)

2  − 𝛼(1,Γ3,1)]                     (73) 

𝑠3 =
1

2
[𝑆 ;(Γ3,1,3)

2  − 𝛼(1,Γ3,1)]                     (74) 

𝑠4 =
1

2
[𝑆 ;(Γ3,1,4)

2  − 𝛼(1,Γ3,1)]                     (75) 

𝑠5 = −
𝑓

𝑠1𝑠2𝑠3𝑠4
                     (76) 

Solution 1: S1 = −
B

5A
+

1

10
[S;(Γ3,1,1)

2  − α(1,Γ3,1)]                     (77) 

Solution 2: S2 = −
B

5A
+

1

10
[S;(Γ3,1,2)

2  − α(1,Γ3,1)]                     (78) 

Solution 3: S3 = −
B

5A
+

1

10
[S;(Γ3,1,3)

2  − α(1,Γ3,1)]                     (79) 

Solution 4: S4 = −
B

5A
+

1

10
[S;(Γ3,1,4)

2  − α(1,Γ3,1)]                     (80) 

Solution 5: S5 = −
F

AS1S2S3S4
                     (81) 
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6.2. Second proposed theorem for fifth-degree polynomials 

This section presents the second developed theorem to solve fifth-degree polynomial equations that are expressed according 

to the form: 𝐴𝑥5 + 𝐵𝑥4 + 𝐶𝑥3 + 𝐷𝑥2 + 𝐸𝑥 + 𝐹 = 0, where 𝐴 ≠ 0, by converting this quantic equation into the form of a fourth 

degree equation, which we can express as follows: 𝑧4 + Υ3𝑧
3 + Υ2𝑧

2 + Υ1𝑧 + Υ0 = 0. The proof of this theorem is detailed in 

[14]. The axis of difference in this theorem is conducting calculations on the fifth-degree polynomial shown in (Equation 82) 

without eliminating the fourth-degree part by avoiding the use of the expression 𝑥 =
−𝑏+𝑦

5
. 

𝑥5 + 𝑏𝑥4 + 𝑐𝑥3 + 𝑑𝑥2 + 𝑒𝑥 + 𝑓 = 0                    (82) 

𝑏 =
B

A
; 𝑐 =

C

A
; 𝑑 =

D

A
; 𝑒 =

E

A
; 𝑓 =

F

A
. 

Theorem 12 

The fifth-degree polynomial equation shown in (Equation 82) is reducible to the quartic equation shown in (Equation 83), 

where the coefficients belong to the group of numbers ℝ without the need to eliminate the fourth-degree part. The reduction from 

fifth degree to fourth degree is conducted by supposing 𝑥 = 𝑥0𝑥1 + 𝑥0𝑥2 + 𝑥0𝑥3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3, whereas supposing 𝑧 =
(𝑥0  +  𝑥1 + 𝑥2 + 𝑥3) is the solution for the fourth-degree polynomial equation shown in (Equation 83) by using Theorem 3. 

The variable Υ3 is the solution for the polynomial equation shown in (Equation 87) by using the expression of the quadratic 

solution, whereas 𝑥3 = −
Υ3

4
. The coefficients of the shown polynomial in (Equation 87) are as expressed in (Equation 88), 

(Equation 89), and (Equation 90). The value of Υ3 is equal to Υ3,1, which is presented in (Equation 91). The coefficients Υ2, Υ1 

and Υ0 are determined by using the calculated value of Υ3 in (Equation 91) and using the shown expressions in (Equation 84), 

(Equation 85), and (Equation 86). 

 

The five proposed solutions for the polynomial equation (Equation 82) are as shown in (Equation 92), (Equation 93), 

(Equation 94), (Equation 95), and (Equation 96). 

 

We use the expression {𝛼(1,Υ3,1) =
Υ3,1
4  −8𝑏Υ3,1

2 −[16(𝑑−𝑏𝑐)]2/(𝑒−
𝑐2

4
)

4Υ3,1
2 } in order to simplify calculations, which allows obtaining 

the quartic equation shown in (Equation 87). 

 

The group of expressions {𝜉(Υ3,1,1) ;  𝜉(Υ3,1,2) ;  𝜉(Υ3,1,3) ;  𝜉(Υ3,1,4)} are the identified four solutions for the fourth-degree 

polynomial equation shown in (Equation 83) by using Theorem 3 to calculate these four roots nearly in parallel. 

𝑧4 + Υ3𝑧
3 + Υ2𝑧

2 + Υ1𝑧 + Υ0 = 0                  (83) 

Υ2 =
[16(𝑑−𝑏𝑐)]2

2Υ3
2(𝑒−

𝑐2

4
)
+ 4𝑏                  (84) 

Υ1 = −
1

4
Υ3
3  +

3[16(𝑑−𝑏𝑐)]2

16(𝑒−
𝑐2

4
)Υ3

+ 4𝑏Υ3                  (85) 

Υ0 = −
1

16
Υ3
4 + 𝑏Υ3

2  −
[16(𝑑−𝑏𝑐)]2

32(𝑒−
𝑐2

4
)
+
(𝑓−

𝑐𝑑

2
+
𝑏𝑐2

4
)[16(𝑑−𝑏𝑐)]2

2Υ3
2(𝑒−

𝑐2

4
)
2 +

𝑏[16(𝑑−𝑏𝑐)]2

2Υ3
2(𝑒−

𝑐2

4
)
+

[16(𝑑−𝑏𝑐)]4

16Υ3
4(𝑒−

𝑐2

4
)
2                  (86) 

𝛽2Υ3
4  + 𝛽1Υ3

2  + 𝛽0 = 0                  (87) 

𝛽2 = 1024
(𝑒−

𝑐2

4
)

16(𝑑−𝑏𝑐)
                  (88) 

𝛽1 = 512𝑐 − 40
[16(𝑑−𝑏𝑐)]2

𝑒−
𝑐2

4

+ 1024𝑏2                  (89) 
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𝛽0 = −128
[16(𝑑−𝑏𝑐)]2

(𝑒−
𝑐2

4
)
2 [𝑓 −

𝑐𝑑

2
+
𝑏𝑐2

4
] + 128𝑏

[16(𝑑−𝑏𝑐)]2

(𝑒−
𝑐2

4
)

                (90) 

Γ3,1 = ±√−
𝑀;

2
± √(

𝑀;

2
)
2

− 4𝑁 ;  | 𝑀; =
𝛽1

𝛽2
  𝑎𝑛𝑑  𝑁 ; =

𝛽0

𝛽2

                 (91) 

Solution 1: 𝑆1 =
1

2
[𝜉(Υ3,1,1)
2  − 𝛼(1,Υ3,1)]                  (92) 

Solution 2: 𝑆2 =
1

2
[𝜉(Υ3,1,2)
2  − 𝛼(1,Υ3,1)]                  (93) 

Solution 3: 𝑆3 =
1

2
[𝜉(Υ3,1,3)
2  − 𝛼(1,Υ3,1)]                  (94) 

Solution 4: 𝑆4 =
1

2
[𝜉(Υ3,1,4)
2  − 𝛼(1,Υ3,1)]                  (95) 

Solution 5: 𝑆5 = −
𝑓

𝑆1𝑆2𝑆3𝑆4
                  (96) 

7. Solving Fifth-Order Differential Equations 
This section presents the developed theorems and formulas to solve fifth-order differential equations by using the proposed 

methodologies in this paper to solve nth order differential equations and nth degree polynomial equations. 

 

7.1. First proposed theorem for the fifth-order differential equation 

This section presents the first developed theorem to solve fifth-order differential equations that are expressed according to 

the form: 𝐴 ∗ 𝑔(5)(𝑥) + 𝐵 ∗ 𝑔(4)(𝑥) + 𝐶 ∗ 𝑔(3)(𝑥) + 𝐷 ∗ 𝑔(2)(𝑥) + 𝐸 ∗ 𝑔(1)(𝑥) + 𝐹 ∗ 𝑔(0)(𝑥) = 𝐾 where A ≠ 0, by supposing 

that the solution is expressed according to an exponential form, then converting the fifth-order differential equation into an 

equivalent polynomial form of fifth degree, where we use the presented theorems in this paper to solve fifth-degree equations. 

 

Theorem 13 

A fifth-order differential equation under the expressed form in (Equation 97), where coefficients belong to the group of 

numbers ℝ and 𝐴 ≠ 0, has multiple solutions presented as 𝑔(𝑥) which we can express according to the exponential form shown 

in (Equation 98). 

𝐴 ∗ 𝑔(5)(𝑥) + 𝐵 ∗ 𝑔(4)(𝑥) + 𝐶 ∗ 𝑔(3)(𝑥) + 𝐷 ∗ 𝑔(2)(𝑥) + 𝐸 ∗ 𝑔(1)(𝑥) + 𝐹 ∗ 𝑔(0)(𝑥) = 𝐾  with A ≠  0               (97) 

𝑔(𝑥) = 𝑒
𝑠𝑥+𝑢 + 𝑣               (98) 

 

The value of v, which is included in the solution g(x) shown in (Equation 98), is considered an arbitrary value. We can 

calculate the arbitrary value of v by using the shown expression in (Equation 99). 

𝑣 =
𝐾

𝐹
                 (99) 

 

The value of u, which is included in the solution g(x) shown in (Equation 98), is considered an arbitrary value. We can 

calculate the arbitrary value of u while relying on the condition of the initialization value 𝐼0 which is to be identified at the point 

𝑥 = 0. Therefore, we can use the expression 𝑔(𝑥 = 0) = 𝐼0 in order to identify the arbitrary value of u as shown in (Equation 

100). 

𝑢 = 𝑙𝑜𝑔 (𝐼0 −
𝐾

𝐹
)              (100) 

 

By supposing that the solution of the fifth-order differential equation is expressed according to the exponential form shown 

in (Equation 98), we can convert this differential equation into the form of a fifth-degree polynomial equation as shown in 

(Equation 101), where we can use the proposed solutions in Theorem 11 for fifth-degree polynomial equations in complete forms. 
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Aw5 + Bw4 + Cw3 + Dw2 + Ew + F = 0 with A ≠  0                   (101) 

𝑥5 + 𝑐𝑥3 + 𝑑𝑥2 + 𝑒𝑥 + 𝑓 = 0                  (102) 

𝑐 = −10
B2

A2
+ 25

C

A
                   (103) 

𝑑 = 20
B3

A3
− 75

CB

A2
+ 125

D

A
                   (104) 

𝑒 = −15
B4

A4
+ 75

CB2

A3
− 250

DB

A2
+ 625

E

A
                  (105) 

𝑓 = 4
B5

A5
− 25

CB3

A4
+ 125

DB2

A3
− 625

EB

A2
+ 3125

F

A
                  (106) 

𝑧4 + Γ3𝑧
3 + Γ2𝑧

2 + Γ1𝑧 + Γ0 = 0                 (107) 

We use Theorem 11 in this paper to solve the fifth-degree polynomial equation shown in (Equation 101).  

 

After reducing the form of fifth degree polynomial shown in (Equation 101) to the presented form in (Equation 102) where 

coefficients are expressed in (Equation 103), (Equation 104), (Equation 105) and (Equation 106); the fifth degree polynomial 

equation shown in (Equation 102), where coefficients belong to the group of numbers ℝ, can be reduced to a fourth degree 

polynomial equation, which may be expressed as shown in (Equation 107). The reduction from a quantic polynomial to a quartic 

polynomial is conducted by supposing = 𝑥0𝑥1 + 𝑥0𝑥2 + 𝑥0𝑥3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 , whereas supposing 𝑧 = (𝑥0 + 𝑥1 + 𝑥2 +
𝑥3) is the solution for the fourth degree polynomial equation in (Equation 107) by using Theorem 3 to solve quartic polynomials 

and by relying on the expression 𝑥3 = −
Γ3

4
 . The variable Γ3 is the solution for the polynomial equation shown in (Equation 

108), whereas the coefficients of this equation are shown in (Equation 109), (Equation 110), and (Equation 111). The coefficients 

Γ2, Γ1 and Γ0 of the quartic equation (Equation 107) are determined by using calculated values of Γ3 and using the shown 

expressions in (Equation 113), (Equation 114), and (Equation 115).  

 

The proposed five values as official solutions for the fifth-degree polynomial equation shown in (Equation 101) are as 

presented in (Equation 116), (Equation 117), (Equation 118), (Equation 119), and (Equation 120). 

 

The proposed five functions as official solutions for the fifth-order differential equation shown in (Equation 97) are as 

presented in (Equation 121), (Equation 122), (Equation 123), (Equation 124), and (Equation 125). 

 

The group of expressions {Γ3,1 ;  Γ3,2 ; −Γ3,1 ;  −Γ3,2} are the identified four values of the variable Γ3 by using the presented 

expressions in (Equation 112), which are calculated as solutions for the fourth-degree polynomial equation shown in (Equation 

108). 

We use the expression {𝛼(1,Γ3,𝑖) =
Γ3,𝑖
4  −(16𝑑)2/(𝑒−𝑐2/4)

4Γ3,𝑖
2 } in order to simplify calculations, which allows obtaining the quartic 

equation shown in (Equation 108). 

The group of expressions {𝑆
(𝛤3,1,1)
;  ;  𝑆

(𝛤3,1,2)
;  ;  𝑆

(𝛤3,1,3)
;  ;  𝑆

(𝛤3,1,4)
; } are the identified four solutions for the fourth-degree 

polynomial equation shown in (Equation 107) by using Theorem 3 to calculate these four roots nearly in parallel. 

𝜆2Γ3
4  + 𝜆1Γ3

2  + 𝜆0 = 0                      (108) 

𝜆2 = 1024
(𝑒−

𝑐2

4
)

16𝑑
;                     (109) 

𝜆1 = 512𝑐 − 40
(16𝑑)2

𝑒−
𝑐2

4

;                     (110) 
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𝜆0 = −128
(16𝑑)2

(𝑒−
𝑐2

4
)
2 [𝑓 −

𝑐𝑑

2
];                    (111) 

Γ3 = ±√−
𝑃;

2
±√(

𝑃;

2
)
2

− 4𝑄; | 𝑃; =
𝜆1

𝜆2
  𝑎𝑛𝑑 𝑄; =

𝜆0

𝜆2
                    (112) 

Γ2 =
(16𝑑)2

2Γ3
2(𝑒−

𝑐2

4
)
                     (113) 

Γ1 = −
1

4
Γ3
3  +

3(16𝑑)2

16(𝑒−
𝑐2

4
)Γ3

                    (114) 

Γ0 = −
1

16
Γ3
4  −

(16𝑑)2

32(𝑒−
𝑐2

4
)
+
(𝑓−

𝑐𝑑

2
)(16𝑑)2

2Γ3
2(𝑒−

𝑐2

4
)
2 +

(16𝑑)4

16Γ3
4(𝑒−

𝑐2

4
)
2                  (115) 

S1 = −
B

5A
+

1

10
[S;(Γ3,1,1)

2  − α(1,Γ3,1)]                   (116) 

S2 = −
B

5A
+

1

10
[S;(Γ3,1,2)

2  − α(1,Γ3,1)]                   (117) 

S3 = −
B

5A
+

1

10
[S;(Γ3,1,3)

2  − α(1,Γ3,1)]                   (118) 

S4 = −
B

5A
+

1

10
[S;(Γ3,1,4)

2  − α(1,Γ3,1)]                   (119) 

S5 = −
F

AS1S2S3S4
                   (120) 

Solution 1: 𝐷S1 =
𝐾

𝐹
+ (𝐼0 −

𝐾

𝐹
) 𝑒

[−
B

5A
+
1

10
[S;(Γ3,1,1)
2

 −α(1,Γ3,1)
]]𝑥                 (121) 

Solution 2: 𝐷S2 =
𝐾

𝐹
+ (𝐼0 −

𝐾

𝐹
) 𝑒

[−
B

5A
+
1

10
[S;(Γ3,1,2)
2

 −α(1,Γ3,1)
]]𝑥                (122) 

Solution 3: 𝐷S3 =
𝐾

𝐹
+ (𝐼0 −

𝐾

𝐹
) 𝑒

[−
B

5A
+
1

10
[S;(Γ3,1,3)
2

 −α(1,Γ3,1)
]]𝑥                (123) 

Solution 4: 𝐷S4 =
𝐾

𝐹
+ (𝐼0 −

𝐾

𝐹
) 𝑒

[−
B

5A
+
1

10
[S;(Γ3,1,4)
2

 −α(1,Γ3,1)
]]𝑥                (124) 

Solution 5: 𝐷S5 =
𝐾

𝐹
+ (𝐼0 −

𝐾

𝐹
) 𝑒

[
−F

AS1S2S3S4
]𝑥                (125) 

7.2. Second proposed theorem for the fifth-order differential equation 

This section presents the second developed theorem to solve fifth-order differential equations that are expressed according 

to the form: 𝐴 ∗ 𝑔(5)(𝑥) + 𝐵 ∗ 𝑔(4)(𝑥) + 𝐶 ∗ 𝑔(3)(𝑥) + 𝐷 ∗ 𝑔(2)(𝑥) + 𝐸 ∗ 𝑔(1)(𝑥) + 𝐹 ∗ 𝑔(0)(𝑥) = 𝐾 where A ≠ 0, by 

supposing that the solution is expressed according to an exponential form, then converting the fifth-order differential equation 

into an equivalent polynomial form of fifth degree, where we use the presented theorems to solve fifth-degree equations in this 

paper. The advantage of this second theorem is avoiding the elimination of the fourth-order part from the equation. 

Theorem 14 

A fifth-order differential equation under the expressed form in (Equation 126), where coefficients belong to the group of 

numbers ℝ and 𝐴 ≠ 0, has multiple solutions presented as 𝑔(𝑥), which we can express according to the exponential form shown 
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in (Equation 127). 

𝐴 ∗ 𝑔(5)(𝑥) + 𝐵 ∗ 𝑔(4)(𝑥) + 𝐶 ∗ 𝑔(3)(𝑥) + 𝐷 ∗ 𝑔(2)(𝑥) + 𝐸 ∗ 𝑔(1)(𝑥) + 𝐹 ∗ 𝑔(0)(𝑥) = 𝐾  with A ≠  0                 (126) 

𝑔(𝑥) = 𝑒𝑠𝑥+𝑢 + 𝑣                 (127) 

 

The value of v, which is included in the solution g(x) shown in (Equation 127), is considered an arbitrary value. We can 

calculate the arbitrary value of v by using the shown expression in (Equation 128). 

𝑣 =
𝐾

𝐹
                 (128) 

 

The value of u, which is included in the solution g(x) shown in (Equation 127), is considered an arbitrary value. We can 

calculate the arbitrary value of u while relying on the condition of the initialization value 𝐼0 which is to be identified at the point 

𝑥 = 0. Therefore, we can use the expression 𝑔(𝑥 = 0) = 𝐼0 in order to identify the arbitrary value of u as shown in (Equation 

129). 

𝑢 = 𝑙𝑜𝑔 (𝐼0 −
𝐾

𝐹
)                 (129) 

 

By supposing that the solution of the fifth order differential equation is expressed according to the exponential form shown 

in (Equation 127); we can convert this differential equation into the form of a fifth degree polynomial equation as shown in 

(Equation 130), where we can use the proposed solutions in Theorem 12 for fifth degree polynomial equations in complete forms 

without eliminating the fourth degree part by avoiding the use of the expression 𝑥 = (−𝑏 + 𝑦)/5. 

𝑥5 + 𝑏𝑥4 + 𝑐𝑥3 + 𝑑𝑥2 + 𝑒𝑥 + 𝑓 = 0                   (130) 

𝑏 =
B

A
; 𝑐 =

C

A
; 𝑑 =

D

A
; 𝑒 =

E

A
; 𝑓 =

F

A
. 

We use Theorem 12 in this paper to solve the fifth-degree polynomial equation shown in (Equation 130).  

 

The fifth-degree polynomial equation shown in (Equation 130) is reducible to the quartic equation shown in (Equation 131), 

where the coefficients belong to the group of numbers ℝ without the need to eliminate the fourth-degree part. The reduction from 

fifth degree to fourth degree is conducted by supposing 𝑥 = 𝑥0𝑥1 + 𝑥0𝑥2 + 𝑥0𝑥3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3, whereas supposing 𝑧 =
(𝑥0  +  𝑥1 + 𝑥2 + 𝑥3) is the solution for the fourth-degree polynomial equation shown in (Equation 131) by using Theorem 3. 

The variable Υ3 is the solution for the polynomial equation shown in (Equation 135) by using the expression of the quadratic 

solution, whereas 𝑥3 = −
Υ3

4
. The coefficients of the shown polynomial in (Equation 135) are as expressed in (Equation 136), 

(Equation 137), and (Equation 138). The value of Υ3 is equal to Υ3,1, which is presented in (Equation 139). The coefficients Υ2, 

Υ1 and Υ0 are determined by using the calculated value of Υ3 in (Equation 139) and using the shown expressions in (Equation 

132), (Equation 133), and (Equation 134).  

 

The five solutions for the polynomial equation (Equation 130) are as shown in (Equation 140), (Equation 141), (Equation 

142), (Equation 143), and (Equation 144). 

 

The five proposed solutions for the fifth-order differential equation (Equation 126) are as shown in (Equation 145), (Equation 

146), (Equation 147), (Equation 148), and (Equation 149). 

We use the expression {𝛼(1,Υ3,1) =
Υ3,1
4  −8𝑏Υ3,1

2 −[16(𝑑−𝑏𝑐)]2/(𝑒−
𝑐2

4
)

4Υ3,1
2 } in order to simplify calculations, which allows obtaining 

the quartic equation shown in (Equation 135). 

The group of expressions {𝜉(Υ3,1,1) ;  𝜉(Υ3,1,2) ;  𝜉(Υ3,1,3) ;  𝜉(Υ3,1,4)} are the identified four solutions for the fourth-degree 

polynomial equation shown in (Equation 131) by using Theorem 3 to calculate these four roots nearly in parallel. 

𝑧4 + Υ3𝑧
3 + Υ2𝑧

2 + Υ1𝑧 + Υ0 = 0                  (131) 
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Υ2 =
[16(𝑑−𝑏𝑐)]2

2Υ3
2(𝑒−

𝑐2

4
)
+ 4𝑏                  (132) 

Υ1 = −
1

4
Υ3
3  +

3[16(𝑑−𝑏𝑐)]2

16(𝑒−
𝑐2

4
)Υ3

+ 4𝑏Υ3                  (133) 

Υ0 = −
1

16
Υ3
4 + 𝑏Υ3

2  −
[16(𝑑−𝑏𝑐)]2

32(𝑒−
𝑐2

4
)
+
(𝑓−

𝑐𝑑

2
+
𝑏𝑐2

4
)[16(𝑑−𝑏𝑐)]2

2Υ3
2(𝑒−

𝑐2

4
)
2 +

𝑏[16(𝑑−𝑏𝑐)]2

2Υ3
2(𝑒−

𝑐2

4
)
+

[16(𝑑−𝑏𝑐)]4

16Υ3
4(𝑒−

𝑐2

4
)
2                   (134) 

𝛽2Υ3
4  + 𝛽1Υ3

2  + 𝛽0 = 0                   (135) 

𝛽2 = 1024
(𝑒−

𝑐2

4
)

16(𝑑−𝑏𝑐)
                   (136) 

𝛽1 = 512𝑐 − 40
[16(𝑑−𝑏𝑐)]2

𝑒−
𝑐2

4

+ 1024𝑏2                   (137) 

𝛽0 = −128
[16(𝑑−𝑏𝑐)]2

(𝑒−
𝑐2

4
)
2 [𝑓 −

𝑐𝑑

2
+
𝑏𝑐2

4
] + 128𝑏

[16(𝑑−𝑏𝑐)]2

(𝑒−
𝑐2

4
)

                  (138) 

Γ3,1 = √−
𝑀;

2
+ √(

𝑀;

2
)
2

− 4𝑁 ;  | 𝑀; =
𝛽1

𝛽2
  𝑎𝑛𝑑  𝑁 ; =

𝛽0

𝛽2

                   (139) 

𝑆1 =
1

2
[𝜉(Υ3,1,1)
2  − 𝛼(1,Υ3,1)]                  (140) 

𝑆2 =
1

2
[𝜉(Υ3,1,2)
2  − 𝛼(1,Υ3,1)]                  (141) 

𝑆3 =
1

2
[𝜉(Υ3,1,3)
2  − 𝛼(1,Υ3,1)]                  (142) 

𝑆4 =
1

2
[𝜉(Υ3,1,4)
2  − 𝛼(1,Υ3,1)]                  (143) 

𝑆5 = −
𝑓

𝑆1𝑆2𝑆3𝑆4
                   (144) 

Solution 1: 𝐷S1 =
𝐾

𝐹
+ (𝐼0 −

𝐾

𝐹
) 𝑒

1

2
[𝜉
(Υ3,1,1)
2  −𝛼(1,Υ3,1)

]𝑥                (145) 

Solution 2: 𝐷S2 =
𝐾

𝐹
+ (𝐼0 −

𝐾

𝐹
) 𝑒

1

2
[𝜉
(Υ3,1,1)
2  −𝛼(1,Υ3,1)

]𝑥               (146) 

Solution 3: 𝐷S3 =
𝐾

𝐹
+ (𝐼0 −

𝐾

𝐹
) 𝑒

1

2
[𝜉
(Υ3,1,1)
2  −𝛼(1,Υ3,1)

]𝑥               (147) 

Solution 4: 𝐷S4 =
𝐾

𝐹
+ (𝐼0 −

𝐾

𝐹
) 𝑒

1

2
[𝜉
(Υ3,1,1)
2  −𝛼(1,Υ3,1)

]𝑥              (148) 

Solution 5: 𝐷S5 =
𝐾

𝐹
+ (𝐼0 −

𝐾

𝐹
) 𝑒

[
−f

S1S2S3S4
]𝑥              (149) 
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8. Solving Sixth Degree Polynomial Equations 
This section presents the developed theorems and formulas to solve sixth-degree polynomial equations by using the proposed 

engineering methodology in this paper to solve nth degree polynomial equations. 

 

8.1. First proposed Theorem for Sixth-Degree Polynomials 

This section presents the first developed theorem to solve sixth-degree polynomial equations that are expressed according 

to the form: A𝑥6 + B𝑥5 + C𝑥4 + D𝑥3 + E𝑥2 + F𝑥 + G = 0, where A ≠ 0 and B ≠ 0, by converting the sixth degree polynomial 

into the form of a fourth degree, which we can express as follows: 𝑧4 + Γ3𝑧
3 + Γ2𝑧

2 + Γ1𝑧 + Γ0 = 0. The proof of this theorem 

is detailed in [15]. 

A𝑥6 + B𝑥5 + C𝑥4 + D𝑥3 + E𝑥2 + F𝑥 + G = 0 𝑤𝑖𝑡ℎ A ≠  0 𝑎𝑛𝑑 B ≠  0                 (150) 

𝑥6 + 𝑏𝑥5 + 𝑐𝑥4 + 𝑑𝑥3 + 𝑒𝑥2 + 𝑓𝑥 + 𝑔 = 0 𝑤𝑖𝑡ℎ 𝑏 ≠  0                 (151) 

𝑏 =
B

A
;  𝑐 =

C

A
;  𝑑 =

D

A
; 𝑒 =

E

A
;  𝑓 =

F

A
;  𝑔 =

G

A
;                  (152) 

𝑧4 + Γ3𝑧
3  + Γ2𝑧

2 + Γ1𝑧 + Γ0 = 0                   (153) 

Theorem 15 

After reducing the form of sixth degree polynomial shown in (Equation 150) to the presented form in (Equation 151) where 

coefficients are as expressed in (Equation 152); the sixth-degree polynomial equation shown in (Equation 151), where 

coefficients belong to the group of numbers ℝ, can be reduced to a fourth-degree polynomial equation, which may be expressed 

as shown in (Equation 153). The reduction from a sixth-degree polynomial to a quartic polynomial is conducted by supposing 

𝑥 = 𝑥0𝑥1 + 𝑥0𝑥2 + 𝑥0𝑥3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3, whereas supposing 𝑧 = (𝑥0  +  𝑥1 + 𝑥2 + 𝑥3) is the solution for the fourth-

degree polynomial equation in (Equation 153) by using Theorem 3 and relying on the expression 𝑥3 = −
Γ3

4
 . The variable Γ3 is 

defined as shown in (Equation 154), where 𝛼3 is presented in (Equation 155) and Γ4 is the solution for the polynomial equation 

(Equation 156), which relies on the coefficients (Equation 157), (Equation 158), (Equation 159), and (Equation 160). The shown 

coefficients in (Equation 157), (Equation 158), (Equation 159), and (Equation 160) are expressed by using the constant 𝑉, which 

is presented in (Equation 161). The coefficients Γ3, Γ2, Γ1 and Γ0 of the quartic equation (Equation 153), which is used to calculate 

𝑧, are determined by using the shown expressions in (Equation 154), (Equation 163), (Equation 164), and (Equation 165) while 

using calculated values of Γ4 and 𝑉. As a result, we have twelve calculated values as potential solutions for the sixth-degree 

polynomial equation, as shown in (Equation 151), where many of them are only redundancies of others, because there are only 

six official solutions to determine. 

 

The twelve solutions to calculate for the sixth-degree equation (Equation 151) are as shown in the groups (Equation 166), 

(Equation 167), and (Equation 168). The proposed six values as official solutions for the sixth-degree polynomial equation shown 

in (Equation 151) are as presented in (Equation 169), (Equation 170), (Equation 171), (Equation 172), (Equation 173), and 

(Equation 174). 

 

The group of expressions {±Γ4,1 ;  ±Γ4,2 ;  ±Γ4,3} are the identified values of the variable Γ4, which are calculated as solutions 

for the sixth-degree polynomial equation shown in (Equation 156) by using the solution of third-degree equations, which is 

presented in (Equation 162). 

We use the expressions {𝛼(1,Γ4,𝑖) =
Γ4,𝑖
4  +

32Γ4,𝑖
4

𝑉2𝑏2
 −
8Γ4,𝑖
4

𝑉𝑏
 +
12𝑑Γ4,𝑖

2

𝑏2
 −
8𝑐Γ4,𝑖

2

𝑏
 −
𝑉2(𝑓−

𝑑2

4𝑏)

𝑏

4Γ4,𝑖
2 } in order to simplify calculations, which allows 

obtaining the shown equation in (Equation 156). 

The value of V shown in (Equation 161) is used to simplify the expression of the formulas during calculations, where 
Υ4

𝛼3
= 𝑉. 

The group of expressions {Ṡ(Γ4,1,1) ;  Ṡ(Γ4,1,2) ;  Ṡ(Γ4,1,3) ;  Ṡ(Γ4,1,4)} are the identified four solutions for the fourth-degree 

polynomial equation shown in (Equation 153) by using Theorem 3 to calculate these four roots nearly in parallel. 
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Γ3 =
4𝛼3

𝑏
 + Γ4              (154) 

𝛼3 = −

4Γ4(𝑓−
𝑑2

4𝑏)

𝑏
32𝑓

𝑏2
 +
40𝑑2

𝑏3
 −
64𝑐𝑑

𝑏2
 +
64𝑒

𝑏

              (155) 

𝜆3Γ4
6  + 𝜆2Γ4

4  + 𝜆1Γ4
2  + 𝜆0 = 0              (156) 

𝜆3 = −
40960

𝑉4𝑏4
 +

16384

𝑉3𝑏3
 −

1536

𝑉2𝑏2
             (157) 

𝜆2 = −
24576𝑑

𝑉2𝑏4
 +

16384𝑐

𝑉2𝑏3
 +

3072𝑑

𝑉𝑏3
 −

2048𝑐

𝑉𝑏2
 +

1024

𝑉
            (158) 

𝜆1 = −
512𝑑

𝑏
 +

1536𝑓

𝑏3
 +

28𝑉2𝑓

𝑏
 −

7𝑉2𝑑2

𝑏2
+
96𝑉𝑓

𝑏2
 −

168𝑑2𝑉

𝑏3
 +

192𝑐𝑑𝑉

𝑏2
 −

192𝑉𝑒

𝑏
 −

3456𝑑2

𝑏4
 +

4096𝑐𝑑

𝑏3
 −

1024𝑒

𝑏2
 −

1024𝑐2

𝑏2
            (159) 

𝜆0 = −
64𝑉2𝑑3

𝑏4
 +

64𝑐𝑑2𝑉2

𝑏3
 −

64𝑒𝑉2𝑑

𝑏2
 +

128𝑉2𝑔

𝑏
 +

192𝑉2𝑑𝑓

𝑏3
 −

128𝑉2𝑐𝑓

𝑏2
             (160) 

𝑉 = −
32𝑓

𝑏2
 +
40𝑑2

𝑏3
 −
64𝑐𝑑

𝑏2
 +
64𝑒

𝑏

4
(𝑓−

𝑑2

4𝑏)

𝑏

               (161) 

Γ4,1
2 =

−𝑏;

3
 +

1

3
√−

𝐷;

2
+ √(

𝐷;

2
)
2

+ (
𝐶 ;

3
)
33

+
1

3
√−

𝐷;

2
− √(

𝐷;

2
)
2

+ (
𝐶 ;

3
)
3

 
3

 |  {𝑏; =
𝜆2

𝜆3
 , 𝑐; =

𝜆1

𝜆3
  𝑎𝑛𝑑 𝑑; =

𝜆0

𝜆3
} {𝐷; = 27𝑑; + 2𝑏;3 − 9

𝑐; 𝑏; 𝑎𝑛𝑑 𝐶 ; = 9𝑐; − 3𝑏;2}               (162) 

Γ2 =
8Γ4
2

𝑉𝑏
−
6𝑑

𝑏2
+
4𝑐

𝑏
+
(𝑓−

𝑑2

4𝑏
)𝑉2

2𝑏Γ4
2 −

8Γ4
2

𝑉2𝑏2
               (163) 

Γ1 =
5Γ4
3

𝑉𝑏
+

3𝑉𝑑2

4𝑏3Γ4
−
6𝑑Γ4

𝑏2
+
4𝑐Γ4

𝑏
−

𝑑𝑐𝑉

b2Γ4
+

𝑒𝑉

𝑏Γ4
−
Γ4
3

4
−

8Γ4
3

𝑉2𝑏2
+
𝑓−

𝑑2

4𝑏

4Γ4𝑏
𝑉2                (164) 

Γ0 =
Γ4
4

2𝑉𝑏
−

𝑉2𝑑3

16𝑏4Γ4
2 +

3𝑉𝑑2

8𝑏3
−
3𝑑Γ4

2

4𝑏2
+
𝑐Γ4
2

2𝑏
+
𝑐𝑑2𝑉2

8b3Γ4
2 −

𝑐𝑑𝑉

2𝑏2
+
𝑒𝑉

2𝑏
−

𝑒𝑉2𝑑

4𝑏2Γ4
2 +

𝑔𝑉2

2𝑏Γ4
2                   

−(
Γ4
2

4
+ 𝑉2

𝑓−
𝑑2

4𝑏

4𝑏Γ4
2)(

Γ4
2

4
+

8Γ4
2

𝑉2𝑏2
−
2Γ4
2

𝑉𝐵
+
3𝑑

𝑏2
−
2𝑐

𝑏
−
(𝑓−

𝑑2

4𝑏
)

4𝑏Γ4
2 𝑉

2)                    (165) 

𝑁{Γ4,1} = {
1

2
[Ṡ(Γ4,1,1)
2  − 𝛼(1,Γ4,1)] ,

1

2
[Ṡ(Γ4,1,2)
2  − 𝛼(1,Γ4,1)] ,

1

2
[Ṡ(Γ4,1,3)
2  − 𝛼(1,Γ4,1)] ,

1

2
[Ṡ(Γ4,1,4)
2  − 𝛼(1,Γ4,1)]}               (166) 

𝑁{Γ4,2} = {
1

2
[Ṡ(Γ4,2,1)
2  − 𝛼(1,Γ4,2)] ,

1

2
[Ṡ(Γ4,2,2)
2  − 𝛼(1,Γ4,2)] ,

1

2
[Ṡ(Γ4,2,3)
2  − 𝛼(1,Γ4,2)] ,

1

2
[Ṡ(Γ4,2,4)
2  − 𝛼(1,Γ4,2)]}               (167) 

𝑁{Γ4,3} = {
1

2
[Ṡ(Γ4,3,1)
2  − 𝛼(1,Γ4,3)] ,

1

2
[Ṡ(Γ4,3,2)
2  − 𝛼(1,Γ4,3)] ,

1

2
[Ṡ(Γ4,3,3)
2  − 𝛼(1,Γ4,3)] ,

1

2
[Ṡ(Γ4,3,4)
2  − 𝛼(1,Γ4,3)]}               (168) 

𝑆1 =
1

2
[Ṡ(Γ4,1,1)
2  − 𝛼(1,Γ4,1)]               (169) 
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𝑆2 =
1

2
[Ṡ(Γ4,1,2)
2  − 𝛼(1,Γ4,1)]               (170) 

𝑆3 =
1

2
[Ṡ(Γ4,1,3)
2  − 𝛼(1,Γ4,1)]               (171) 

𝑆4 =
1

2
[Ṡ(Γ4,1,4)
2  − 𝛼(1,Γ4,1)]               (172) 

𝑆5 = −
𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
− √(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
)
2

−
𝑔

𝑆1𝑆2𝑆3𝑆4
                (173) 

𝑆6 = −
𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
+ √(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
)
2

−
𝑔

𝑆1𝑆2𝑆3𝑆4
               (174) 

8.2. Second proposed Theorem for Sixth-Degree Polynomials 

This section presents the second developed theorem to solve sixth-degree polynomial equations that are expressed according 

to the form: 𝐴𝑤6 + 𝐶𝑤4 + 𝐷𝑤3 + 𝐸𝑤2 + 𝐹𝑤 + 𝐺 = 0  with A ≠ 0, whereas the coefficient of the fifth-degree part is equal to 

zero. Solving this sixth-degree equation is based on using the expression 𝑤 = √
−𝐶

15𝐴
+ 𝑥 to induce a fifth degree part, then 

converting the result into the form of a fourth degree equation, which we can express as follows: 𝑧4 + Υ3𝑧
3 + Υ2𝑧

2 + Υ1𝑧 +
Υ0 = 0. The proof of this theorem is detailed in [15]. 

𝑥6 + 𝑏𝑥5 + 𝑑𝑥3 + 𝑒𝑥2 + 𝑓𝑥 + 𝑔 = 0                (175) 

𝑏 = 6√
−𝐶

15𝐴
                 (176) 

𝑑 =
8𝐶

3𝐴
√
−𝐶

15𝐴
 +

𝐷

𝐴
                (177) 

𝑒 =
−𝐶2

3𝐴2
 +

3𝐷

𝐴
√
−𝐶

15𝐴
 +

𝐸

𝐴
                 (178) 

𝑓 = −
18𝐶2

5𝐴2
√
−𝐶

15𝐴
 −

𝐷𝐶

5𝐴2
 +

2𝐸

𝐴
√
−𝐶

15𝐴
 +

𝐹

𝐴
                 (179) 

𝑔 =
−16𝐶3

3375𝐴3
−

𝐷𝐶

15𝐴2
√
−𝐶

15𝐴
 −

𝐸𝐶

15𝐴2
 +

𝐹

𝐴
√
−𝐶

15𝐴
 +

𝐺

𝐴
                 (180) 

Theorem 16 

In order to reduce the sixth-degree polynomial equation 𝐴𝑤6 + 𝐶𝑤4 + 𝐷𝑤3 + 𝐸𝑤2 + 𝐹𝑤 + 𝐺 = 0 𝑤𝑖𝑡ℎ 𝐴 ≠  0 to the 

quartic equation shown in (Equation 181), where coefficients belong to the group of numbers ℝ, we first replace 𝑤 with 

(𝑤 = √
−𝐶

15𝐴
+ 𝑥) in order to obtain the fifth degree equation shown in (Equation 175), where the coefficients are as expressed in 

(Equation 176), (Equation 177), (Equation 178), (Equation 179), and (Equation 180). Then, the reduction from sixth degree to 

fourth degree is conducted by supposing 𝑥 = (𝑥0𝑥1 + 𝑥0𝑥2 + 𝑥0𝑥3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3), whereas supposing 𝑧 = (𝑥0 + 𝑥1 +
𝑥2 + 𝑥3) is the solution for the fourth-degree polynomial equation in (Equation 181) by using Theorem 3 and relying on the 

expression 𝑥3 = −
Υ3

4
. The variable Υ3 is defined as shown in (Equation 182), where 𝛼3 is presented in (Equation 186) and Υ4 is 

the solution for the polynomial equation (Equation 187), which relies on the coefficients (Equation 188), (Equation 189), 

(Equation 190), and (Equation 191). The shown coefficients in (Equation 188), (Equation 189), (Equation 190), and (Equation 

191) are expressed by using the constant 𝑉, which is defined in (Equation 192). The coefficients Υ3, Υ2, Υ1 and Υ0 of the quartic 

equation (Equation 181) are determined by using the calculated value of Υ4 and using the shown expressions in (Equation 182), 

(Equation 183), (Equation 184), and (Equation 185).  
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The six proposed solutions for the polynomial equation 𝑥6 + 𝑏𝑥5 + 𝑑𝑥3 + 𝑒𝑥2 + 𝑓𝑥 + 𝑔 = 0 shown in (Equation 175) are 

as shown in (Equation 194), (Equation 195), (Equation 196), (Equation 197), (Equation 198), and (Equation 199). 

 

The six proposed solutions for the polynomial equation 𝐴𝑤6 + 𝐶𝑤4 + 𝐷𝑤3 + 𝐸𝑤2 + 𝐹𝑤 + 𝐺 = 0 𝑤𝑖𝑡ℎ 𝐴 ≠  0 are as 

shown in (Equation 200), (Equation 201), (Equation 202), (Equation 203), (Equation 204), and (Equation 205). 

 

The group of expressions {±Γ4,1 ;  ±Γ4,2 ;  ±Γ4,3}  are the identified values of the variable Γ4, which are calculated as solutions 

for the sixth-degree polynomial equation presented in (Equation 187) by using the solution of third-degree equations shown in 

(Equation 193). 

We use the expressions {𝛼1 =
Υ4
4 +

32Υ4
4

𝑉2𝑏2
 −
8Υ4
4

𝑉𝑏
 +
12𝑑Υ4

2

𝑏2
 −
𝑉2(𝑓−

𝑑2

4𝑏)

𝑏

4Υ4
2 } in order to simplify calculations, which allows obtaining the 

quartic equation shown in (Equation 187). 

The value of V shown in (Equation 192) is used to simplify the expression of the formulas during calculations, where 
Υ4

𝛼3
= 𝑉. 

The group of expressions {𝜉(Υ4,1 ,1) ;  𝜉(Υ4,1 ,2) ;  𝜉(Υ4,1 ,3) , 𝜉(Υ4,1 ,4)} are the identified four solutions for the fourth-degree 

polynomial equation shown in (Equation 181) by using Theorem 3 to calculate these four roots nearly in parallel. 

𝑧4 + Υ3𝑧
3 + Υ2𝑧

2 + Υ1𝑧 + Υ0 = 0             (181) 

Υ3 =
4𝛼3

𝑏
 + Υ4             (182) 

Υ2 =
8Υ4
2

𝑉𝑏
−
6𝑑

𝑏2
+
(𝑓−

𝑑2

4𝑏
)𝑉2

2𝑏Υ4
2 −

8Υ4
2

𝑉2𝑏2
            (183) 

Υ1 =
5Γ4
3

𝑉𝑏
+

3𝑉𝑑2

4𝑏3Υ4
−
6𝑑Υ4

𝑏2
+

𝑒𝑉

𝑏Υ4
−
Υ4
3

4
−

8Υ4
3

𝑉2𝑏2
+
𝑓−

𝑑2

4𝑏

4Υ4𝑏
𝑉2            (184) 

Υ0 =
Υ4
4

2𝑉𝑏
−

𝑉2𝑑3

16𝑏4Υ4
2 +

3𝑉𝑑2

8𝑏3
−
3𝑑Υ4

2

4𝑏2
+
𝑒𝑉

2𝑏
−

𝑒𝑉2𝑑

4𝑏2Υ4
2 +

𝑔𝑉2

2𝑏Υ4
2 − (

Υ4
2

4
+ 𝑉2

𝑓−
𝑑2

4𝑏

4𝑏Υ4
2)(

Υ4
2

4
+

8Υ4
2

𝑉2𝑏2
−
2Υ4
2

𝑉𝐵
+
3𝑑

𝑏2
−
(𝑓−

𝑑2

4𝑏
)

4𝑏Υ4
2 𝑉

2)             (185) 

𝛼3 = −
Υ4

4(𝑓−
𝑑2

4𝑏)

𝑏
32𝑓

𝑏2
 +
40𝑑2

𝑏3
 +
64𝑒

𝑏

                186) 

𝛽3Υ4
6  + 𝛽2Υ4

4  + 𝛽1Υ4
2  + 𝛽0 = 0              (187) 

𝛽3 = −
40960

𝑉4𝑏4
 +

16384

𝑉3𝑏3
 −

1536

𝑉2𝑏2
              (188) 

𝛽2 = −
24576𝑑

𝑉2𝑏4
 +

3072𝑑

𝑉𝑏3
 +

1024

𝑉
              (189) 

𝛽1 = −
512𝑑

𝑏
 +

1536𝑓

𝑏3
 +

28𝑉2𝑓

𝑏
 −

7𝑉2𝑑2

𝑏2
+
96𝑉𝑓

𝑏2
 −

168𝑑2𝑉

𝑏3
 −

192𝑉𝑒

𝑏
 −

3456𝑑2

𝑏4
 −

1024𝑒

𝑏2
              (190) 

𝛽0 = −
64𝑉2𝑑3

𝑏4
 −

64𝑒𝑉2𝑑

𝑏2
 +

128𝑉2𝑔

𝑏
 +

192𝑉2𝑑𝑓

𝑏3
              (191) 
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𝑉 = −
32𝑓

𝑏2
 +
40𝑑2

𝑏3
 +
64𝑒

𝑏

4(𝑓−
𝑑2

4𝑏)

𝑏

                 (192) 

Υ4,1
2 =

−𝑏;

3
 +

1

3
√−

𝐷;

2
+ √(

𝐷;

2
)
2

+ (
𝐶 ;

3
)
3

 
3

+ 
1

3
√−

𝐷;

2
− √(

𝐷;

2
)
2

+ (
𝐶 ;

3
)
3

 
3

 |  {𝑏; =
𝛽2

𝛽3
 , 𝑐; =

𝛽1

𝛽3
  𝑎𝑛𝑑 𝑑; =

𝛽0

𝛽3
 }  ; {𝐷^;= 27𝑑; +

2𝑏;3 − 9𝑐 ; 𝑏; 𝑎𝑛𝑑 𝐶 ; = 9𝑐 ; − 3𝑏;2}                (193) 

𝑠1 =
1

2
[𝜉(Υ4,1,1)
2  − 𝛼(1,Υ4,1)]                (194) 

𝑠2 =
1

2
[𝜉(Υ4,1,2)
2  − 𝛼(1,Υ4,1)]                (195) 

𝑠3 =
1

2
[𝜉(Υ4,1,3)
2  − 𝛼(1,Υ4,1)]                (196) 

𝑠4 =
1

2
[𝜉(Υ4,1,4)
2  − 𝛼(1,Υ4,1)]                (197) 

𝑠5 = −
𝑏+𝑠1+𝑠2+𝑠3+𝑠4

2
− √(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
)
2

 −
𝑔

𝑆1𝑆2𝑆3𝑆4
               (198) 

𝑠6 = −
𝑏+𝑠1+𝑠2+𝑠3+𝑠4

2
+ √(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
)
2

 −
𝑔

𝑆1𝑆2𝑆3𝑆4
              (199) 

Solution 1 : 𝑆1
′ = √

−𝐶

15𝐴
+
1

2
[𝜉(Υ4,1,1)
2  − 𝛼(1,Υ4,1)]

              (200) 

Solution 2 : 𝑆2
′ = √

−𝐶

15𝐴
+
1

2
[𝜉(Υ4,1,2)
2  − 𝛼(1,Υ4,1)]

              (201) 

Solution 3 : 𝑆3
′ = √

−𝐶

15𝐴
+
1

2
[𝜉(Υ4,1,3)
2  − 𝛼(1,Υ4,1)]

              (202) 

Solution 4 : 𝑆4
′ = √

−𝐶

15𝐴
+
1

2
[𝜉(Υ4,1,4)
2  − 𝛼(1,Υ4,1)]

              (203) 

Solution 5 : 𝑆5
′ = √

−𝐶

15𝐴
 −

𝑏+𝑠1+𝑠2+𝑠3+𝑆4

2
−√(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
)
2

 −
𝑔

𝑆1𝑆2𝑆3𝑆4
             (204) 

Solution 6 : 𝑆6
′ = √

−𝐶

15𝐴
−
𝑏+𝑠1+𝑠2+𝑠3+𝑠4

2
+ √(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
)
2

 −
𝑔

𝑆1𝑆2𝑆3𝑆4
             (205) 

9. Solving Sixth-Order Differential Equations 
This section presents the developed theorems and formulas to solve sixth-order differential equations by using the proposed 

methodologies in this paper to solve nth order differential equations and nth degree polynomial equations. 

 

9.1. First proposed theorem for sixth-order differential equations 

This section presents the first developed theorem to solve sixth-order differential equations that are expressed according to 

the form: 𝐴 ∗ 𝐻(6)(𝑥) + 𝐵 ∗ 𝐻(5)(𝑥) + 𝐶 ∗ 𝐻(4)(𝑥) + 𝐷 ∗ 𝐻(3)(𝑥) + 𝐸 ∗ 𝐻(2)(𝑥) + 𝐹 ∗ 𝐻(1)(𝑥) + 𝐺 ∗ 𝐻(0)(𝑥) = 𝐾 where A ≠
0, by supposing that the solution is expressed according to an exponential form, then converting the sixth-order differential 

equation into an equivalent polynomial form of sixth degree, where we use the presented theorems to solve polynomial equations 

in this paper. 
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Theorem 17 

A sixth-order differential equation under the expressed form in (Equation 206), where coefficients belong to the group of 

numbers ℝ and 𝐴 ≠ 0, has multiple solutions presented as 𝐻(𝑥), which we can express according to the exponential form shown 

in (Equation 207). 

 𝐴 ∗ 𝐻(6)(𝑥) + 𝐵 ∗ 𝐻(5)(𝑥) + 𝐶 ∗ 𝐻(4)(𝑥) + 𝐷 ∗ 𝐻(3)(𝑥) + 𝐸 ∗ 𝐻(2)(𝑥) + 𝐹 ∗ 𝐻(1)(𝑥) + 𝐺 ∗ 𝐻(0)(𝑥) = 𝐾 with A ≠  0     

(206) 

𝐻(𝑥) = 𝑒
𝑠𝑥+𝑢 + 𝑣               (207) 

 

The value of v, which is included in the solution H(x) shown in (Equation 207), is considered an arbitrary value. We can 

calculate the arbitrary value of v by using the shown expression in (Equation 208). 

𝑣 =
𝐾

𝐺
                (208) 

 

The value of u, which is included in the solution H(x) shown in (Equation 207), is considered an arbitrary value. We can 

calculate the arbitrary value of u while relying on the condition of the initialization value 𝐼0 which is to be identified at the 

point 𝑥 = 0. Therefore, we can use the expression 𝐻(𝑥 = 0) = 𝐼0 in order to identify the arbitrary value of u as shown in 

(Equation 209). 

𝑢 = 𝑙𝑜𝑔 (𝐼0 −
𝐾

𝐺
)               (209) 

 

By supposing that the solution of the sixth-order differential equation is expressed according to the exponential form shown 

in (Equation 207), we can convert this differential equation into the form of a sixth-degree polynomial equation as shown in 

(Equation 210), where we can use the proposed solutions in Theorem 15 for sixth-degree polynomial equations in general forms. 

A𝑥6 + B𝑥5 + C𝑥4 + D𝑥3 + E𝑥2 + F𝑥 + G = 0 𝑤𝑖𝑡ℎ A ≠  0 𝑎𝑛𝑑 B ≠  0                 (210) 

𝑥6 + 𝑏𝑥5 + 𝑐𝑥4 + 𝑑𝑥3 + 𝑒𝑥2 + 𝑓𝑥 + 𝑔 = 0 𝑤𝑖𝑡ℎ 𝑏 ≠  0                 (211) 

𝑏 =
B

A
;  𝑐 =

C

A
;  𝑑 =

D

A
; 𝑒 =

E

A
;  𝑓 =

F

A
;  𝑔 =

G

A
;                  (212) 

𝑧4 + Γ3𝑧
3  + Γ2𝑧

2 + Γ1𝑧 + Γ0 = 0                  (213) 

We use Theorem 15 in this paper to solve the sixth-degree polynomial shown in (Equation 210).  

 

After reducing the form of sixth degree polynomial shown in (Equation 210) to the presented form in (Equation 211) where 

coefficients are as expressed in (Equation 212); the sixth-degree polynomial equation shown in (Equation 211), where coefficients 

belong to the group of numbers ℝ, can be reduced to a fourth-degree polynomial equation, which may be expressed as shown in 

(Equation 213). The reduction from a sixth-degree polynomial to a quartic polynomial is conducted by supposing 𝑥 = 𝑥0𝑥1 +
𝑥0𝑥2 + 𝑥0𝑥3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3, whereas supposing 𝑧 = (𝑥0  +  𝑥1 + 𝑥2 + 𝑥3) is the solution for the fourth-degree 

polynomial equation in (Equation 213) by using Theorem 3 and relying on the expression 𝑥3 = −
Γ3

4
 . The variable Γ3 is defined 

as shown in (Equation 214), where 𝛼3 is presented in (Equation 215) and Γ4 is the solution for the polynomial equation (Equation 

216), which relies on the coefficients (Equation 217), (Equation 218), (Equation 219), and (Equation 220). The shown coefficients 

in (Equation 217), (Equation 218), (Equation 219), and (Equation 220) are expressed by using the constant 𝑉, which is presented 

in (Equation 221). The coefficients Γ3, Γ2, Γ1 and Γ0 of the quartic equation (Equation 213), which is used to calculate 𝑧, are 

determined by using the shown expressions in (Equation 214), (Equation 223), (Equation 224), and (Equation 225) while using 

calculated values of Γ4 and 𝑉.  

 

The proposed six values as official solutions for the sixth-degree polynomial equation shown in (Equation 211) are as 

presented in (Equation 226), (Equation 227), (Equation 228), (Equation 229), (Equation 230), and (Equation 231). 

 

The proposed six functions as official solutions for the sixth-order differential equation shown in (Equation 206) are as 

presented in (Equation 232), (Equation 233), (Equation 234), (Equation 235), (Equation 236), and (Equation 237). 
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The group of expressions {±Γ4,1 ;  ±Γ4,2 ;  ±Γ4,3} are the identified values of the variable Γ4, which are calculated as solutions 

for the sixth-degree polynomial equation presented in (Equation 216) by using the solution of the third-degree equations shown 

in (Equation 222). 

We use the expressions {𝛼(1,Γ4,𝑖) =
Γ4,𝑖
4  +

32Γ4,𝑖
4

𝑉2𝑏2
 −
8Γ4,𝑖
4

𝑉𝑏
 +
12𝑑Γ4,𝑖

2

𝑏2
 −
8𝑐Γ4,𝑖

2

𝑏
 −
𝑉2(𝑓−

𝑑2

4𝑏)

𝑏

4Γ4,𝑖
2 } in order to simplify calculations, which allows 

obtaining the shown equation in (Equation 216). 

The value of V shown in (Equation 221) is used to simplify the expression of the formulas during calculations, where 
Υ4

𝛼3
= 𝑉. 

The group of expressions {Ṡ(Γ4,1,1) ;  Ṡ(Γ4,1,2) ;  Ṡ(Γ4,1,3) ;  Ṡ(Γ4,1,4)} are the identified four solutions for the fourth-degree 

polynomial equation shown in (Equation 213) by using Theorem 3 to calculate these four roots nearly in parallel. 

Γ3 =
4𝛼3

𝑏
 + Γ4           (214) 

𝛼3 = −

4Γ4(𝑓−
𝑑2

4𝑏)

𝑏
32𝑓

𝑏2
 +
40𝑑2

𝑏3
 −
64𝑐𝑑

𝑏2
 +
64𝑒

𝑏

            (215) 

𝜆3Γ4
6  + 𝜆2Γ4

4  + 𝜆1Γ4
2  + 𝜆0 = 0            (216) 

𝜆3 = −
40960

𝑉4𝑏4
 +

16384

𝑉3𝑏3
 −

1536

𝑉2𝑏2
            (217) 

𝜆2 = −
24576𝑑

𝑉2𝑏4
 +

16384𝑐

𝑉2𝑏3
 +

3072𝑑

𝑉𝑏3
 −

2048𝑐

𝑉𝑏2
 +

1024

𝑉
            (218) 

𝜆1 = −
512𝑑

𝑏
 +

1536𝑓

𝑏3
 +

28𝑉2𝑓

𝑏
 −

7𝑉2𝑑2

𝑏2
+
96𝑉𝑓

𝑏2
 −

168𝑑2𝑉

𝑏3
 +

192𝑐𝑑𝑉

𝑏2
 −

192𝑉𝑒

𝑏
 −

3456𝑑2

𝑏4
 +

4096𝑐𝑑

𝑏3
 −

1024𝑒

𝑏2
 −

1024𝑐2

𝑏2
            (219) 

𝜆0 = −
64𝑉2𝑑3

𝑏4
 +

64𝑐𝑑2𝑉2

𝑏3
 −

64𝑒𝑉2𝑑

𝑏2
 +

128𝑉2𝑔

𝑏
 +

192𝑉2𝑑𝑓

𝑏3
 −

128𝑉2𝑐𝑓

𝑏2
             (220) 

𝑉 = −
32𝑓

𝑏2
 +
40𝑑2

𝑏3
 −
64𝑐𝑑

𝑏2
 +
64𝑒

𝑏

4
(𝑓−

𝑑2

4𝑏)

𝑏

              (221) 

Γ4,1
2 =

−𝑏;

3
 +

1

3
√−

𝐷;

2
+ √(

𝐷;

2
)
2

+ (
𝐶 ;

3
)
33

+
1

3
√−

𝐷;

2
− √(

𝐷;

2
)
2

+ (
𝐶 ;

3
)
3

 
3

 |  {𝑏; =
𝜆2

𝜆3
 , 𝑐; =

𝜆1

𝜆3
  𝑎𝑛𝑑 𝑑; =

𝜆0

𝜆3
} {𝐷; = 27𝑑; + 2𝑏;3 − 9

𝑐; 𝑏; 𝑎𝑛𝑑 𝐶 ; = 9𝑐; − 3𝑏;2}                (222) 

Γ2 =
8Γ4
2

𝑉𝑏
−
6𝑑

𝑏2
+
4𝑐

𝑏
+
(𝑓−

𝑑2

4𝑏
)𝑉2

2𝑏Γ4
2 −

8Γ4
2

𝑉2𝑏2
               (223) 

Γ1 =
5Γ4
3

𝑉𝑏
+

3𝑉𝑑2

4𝑏3Γ4
−
6𝑑Γ4

𝑏2
+
4𝑐Γ4

𝑏
−

𝑑𝑐𝑉

b2Γ4
+

𝑒𝑉

𝑏Γ4
−
Γ4
3

4
−

8Γ4
3

𝑉2𝑏2
+
𝑓−

𝑑2

4𝑏

4Γ4𝑏
𝑉2                (224) 

Γ0 =
Γ4
4

2𝑉𝑏
−

𝑉2𝑑3

16𝑏4Γ4
2 +

3𝑉𝑑2

8𝑏3
−
3𝑑Γ4

2

4𝑏2
+
𝑐Γ4
2

2𝑏
+
𝑐𝑑2𝑉2

8b3Γ4
2 −

𝑐𝑑𝑉

2𝑏2
+
𝑒𝑉

2𝑏
−

𝑒𝑉2𝑑

4𝑏2Γ4
2 +

𝑔𝑉2

2𝑏Γ4
2                    



Yassine Larbaoui / IJMTT, 72(1), 90-132, 2026 

 

118 

−(
Γ4
2

4
+ 𝑉2

𝑓−
𝑑2

4𝑏

4𝑏Γ4
2)(

Γ4
2

4
+

8Γ4
2

𝑉2𝑏2
−
2Γ4
2

𝑉𝐵
+
3𝑑

𝑏2
−
2𝑐

𝑏
−
(𝑓−

𝑑2

4𝑏
)

4𝑏Γ4
2 𝑉

2)                 (225) 

𝑆1 =
1

2
[Ṡ(Γ4,1,1)
2  − 𝛼(1,Γ4,1)]                 (226) 

𝑆2 =
1

2
[Ṡ(Γ4,1,2)
2  − 𝛼(1,Γ4,1)]                 (227) 

𝑆3 =
1

2
[Ṡ(Γ4,1,3)
2  − 𝛼(1,Γ4,1)]                 (228) 

𝑆4 =
1

2
[Ṡ(Γ4,1,4)
2  − 𝛼(1,Γ4,1)]                 (229) 

𝑆5 = −
𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
− √(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
)
2

−
𝑔

𝑆1𝑆2𝑆3𝑆4
                (230) 

𝑆6 = −
𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
+ √(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
)
2

−
𝑔

𝑆1𝑆2𝑆3𝑆4
                (231) 

Solution 1: 𝐷S1 =
𝐾

𝐺
+ (𝐼0 −

𝐾

𝐺
) 𝑒

1

2
[Ṡ
(Γ4,1,1)
2  −𝛼(1,Γ4,1)

]𝑥              (232) 

Solution 2: 𝐷S2 =
𝐾

𝐺
+ (𝐼0 −

𝐾

𝐺
) 𝑒

1

2
[Ṡ
(Γ4,1,2)
2  −𝛼(1,Γ4,1)

]𝑥              (233) 

Solution 3: 𝐷S3 =
𝐾

𝐺
+ (𝐼0 −

𝐾

𝐺
) 𝑒

1

2
[Ṡ
(Γ4,1,3)
2  −𝛼(1,Γ4,1)

]𝑥              (234) 

Solution 4: 𝐷S4 =
𝐾

𝐺
+ (𝐼0 −

𝐾

𝐺
) 𝑒

1

2
[Ṡ
(Γ4,141)
2  −𝛼(1,Γ4,1)

]𝑥              (235) 

Solution 5: 
𝐷S5 =

𝐾

𝐺
+ (𝐼0 −

𝐾

𝐺
) 𝑒

[−
𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
−√(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4
2

)
2
−

𝑔

𝑆1𝑆2𝑆3𝑆4
]𝑥           (236) 

Solution 6: 
𝐷S6 =

𝐾

𝐺
+ (𝐼0 −

𝐾

𝐺
) 𝑒

[−
𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
+√(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4
2

)
2
−

𝑔

𝑆1𝑆2𝑆3𝑆4
]𝑥           (237) 

9.2. Second proposed Theorem for Sixth-Order Differential Equation 

This section presents the second developed theorem to solve sixth-order differential equations that are expressed according 

to the form: 𝐴 ∗ 𝐻(6)(𝑥) + 𝐶 ∗ 𝐻(4)(𝑥) + 𝐷 ∗ 𝐻(3)(𝑥) + 𝐸 ∗ 𝐻(2)(𝑥) + 𝐹 ∗ 𝐻(1)(𝑥) + 𝐺 ∗ 𝐻(0)(𝑥) = 𝐾 where A ≠ 0, by 

supposing that the solution is expressed according to an exponential form, then converting the sixth-order differential equation 

into an equivalent polynomial form of sixth degree, where we use the presented theorems to solve polynomial equations in this 

paper. The axis of difference in this form of sixth-order differential equation has a value of zero for the coefficient of the fifth-

order part. 

Theorem 18 

A sixth-order differential equation under the expressed form in (Equation 238), where coefficients belong to the group of 

numbers ℝ and 𝐴 ≠ 0, has multiple solutions presented as 𝐻(𝑥), which we can express according to the exponential form shown 

in (Equation 239). 

 𝐴 ∗ 𝐻(6)(𝑥) + 𝐶 ∗ 𝐻(4)(𝑥) + 𝐷 ∗ 𝐻(3)(𝑥) + 𝐸 ∗ 𝐻(2)(𝑥) + 𝐹 ∗ 𝐻(1)(𝑥) + 𝐺 ∗ 𝐻(0)(𝑥) = 𝐾 with A ≠  0                (238) 
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𝐻(𝑥) = 𝑒𝑠𝑥+𝑢 + 𝑣               (239) 

 

The value of v, which is included in the solution H(x) shown in (Equation 239), is considered an arbitrary value. We can 

calculate the arbitrary value of v by using the shown expression in (Equation 240). 

𝑣 =
𝐾

𝐺
                (240) 

 

The value of u, which is included in the solution H(x) shown in (Equation 239), is considered an arbitrary value. We can 

calculate the arbitrary value of u while relying on the condition of the initialization value 𝐼0 which is to be identified at the point 

𝑥 = 0. Therefore, we can use the expression 𝐻(𝑥 = 0) = 𝐼0 in order to identify the arbitrary value of u as shown in (Equation 

241). 

𝑢 = 𝑙𝑜𝑔 (𝐼0 −
𝐾

𝐺
)                (241) 

 

By supposing that the solution of the sixth-order differential equation is expressed according to the exponential form shown 

in (Equation 239), we can convert this differential equation into the form of a sixth-degree polynomial equation as shown in 

(Equation 242), where we can use the proposed solutions in Theorem 16 for sixth-degree polynomial equations in general forms. 

𝐴𝑤6 + 𝐶𝑤4 + 𝐷𝑤3 + 𝐸𝑤2 + 𝐹𝑤 + 𝐺 = 0 𝑤𝑖𝑡ℎ 𝐴 ≠  0                 (242) 

𝑥6 + 𝑏𝑥5 + 𝑑𝑥3 + 𝑒𝑥2 + 𝑓𝑥 + 𝑔 = 0                 (243) 

𝑏 = 6√
−𝐶

15𝐴
                   (244) 

𝑑 =
8𝐶

3𝐴
√
−𝐶

15𝐴
 +

𝐷

𝐴
                   (245) 

𝑒 =
−𝐶2

3𝐴2
 +

3𝐷

𝐴
√
−𝐶

15𝐴
 +

𝐸

𝐴
                   (246) 

𝑓 = −
18𝐶2

5𝐴2
√
−𝐶

15𝐴
 −

𝐷𝐶

5𝐴2
 +

2𝐸

𝐴
√
−𝐶

15𝐴
 +

𝐹

𝐴
                   (247) 

𝑔 =
−16𝐶3

3375𝐴3
−

𝐷𝐶

15𝐴2
√
−𝐶

15𝐴
 −

𝐸𝐶

15𝐴2
 +

𝐹

𝐴
√
−𝐶

15𝐴
 +

𝐺

𝐴
                   (248) 

We use Theorem 16 in this paper to solve the sixth-degree polynomial shown in (Equation 242).  

 

In order to reduce the sixth-degree polynomial equation 𝐴𝑤6 + 𝐶𝑤4 + 𝐷𝑤3 + 𝐸𝑤2 + 𝐹𝑤 + 𝐺 = 0 𝑤𝑖𝑡ℎ 𝐴 ≠  0 to the 

quartic equation shown in (Equation 249), where coefficients belong to the group of numbers ℝ, we first replace 𝑤 with 𝑤 =

√
−𝐶

15𝐴
+ 𝑥 in order to obtain the shown equation in (Equation 243), where coefficients are presented in (Equation 244), (Equation 

245), (Equation 246), (Equation 247), and (Equation 248).     Then, the reduction from sixth degree to fourth degree is conducted 

by supposing 𝑥 = (𝑥0𝑥1 + 𝑥0𝑥2 + 𝑥0𝑥3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3), whereas supposing 𝑧 = (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) is the solution 

for the fourth-degree polynomial equation in (Equation 249) by using Theorem 3 and relying on the expression 𝑥3 = −
Υ3

4
. The 

variable Υ3 is defined as shown in (Equation 250), where 𝛼3 is presented in (Equation 254) and Υ4 is the solution for the 

polynomial equation (Equation 255), which relies on the coefficients (Equation 256), (Equation 257), (Equation 258), and 

(Equation 259). The shown coefficients in (Equation 256), (Equation 257), (Equation 258), and (Equation 259) are expressed by 

using the constant 𝑉, which is defined in (Equation 260). The coefficients Υ3, Υ2, Υ1 and Υ0 of the quartic equation (Equation 

249) are determined by using the calculated value of Υ4 and using the shown expressions in (Equation 250), (Equation 251), 

(Equation 252), and (Equation 253).  

 

The six proposed solutions for the polynomial equation 𝑥6 + 𝑏𝑥5 + 𝑑𝑥3 + 𝑒𝑥2 + 𝑓𝑥 + 𝑔 = 0 shown in (Equation 243) are 

as shown in (Equation 262), (Equation 263), (Equation 264), (Equation 265), (Equation 266), and (Equation 267). 
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The six proposed solutions for the polynomial equation 𝐴𝑤6 + 𝐶𝑤4 + 𝐷𝑤3 + 𝐸𝑤2 + 𝐹𝑤 + 𝐺 = 0 𝑤𝑖𝑡ℎ 𝐴 ≠  0 are as 

shown in (Equation 268), (Equation 269), (Equation 270), (Equation 271), (Equation 272), and (Equation 273). 

 

The six solutions for the sixth-order differential equation are as shown in (Equation 274), (Equation 275), (Equation 276), 

(Equation 277), (Equation 278), and (Equation 279). 

 

The group of expressions {±Γ4,1 ;  ±Γ4,2 ;  ±Γ4,3}  are the identified values of the variable Γ4, which are calculated as solutions 

for the sixth-degree polynomial equation presented in (Equation 255) by using the solution of the third-degree equations shown 

in (Equation 261). 

We use the expressions {𝛼1 =
Υ4
4 +

32Υ4
4

𝑉2𝑏2
 −
8Υ4
4

𝑉𝑏
 +
12𝑑Υ4

2

𝑏2
 −
𝑉2(𝑓−

𝑑2

4𝑏)

𝑏

4Υ4
2 } in order to simplify calculations, which allows obtaining the sixth-

degree equation shown in (Equation 255). 

The value of V shown in (Equation 260) is used to simplify the expression of the formulas during calculations, where 
Υ4

𝛼3
= 𝑉. 

The group of expressions {𝜉(Υ4,1 ,1) ;  𝜉(Υ4,1 ,2) ;  𝜉(Υ4,1 ,3) ;  𝜉(Υ4,1 ,4)} are the identified four solutions for the fourth-degree 

polynomial equation shown in (Equation 249) by using Theorem 3 to calculate these four roots nearly in parallel. 

𝑧4 + Υ3𝑧
3 + Υ2𝑧

2 + Υ1𝑧 + Υ0 = 0              (249) 

Υ3 =
4𝛼3

𝑏
 + Υ4             (250) 

Υ2 =
8Υ4
2

𝑉𝑏
−
6𝑑

𝑏2
+
(𝑓−

𝑑2

4𝑏
)𝑉2

2𝑏Υ4
2 −

8Υ4
2

𝑉2𝑏2
             (251) 

Υ1 =
5Γ4
3

𝑉𝑏
+

3𝑉𝑑2

4𝑏3Υ4
−
6𝑑Υ4

𝑏2
+

𝑒𝑉

𝑏Υ4
−
Υ4
3

4
−

8Υ4
3

𝑉2𝑏2
+
𝑓−

𝑑2

4𝑏

4Υ4𝑏
𝑉2             (252) 

Υ0 =
Υ4
4

2𝑉𝑏
−

𝑉2𝑑3

16𝑏4Υ4
2 +

3𝑉𝑑2

8𝑏3
−
3𝑑Υ4

2

4𝑏2
+
𝑒𝑉

2𝑏
−

𝑒𝑉2𝑑

4𝑏2Υ4
2 +

𝑔𝑉2

2𝑏Υ4
2 − (

Υ4
2

4
+ 𝑉2

𝑓−
𝑑2

4𝑏

4𝑏Υ4
2)(

Υ4
2

4
+

8Υ4
2

𝑉2𝑏2
−
2Υ4
2

𝑉𝐵
+
3𝑑

𝑏2
−
(𝑓−

𝑑2

4𝑏
)

4𝑏Υ4
2 𝑉

2)            (253) 

𝛼3 = −
Υ4

4(𝑓−
𝑑2

4𝑏)

𝑏
32𝑓

𝑏2
 +
40𝑑2

𝑏3
 +
64𝑒

𝑏

             (254) 

𝛽3Υ4
6  + 𝛽2Υ4

4  + 𝛽1Υ4
2  + 𝛽0 = 0              (255) 

𝛽3 = −
40960

𝑉4𝑏4
 +

16384

𝑉3𝑏3
 −

1536

𝑉2𝑏2
             (256) 

𝛽2 = −
24576𝑑

𝑉2𝑏4
 +

3072𝑑

𝑉𝑏3
 +

1024

𝑉
             (257) 

𝛽1 = −
512𝑑

𝑏
 +

1536𝑓

𝑏3
 +

28𝑉2𝑓

𝑏
 −

7𝑉2𝑑2

𝑏2
+
96𝑉𝑓

𝑏2
 −

168𝑑2𝑉

𝑏3
 −

192𝑉𝑒

𝑏
 −

3456𝑑2

𝑏4
 −

1024𝑒

𝑏2
              (258) 

𝛽0 = −
64𝑉2𝑑3

𝑏4
 −

64𝑒𝑉2𝑑

𝑏2
 +

128𝑉2𝑔

𝑏
 +

192𝑉2𝑑𝑓

𝑏3
              (259) 
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𝑉 = −
32𝑓

𝑏2
 +
40𝑑2

𝑏3
 +
64𝑒

𝑏

4(𝑓−
𝑑2

4𝑏)

𝑏

              (260) 

Υ4,1
2 =

−𝑏;

3
 +

1

3
√−

𝐷;

2
+ √(

𝐷;

2
)
2

+ (
𝐶 ;

3
)
3

 
3

+ 
1

3
√−

𝐷;

2
− √(

𝐷;

2
)
2

+ (
𝐶 ;

3
)
3

 
3

 |  {𝑏; =
𝛽2

𝛽3
 , 𝑐; =

𝛽1

𝛽3
  𝑎𝑛𝑑 𝑑; =

𝛽0

𝛽3
 }  ; {𝐷^;= 27𝑑; +

2𝑏;3 − 9𝑐 ; 𝑏; 𝑎𝑛𝑑 𝐶 ; = 9𝑐 ; − 3𝑏;2}             (261) 

𝑠1 =
1

2
[𝜉(Υ4,1,1)
2  − 𝛼(1,Υ4,1)]             (262) 

𝑠2 =
1

2
[𝜉(Υ4,1,2)
2  − 𝛼(1,Υ4,1)]             (263) 

𝑠3 =
1

2
[𝜉(Υ4,1,3)
2  − 𝛼(1,Υ4,1)]             (264) 

𝑠4 =
1

2
[𝜉(Υ4,1,4)
2  − 𝛼(1,Υ4,1)]             (265) 

𝑠5 = −
𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
− √(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
)
2

 −
𝑔

𝑆1𝑆2𝑆3𝑆4
             (266) 

𝑠6 = −
𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
+ √(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
)
2

 −
𝑔

𝑆1𝑆2𝑆3𝑆4
             (267) 

𝑆1
′ = √

−𝐶

15𝐴
+
1

2
[𝜉(Υ4,1,1)
2  − 𝛼(1,Υ4,1)]

             (268) 

𝑆2
′ = √

−𝐶

15𝐴
+
1

2
[𝜉(Υ4,1,2)
2  − 𝛼(1,Υ4,1)]

             (269) 

𝑆3
′ = √

−𝐶

15𝐴
+
1

2
[𝜉(Υ4,1,3)
2  − 𝛼(1,Υ4,1)]

            (270) 

𝑆4
′ = √

−𝐶

15𝐴
+
1

2
[𝜉(Υ4,1,4)
2  − 𝛼(1,Υ4,1)]

         (271) 

𝑆5
′ = √

−𝐶

15𝐴
 −

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
− √(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
)
2

 −
𝑔

𝑆1𝑆2𝑆3𝑆4
           (272) 

𝑆6
′ = √

−𝐶

15𝐴
−
𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
+ √(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
)
2

 −
𝑔

𝑆1𝑆2𝑆3𝑆4
          (273) 

Solution 1: 𝐷S1
′ =

𝐾

𝐺
+ (𝐼0 −

𝐾

𝐺
) 𝑒

[√
−𝐶

15𝐴
+
1

2
[𝜉
(Υ4,1,1)
2  −𝛼(1,Υ4,1)

]]𝑥            (274) 

Solution 2: 𝐷S2
′ =

𝐾

𝐺
+ (𝐼0 −

𝐾

𝐺
) 𝑒

[√
−𝐶

15𝐴
+
1

2
[𝜉
(Υ4,1,2)
2  −𝛼(1,Υ4,1)

]]𝑥            (275) 

Solution 3: 𝐷S3
′ =

𝐾

𝐺
+ (𝐼0 −

𝐾

𝐺
) 𝑒

[√
−𝐶

15𝐴
+
1

2
[𝜉
(Υ4,1,3)
2  −𝛼(1,Υ4,1)

]]𝑥            (276) 
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Solution 4: 𝐷S4
′ =

𝐾

𝐺
+ (𝐼0 −

𝐾

𝐺
) 𝑒

[√
−𝐶

15𝐴
+
1

2
[𝜉
(Υ4,1,4)
2  −𝛼(1,Υ4,1)

]]𝑥            (277) 

Solution 5: 
𝐷S5

′ =
𝐾

𝐺
+ (𝐼0 −

𝐾

𝐺
) 𝑒

[√
−𝐶

15𝐴
 − 
𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
 −√(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4
2

)
2
 − 

𝑔

𝑆1𝑆2𝑆3𝑆4
]𝑥          (278) 

Solution 6: 
𝐷S6

′ =
𝐾

𝐺
+ (𝐼0 −

𝐾

𝐺
) 𝑒

[√
−𝐶

15𝐴
 − 
𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
 +√(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4
2

)
2
 − 

𝑔

𝑆1𝑆2𝑆3𝑆4
]𝑥          (279) 

10. Solving nth Degree Polynomial Equations 
This section presents the developed theorem and formulas to solve nth degree polynomial equations by using the proposed 

engineering methodology in this paper. 

 

10.1. Proposed theorem for nth Degree Polynomials 

This subsection presents the developed theorem to solve nth degree polynomial equations that are expressed according to 

the form: {(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0} where 𝐴𝑁 ≠ 0, by converting this nth degree polynomial into the form of a reduced polynomial 

equation with a lower degree, which we can express as follows: {(∑ Γ𝑖𝑍
𝑖𝑖=𝑀

𝑖=0
) = 0} where N>M.  

{(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0}  𝑤𝑖𝑡ℎ 𝐴𝑛 ≠  0                (280) 

{(∑
𝐴𝑖

𝐴𝑛
𝑋𝑖

𝑖=𝑁

𝑖=0
) = 0}  𝑤𝑖𝑡ℎ 𝐴𝑛 ≠  0                (281) 

𝑖𝑓(𝑁 ≥ 7 𝑎𝑛𝑑 𝑁 ≡ 1 𝑀𝑂𝐷[2]) ⟹ {(∑
𝑎𝑗

𝑎𝑛
𝑋𝑗

𝑗=𝑛

𝑗=0
) = 0}  𝑤ℎ𝑒𝑟𝑒 {(𝑛 = 𝑁 + 1); ( 𝑎𝑛 ≠  0); ( 𝑎0 =  0) 𝑎𝑛𝑑 (𝑎𝑗+1 = 𝐴𝑗≥0)}   

(282) 

𝑖𝑓 [𝑁 < 7 𝑜𝑟 (𝑁 ≡ 0 𝑀𝑂𝐷[2])] ⟹ {(∑
𝑎𝑗

𝑎𝑛
𝑋𝑗

𝑗=𝑛

𝑗=0
) = 0}  𝑤ℎ𝑒𝑟𝑒 {(𝑛 = 𝑁) 𝑎𝑛𝑑 ( 𝑎𝑛 ≠  0) 𝑎𝑛𝑑 (𝑎𝑗 = 𝐴𝑗≥0)}              (283) 

{𝑋 =
−𝑎(𝑛−1)

𝑛𝑎𝑛
+
𝑥

𝑛
}  𝑡𝑜 𝑒𝑙𝑒𝑚𝑖𝑛𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑛 − 1)              (284) 

{𝑋 = √
−2𝑎(𝑛−2)

𝑛(𝑛−1)𝑎𝑛
+ 𝑥}  𝑡𝑜 𝑐𝑟𝑒𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑛 − 1)              (285) 

{𝑋 = 𝑥} 𝑡𝑜 𝑘𝑒𝑒𝑝 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙               (286) 

{(∑ 𝑏𝑖𝑥
𝑖𝑖=𝑛

𝑖=0
) = 0}  𝑤𝑖𝑡ℎ 𝑏𝑛 = 1               (287) 

{𝑥 = ∑ 𝑇𝑖
𝑖=𝑢
𝑖=0 = ∑ 𝑥𝑖

𝑖=𝑢
𝑖=0 } 𝑖𝑓 𝑡ℎ𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛 = 4               (288) 

{𝑥 = ∑ 𝑇𝑖
𝑖=𝑢
𝑖=0 = ∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 } 𝑖𝑓 𝑡ℎ𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛 ≥ 5               (289) 

{∑ Γi
𝑖=𝑛′

𝑖=0 𝑧i = 0} 𝑤ℎ𝑒𝑟𝑒 (𝑛′ < 𝑛 ) 𝑎𝑛𝑑 (Γn′ = 1)              (290) 

𝑧 = ∑ 𝑥𝑖
𝑖=𝑢′

𝑖=0 =∑ √𝑦𝑖
𝑖=𝑢′

𝑖=0

               (291) 
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𝑥1 =
√−𝑏
3
 +

1

3
√−

D

2
 + √(

D

2
)
2

+ (
C

3
)
33

+
1

3
√−

D

2
− √(

D

2
)
2

+ (
C

3
)
33
              (292) 

𝑥2 = √−
𝑃

2
+𝑥1

2
+ √(

𝑃

2
+𝑥1

2
)

2

−
𝑄2

64𝑥1

               (293) 

𝑥3 = √−
𝑃

2
+𝑥1

2
− √(

𝑃

2
+𝑥1

2
)

2

−
𝑄2

64𝑥1
               (294) 

{𝛼1 = ∑𝑥𝑖
2} ;  {𝛼2 = ∑ 𝑥𝑖

2 𝑥𝑗
2

𝑖≠ 𝑗 } ;  {𝛼3 = ∑ 𝑥𝑖𝑥𝑗𝑥𝑘𝑖≠ 𝑗≠𝑘 } ;   {𝛼4 = ∑ 𝑥𝑖𝑥𝑗𝑥𝑘𝑖≠ 𝑗≠𝑘≠𝑙 𝑥𝑙}              (295) 

 

{𝑋 = (∑𝑥𝑖)
2 − 𝛼1} ;  {𝑋

2 = 𝛼2 +  2𝛼3(∑𝑥𝑖) + 6𝛼4} ;  {𝑋
4 = 4(∑𝑥𝑖)

2 𝛼3
2  + 4𝛼3(∑𝑥𝑖)[𝛼2 + 6𝛼4] +  [𝛼2 + 6𝛼4]

2}          
(296) 

{∑ λi
𝑖=𝑣′

𝑖=0 Γ2i = 0} 𝑤ℎ𝑒𝑟𝑒 (𝑣′ ≤
𝑛

2
 )             (297) 

{𝑉 =
𝛤

𝛼3
}             (298) 

 

𝜆𝑖 = 𝑔𝑖( 𝑉)            (299) 

 

𝛤𝑖 = 𝑓𝑖(𝛤, 𝑉)            (300) 

𝐺𝑟𝑜𝑢𝑝 𝐾 = {Ṡ
(Γrk ,1

)
 ;  Ṡ

(Γrk ,2
)
; … ; Ṡ

(Γrk ,𝑛
′)
}            (301) 

{𝑆1 =
1

2
[Ṡ(Γ,1)
2  − 𝛼(1,Γ)] ;  𝑆2 =

1

2
[Ṡ(Γ,2)
2  − 𝛼(1,Γ)] ; … ; 𝑆𝑛′ = 

1

2
[Ṡ(Γ,n′)
2  − 𝛼(1,Γ)]}            (302) 

(∑ 𝑏𝑖𝑥
𝑖

𝑖=𝑛

𝑖=0
)

∏ (𝑥−𝑆𝑗)
𝑗=𝑛′

𝑗=1

= 0            (303) 

{𝑆(𝑛′+1) ;  𝑆(𝑛′+2); … ; 𝑆(𝑛)}           (304) 

{𝑆1
′ = 𝑆1 ;  𝑆2

′ = 𝑆2 ; … ; 𝑆𝑛′
′ = 𝑆𝑛′; … ;  𝑆𝑛

′ = 𝑆𝑛}           (305) 

{𝑆1
′ =

−𝑎𝑛−1

𝑛𝑎𝑛
+
𝑆1

𝑛
 ;  𝑆2

′ = 
−𝑎𝑛−1

𝑛𝑎𝑛
+ 

𝑆2

𝑛
 ; … ; 𝑆𝑛′

′ = 
−𝑎𝑛−1

𝑛𝑎𝑛
+ 

𝑆
𝑛′

𝑛
 ; … ; 𝑆𝑛

′ = 
−𝑎𝑛−1

𝑛𝑎𝑛
+ 

𝑆𝑛

𝑛
}            (306) 

{𝑆1
′ = √

−𝑎𝑛−1

𝑛(𝑛−2)𝑎𝑛
+ 𝑆1 ;  𝑆2

′ = √
−𝑎𝑛−1

𝑛(𝑛−2)𝑎𝑛
+ 𝑆2 ; … ; 𝑆𝑛′

′ = √
−𝑎𝑛−1

𝑛(𝑛−2)𝑎𝑛
+ 𝑆𝑛′  ; … ; 𝑆𝑛

′ = √
−𝑎𝑛−1

𝑛(𝑛−2)𝑎𝑛
+ 𝑆𝑛 }            (307) 

Theorem 19 

1. We consider the nth degree polynomial equation {(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0} where 𝐴𝑛 ≠ 0 and 𝑁 ≥ 4 and all coefficients belong 

to the group of numbers ℝ as shown in (Equation 280). 

2. We first adapt the nth degree polynomial equation {(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0} shown in (Equation 280) to be as presented in 

(Equation 281) by dividing it by the coefficient 𝐴𝑛 where 𝐴𝑛 ≠ 0. 
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3. If the degree N of the polynomial equation {(∑
𝐴𝑖

𝐴𝑛
𝑋𝑖

𝑖=𝑁

𝑖=0
) = 0} is an odd number, and if it is equal to or greater than seven, 

then we can multiply this polynomial form by X to obtain the polynomial equation {(∑
𝑎𝑗

𝑎𝑛
𝑋𝑗

𝑗=𝑛

𝑗=0
) = 0} shown in (Equation 

282), where {(𝑛 = 𝑁 + 1); ( 𝑎𝑛 ≠  0); ( 𝑎0 =  0) 𝑎𝑛𝑑 (𝑎𝑗+1 = 𝐴𝑗≥0)}. 

4. If the degree N of the polynomial equation {(∑
𝐴𝑖

𝐴𝑛
𝑋𝑖

𝑖=𝑁

𝑖=0
) = 0} is less than seven, or if it is an even number, then we can 

adapt this polynomial form to be presented as {(∑
𝑎𝑗

𝑎𝑛
𝑋𝑗

𝑗=𝑛

𝑗=0
) = 0}  where {(𝑛 = 𝑁)𝑎𝑛𝑑 ( 𝑎𝑛 ≠  0) 𝑎𝑛𝑑 (𝑎𝑗 = 𝐴𝑗≥0)} as 

presented in (Equation 283) 

5. If the degree n of the polynomial equation {(∑
𝑎𝑗

𝑎𝑛
𝑋𝑗

𝑗=𝑛

𝑗=0
) = 0} is even, then there is the possibility to eliminate the part 

of the degree (n-1) by using the expression {𝑋 =
−𝑎(𝑛−1)

𝑛𝑎𝑛
+
𝑥

𝑛
} shown in (Equation 284). 

6. It is optional to create the part of the degree (n-1) in the polynomial equation {(∑
𝑎𝑗

𝑎𝑛
𝑋𝑗

𝑗=𝑛

𝑗=0
) = 0} by using the expression 

{𝑋 = √
−2𝑎(𝑛−2)

𝑛(𝑛−1)𝑎𝑛
+ 𝑥} shown in (Equation 285), which also allows eliminating the part with degree (n-2). 

7. If we do not use the expression {𝑋 =
−𝑎(𝑛−1)

𝑛𝑎𝑛
+
𝑥

𝑛
} nor the expression {𝑋 = √

−2𝑎(𝑛−2)

𝑛(𝑛−1)𝑎𝑛
+ 𝑥}, then we rely on the use of the 

expression {𝑋 = 𝑥} as shown in (Equation 286), in order to reach the presented form in (Equation 287). 

8. We adapt the nth degree polynomial equation {(∑
𝑎𝑗

𝑎𝑛
𝑋𝑗

𝑗=𝑛

𝑗=0
) = 0} to be presented as {(∑ 𝑏𝑖𝑥

𝑖𝑖=𝑛

𝑖=0
) = 0} where  𝑏𝑛 = 1 

and all coefficients belong to the group of numbers ℝ as shown in (Equation 287). 

9. Considering the resulting nth degree polynomial equation {(∑ 𝑏𝑖𝑥
𝑖𝑖=𝑛

𝑖=0
) = 0} where  𝑏𝑛 = 1 and all coefficients belong to 

the group of numbers ℝ, as shown in (Equation 287); we can reduce this polynomial equation to a polynomial of degree 

{∑ Γi
𝑖=𝑛′

𝑖=0 𝑧i = 0} where (𝑛′ < 𝑛 ) 𝑎𝑛𝑑 (Γn′ = 1) as shown in (Equation 290). 

10. The reduction of the polynomial equation from the nth degree to the inferior degree 𝑛’ is conducted by supposing 

{𝑥 = ∑ 𝑇𝑖
𝑖=𝑢
𝑖=0 = ∑ 𝑥𝑖

𝑖=𝑢
𝑖=0 } when 𝑛 = 4 as shown in (Equation 288), or supposing {𝑥 = ∑ 𝑇𝑖

𝑖=𝑢
𝑖=0 = ∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 } when 𝑛 ≥ 5 as 

presented in (Equation 289), whereas supposing the expression {𝑧 = ∑ 𝑥𝑖
𝑖=𝑢′

𝑖=0 }  shown in (Equation 291) is the solution for 

the polynomial equation of degree 𝑛’ shown in (Equation 290) by relying on the expression 𝑥𝑢′ = −
Γ
(𝑢′−1)

𝑢′
 which will 

eventually lead to using the solutions of quartic equations. 

11. The value of  𝑥1 is expressed according to the solution of third-degree polynomial equations, where 𝑥1 =

√−𝑏
3
 +

1

3
√−

D

2
 + √(

D

2
)
2

+ (
C

3
)
33

+
1

3
√−

D

2
− √(

D

2
)
2

+ (
C

3
)
33

 as presented in (Equation 292) 

12. The value of 𝑥2 is expressed according to the solution of quadratic polynomial equations, where 𝑥2 =

√−
𝑃

2
+𝑥1

2
+ √(

𝑃

2
+𝑥1

2
)

2

−
𝑄2

64𝑥1
 as presented in (Equation 293) 
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13. The value of  𝑥3 is expressed according to the solution of quadratic polynomial equations, where 𝑥3 =

√−
𝑃

2
+𝑥1

2
− √(

𝑃

2
+𝑥1

2
)

2

−
𝑄2

64𝑥1
 as presented in (Equation 294) 

14. We rely on using the constant values {𝛼1 = ∑𝑥𝑖
2} ;  {𝛼2 = ∑ 𝑥𝑖

2 𝑥𝑗
2

𝑖≠ 𝑗 } ;  {𝛼3 = ∑ 𝑥𝑖𝑥𝑗𝑥𝑘𝑖≠ 𝑗≠𝑘 } 𝑎𝑛𝑑  {𝛼4 =

∑ 𝑥𝑖𝑥𝑗𝑥𝑘𝑖≠ 𝑗≠𝑘≠𝑙 𝑥𝑙}, which are shown in (Equation 295), in order to converge calculations toward reducing the degree of 

the polynomial. 

15. We rely on using the expressions {𝑋 = (∑𝑥𝑖)
2 − 𝛼1} ;  {𝑋

2 = 𝛼2 +  2𝛼3(∑𝑥𝑖) + 6𝛼4} 𝑎𝑛𝑑 {𝑋
4 = 4(∑𝑥𝑖)

2 𝛼3
2  +

4𝛼3(∑𝑥𝑖)[𝛼2 + 6𝛼4] + [𝛼2 + 6𝛼4]
2}, which are shown in (Equatio. 296), in order to converge calculations toward having 

simplified forms. 

16. The variable Γ is the solution for the polynomial equation (Equation 297), which relies on the coefficients {𝜆0;  𝜆1; … ; 𝜆𝑢}. 

17. The value of V shown in (Equation 298) is used to simplify the expression of the formulas during calculations, where 
Γ

𝛼3
=

𝑉. 

18. Each coefficient {𝜆𝑖} is among the group {𝜆0;  𝜆1; … ; 𝜆𝑢} and it is calculated according to the shown expression in (Equation 

299) by relying only on the coefficients {𝑏0; 𝑏1; … ; 𝑏𝑛}  and the calculated constant value of  𝑉, which is presented in 

(Equation 298).  

19. The polynomial equation {∑ λi
𝑖=𝑣′

𝑖=0 Γ2i = 0}  where (𝑣′ ≤
𝑛

2
 ) has (2 ∗ 𝑣′) roots which we can express as 

{±Γr1  ;  ±Γr2  ; … ; ±Γr𝑣′
}. 

20. We can select one root among the group {±Γr1  ;  ±Γr2  ; … ; ±Γr𝑣′
} to be considered as the principal root value Γ. 

21. Each coefficient {Γ𝑖} is among the group {Γ0;  Γ1; … ; Γ𝑢′} and it is calculated according to the shown expression in (Equation 

300) by relying only on the coefficients {𝑏0; 𝑏1; … ; 𝑏𝑛}  and the calculated values of Γ and 𝑉.  

22. We use the expressions {𝛼(1,Γ) = L(𝑉, Γ)} shown in (Equation 301) to calculate the value of 𝛼1 only by using the 

coefficients {𝑏0; 𝑏1; … ; 𝑏𝑛}  and the calculated values of Γ and 𝑉, which allow simplifying calculations toward obtaining 

the shown equation in (Equation 297). 

23. The group of roots {±Γr1  ;  ±Γr2  ; … ; ±Γr𝑣′
} identified for the polynomial equation {∑ λi

𝑖=𝑣′

𝑖=0 Γ2i = 0} will allow us to 

calculate an amount of (2 ∗ 𝑣′) groups of roots for the polynomial equation {∑ Γi
𝑖=𝑛′

𝑖=0 𝑧i = 0} where each group of roots will 

consist of 𝑛′ roots as shown in (Equation 301) 

24. Each group of roots for the polynomial equation {∑ Γi
𝑖=𝑛′

𝑖=0 𝑧i = 0} is calculated while relying on a specific value of root 

{±Γrk  } for the polynomial equation {∑ λi
𝑖=𝑣′

𝑖=0 Γ2i = 0}; whereas all groups of roots of the polynomial equation 

{∑ Γi
𝑖=𝑛′

𝑖=0 𝑧i = 0} will have redundancies among them. 

25. In order to identify all roots, we can eliminate the redundancies of values among calculated groups of roots for the polynomial 

equation {∑ Γi
𝑖=𝑛′

𝑖=0 𝑧i = 0} where each group of roots is calculated by using a different value of {±Γrk  } among the identified 

group of roots for the polynomial equation {∑ λi
𝑖=𝑣′

𝑖=0 Γ2i = 0} 

26. We calculate the group of roots {Ṡ(Γ,1) ;  Ṡ(Γ,2); … ; Ṡ(Γ,𝑛′)} to be the solutions of the polynomial equation {∑ Γi
𝑖=𝑛′

𝑖=0 𝑧i = 0} 

shown in (Equation 290) 

27. We calculate the group of roots {Ṡ(Γ,1) ;  Ṡ(Γ,2); … ; Ṡ(Γ,𝑛′)} nearly in parallel to be the solutions of the polynomial equation 

{∑ Γi
𝑖=𝑛′

𝑖=0 𝑧i = 0} by changing the signs of the included subterms in one solution {Ṡ(Γ,𝑘) = ∑ ± Ti} 
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28. We calculate a group of 𝑛’ roots {𝑆1 =
1

2
[Ṡ(Γ,1)
2  − 𝛼(1,Γ)] ;  𝑆2 =

1

2
[Ṡ(Γ,2)
2  − 𝛼(1,Γ)];… ; 𝑆𝑛′ =

1

2
[Ṡ(Γ,n′)
2  − 𝛼(1,Γ)]} as 

expressed in (Equation 302) to solve the polynomial equation {(∑ 𝑏𝑖𝑥
𝑖𝑖=𝑛

𝑖=0
) = 0}, which is presented in (Equation 287) 

29. We can calculate the rest of the roots  for the polynomial equation {(∑ 𝑏𝑖𝑥
𝑖𝑖=𝑛

𝑖=0
) = 0} by solving the polynomial equation 

(∑ 𝑏𝑖𝑥
𝑖

𝑖=𝑛

𝑖=0
)

∏ (𝑥−𝑆𝑗)
𝑗=𝑛′

𝑗=1

= 0 shown in (Equation 303) while relying on the calculated group of roots {𝑆1 =
1

2
[Ṡ(Γ,1)
2  − 𝛼(1,Γ)] ;  𝑆2 =

1

2
[Ṡ(Γ,2)
2  − 𝛼(1,Γ)]; … ; 𝑆𝑛′ =

1

2
[Ṡ(Γ,n′)
2  − 𝛼(1,Γ)]} which is presented in (Equation 302) 

30. We solve the polynomial equation 
(∑ 𝑏𝑖𝑥

𝑖
𝑖=𝑛

𝑖=0
)

∏ (𝑥−𝑆𝑗)
𝑗=𝑛′

𝑗=1

= 0, which has a degree of (𝑛 − 𝑛′ ), in order to identify the group of roots 

{𝑆(𝑛′+1) ;  𝑆(𝑛′+2); … ; 𝑆(𝑛)} shown in (Equation 304). 

31. We solve the polynomial equation 
(∑ 𝑏𝑖𝑥

𝑖
𝑖=𝑛

𝑖=0
)

∏ (𝑥−𝑆𝑗)
𝑗=𝑛′

𝑗=1

= 0 shown in (Equation 303) by using quadratic terms if this polynomial 

equation is expressed according to a second-degree form. 

32. We solve the polynomial equation 
(∑ 𝑏𝑖𝑥

𝑖
𝑖=𝑛

𝑖=0
)

∏ (𝑥−𝑆𝑗)
𝑗=𝑛′

𝑗=1

= 0 shown in (Equation 303) by using cubic terms if this polynomial equation 

is expressed according to a third-degree form. 

33. We solve the polynomial equation 
(∑ 𝑏𝑖𝑥

𝑖
𝑖=𝑛

𝑖=0
)

∏ (𝑥−𝑆𝑗)
𝑗=𝑛′

𝑗=1

= 0 shown in (Equation 303) by repeating the same engineered methodology 

to solve nth degree polynomial equations if the degree of the equation is 
(∑ 𝑏𝑖𝑥

𝑖
𝑖=𝑛

𝑖=0
)

∏ (𝑥−𝑆𝑗)
𝑗=𝑛′

𝑗=1

= 0 is equal to or higher than four. 

34. By identifying the group of roots {𝑆(1) ;  𝑆(2); … ; 𝑆(𝑛′)} and the group of roots {𝑆(𝑛′+1) ;  𝑆(𝑛′+2); … ; 𝑆(𝑛)}, we will have all 

the n roots for the nth degree polynomial equation {(∑ 𝑏𝑖𝑥
𝑖𝑖=𝑛

𝑖=0
) = 0} shown in (Equation 287) 

35. The group of roots for the polynomial equation {(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0} shown in (Equation  280) will be {𝑆(1)

′  ;  𝑆(2)
′ ; … ; 𝑆(𝑛)

′ } 

where {𝑆(𝑖)
′ = 𝑆(𝑖)} as presented in (Equation 305) in case we used the expression (𝑋 = 𝑥) shown in (Equation 286) 

36. The group of roots for the polynomial equation {(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0} shown in (Equation 280) will be {𝑆(1)

′  ;  𝑆(2)
′ ; … ; 𝑆(𝑛)

′ } 

where {𝑆(𝑖)
′ =

−𝑎𝑛−1

𝑛𝑎𝑛 
+
1

𝑛
𝑆(𝑖)} as presented in (Equation 306), in case we used the expression {𝑋 =

−𝑎(𝑛−1)

𝑛𝑎𝑛
+
𝑥

𝑛
} shown in 

(Equation 284) 

37. The group of roots for the polynomial equation {(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0} shown in (Equation 280) will be {𝑆(1)

′  ;  𝑆(2)
′ ; … ; 𝑆(𝑛)

′ } 

where {𝑆(𝑖)
′ = √

−2𝑎𝑛−2

𝑛(𝑛−1)𝑎𝑛
+ 𝑆(𝑖)} as presented in (Equation 307), in case we used the expression {𝑋 = √

−2𝑎(𝑛−2)

𝑛(𝑛−1)𝑎𝑛
+ 𝑥} shown 

in (Equation 285) 

11. Solving nth Order Differential Equations 
This section presents the developed theorems and formulas to solve nth order differential equations by using the proposed 

methodologies in this paper. 

11.1. First proposed Theorem for nth Order Differential Equations 

This subsection presents the first developed theorem to solve nth order differential equations that are expressed according 

to the form: {(∑ 𝐴𝑖 ∗ 𝐻
(𝑖)(𝑥)

𝑖=𝑁

𝑖=0
) = 𝐾} where AN ≠ 0, by supposing that the solution is expressed according to an exponential 
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form, then converting the nth order differential equation into an equivalent polynomial form of nth degree, where we use the 

presented theorems to solve polynomial equations in this paper. 

 

Theorem 20 

The nth order differential equation under the expressed form in (Equation 308), where the coefficients belong to the group 

of numbers ℝ, and 𝐴𝑁 ≠ 0, has multiple solutions presented as 𝐻(𝑥), which we can express according to the exponential form 

shown in (Equation 309). 

 (∑ 𝐴𝑖𝐻
(𝑖)(𝑥)

𝑖=𝑁

𝑖=0
) = 𝐾 with AN ≠  0          (308) 

𝐻(𝑥) = 𝑒
𝑠𝑥+𝑢 + 𝑣           (309) 

 

The value of v, which is included in the solution H(x) shown in (Equation 309), is considered an arbitrary value. We can 

calculate the arbitrary value of v by using the shown expression in (Equation 310). 

𝑣 =
𝐾

𝐴0
            (310) 

 

The value of u, which is included in the solution H(x) shown in (Equation 309), is considered an arbitrary value. We can 

calculate the arbitrary value of u while relying on the condition of the initialization value 𝐼0 which is to be identified at the point 

𝑥 = 0. Therefore, we can use the expression 𝐻(𝑥 = 0) = 𝐼0 in order to identify the arbitrary value of u as shown in (Equation 

311). 

𝑢 = 𝑙𝑜𝑔 (𝐼0 −
𝐾

𝐴0
)           (311) 

 

By supposing that the solution of the nth order differential equation is expressed according to the exponential form shown 

in (Equation 309), we can convert this differential equation into the form of an nth degree polynomial equation as shown in 

(Equation 312), where we can use the proposed solutions in Theorem 20 for nth degree polynomial equations in general forms. 

 

{(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0}  𝑤𝑖𝑡ℎ 𝐴𝑛 ≠  0                  (312) 

 

We use Theorem 20 to solve the nth degree polynomial equation shown in (Equation 312) in order to calculate all n roots 

nearly in parallel. Otherwise, we can use numerical analysis to calculate all these roots. 

 

After identifying the group of n roots {𝑆(1)
′  ;  𝑆(2)

′ ; … ; 𝑆(𝑛)
′ } for the nth degree polynomial equation shown in (Equation 312), 

we calculate the group of n solutions {𝐷𝑆′(1)
′
 ;  𝐷𝑆′(2)

′
; … ;  𝐷𝑆′(𝑛)

′
}  for the nth order differential equation by relying on the 

identified roots and the shown expression in (Equation 309), which allows calculating each solution for the differential equation 

(Equation 308) as shown in (Equation 313). 

 𝐷𝑆(𝑖)
′ = (𝐼0 −

𝐾

𝐴0
) 𝑒𝑆𝑖

′𝑥 +
𝐾

𝐴0
                 (313) 

11.2. Second proposed Theorem for nth Order Differential Equations 

This subsection presents the second developed theorem to solve nth order differential equations that are expressed according 

to the form: {(∑ 𝐴𝑖 ∗ 𝐻
(𝑖)(𝑥)

𝑖=𝑁

𝑖=0
) = 𝐾} where AN ≠ 0. This Theorem identifies new additional solutions for nth order 

differential equations by combining the use of two different roots to express the new solutions, which allow interconnecting two 

arbitrary points {(𝑥0, 𝐼0) ;  (𝑥1, 𝐼1)}. 

 

Theorem 21 

Supposing having the nth order differential equation  {(∑ 𝐴𝑖𝐻
(𝑖)(𝑥)

𝑖=𝑁

𝑖=0
) = 𝐾} which is characterized by the nth degree 

polynomial equation {(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0}  where 𝐴𝑛 ≠  0   and all coefficients are from the group of numbers ℝ. 

Supposing the group of n roots of the nth degree polynomial equation {(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0} which to be expressed as 

{𝑆(1)
′  ;  𝑆(2)

′ ; … ; 𝑆(𝑛)
′ }, whereas the group of n solutions for the corresponding nth order differential equation 
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{(∑ 𝐴𝑖𝐻
(𝑖)(𝑥)

𝑖=𝑁

𝑖=0
) = 𝐾} is to be expressed as {𝐷𝑆(1)

′  ;  𝐷𝑆(2)
′ ; … ;  𝐷𝑆(𝑛)

′ }  where each solution of the differential equation is 

calculated by using the identified roots as follows: 𝐷𝑆(𝑖)
′ = (𝐼0 −

𝐾

𝐴0
) 𝑒𝑆𝑖

′𝑥 +
𝐾

𝐴0
. 

If there are two different roots {𝑆𝑎 ;  𝑆𝑏 } among the group of n roots {𝑆(1)
′  ;  𝑆(2)

′ ; … ; 𝑆(𝑛)
′ } of the nth degree polynomial 

equation, then we can use the nth order differential equation to interconnect two arbitrary values {𝐼0 ;  𝐼1 } identified at two 

arbitrary points {(𝑥0, 𝐼0) ;  (𝑥1, 𝐼1)}. The new solutions of the differential equation are determined by using the new functions 

expressed in (Equation 314), where the coefficients {𝑅′(𝐼0) ;  𝑅′(𝐼1) } are as expressed in (Equation 315) and (Equation 316). 

{𝐷𝑆(𝑛+𝑖>𝑛)
′ = 𝑅′(𝐼1)𝑒

𝑆2𝑥 + (𝑅′(𝐼0) −
𝐾

𝐴0
− 𝑅′(𝐼1)) 𝑒

𝑥𝑆1 +
𝐾

𝐴0
 ;𝑊ℎ𝑒𝑟𝑒 𝑆𝑘 ∊ {𝑆𝑎;  𝑆𝑏}}            (314) 

 

𝑅′(𝐼0) =
𝐼0−

𝐾

𝐴0
(1−𝑒𝑆1𝑥0)−𝑅′(𝐼1)(𝑒

𝑆2𝑥0−𝑒𝑆1𝑥0)

𝑒𝑆1𝑥0
               (315) 

 

𝑅′(𝐼1) =
𝐼1−

𝐾

𝐴0
(1−𝑒𝑆1𝑥1)−𝑅′(𝐼0)𝑒

𝑆1𝑥1

𝑒𝑆2𝑥1−𝑒𝑆1𝑥1
               (316) 

 

11.3. Third proposed Theorem for nth Order Differential Equations 

This subsection presents the third developed theorem to solve nth order differential equations that are expressed according 

to the form: {(∑ 𝐴𝑖𝐻
(𝑖)(𝑥)

𝑖=𝑁

𝑖=0
) = 𝐾} where AN ≠ 0. This Theorem identifies new additional solutions for nth order differential 

equations by combining the use of three different roots to express the new solutions, which allow interconnecting three arbitrary 

points {(𝑥0, 𝐼0) ;  (𝑥1, 𝐼1) ;  (𝑥2, 𝐼2)}. 

 

Theorem 22 

Supposing having the nth order differential equation  {(∑ 𝐴𝑖𝐻
(𝑖)(𝑥)

𝑖=𝑁

𝑖=0
) = 𝐾} which is characterized by the nth degree 

polynomial equation {(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0}  where 𝐴𝑛 ≠  0   and all coefficients are from the group of numbers ℝ. 

Supposing the group of n roots of the nth degree polynomial equation {(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0} which to be expressed as 

{𝑆(1)
′  ;  𝑆(2)

′ ; … ; 𝑆(𝑛)
′ }, whereas the group of n solutions for the corresponding nth order differential equation 

{(∑ 𝐴𝑖𝐻
(𝑖)(𝑥)

𝑖=𝑁

𝑖=0
) = 𝐾} is to be expressed as {𝐷𝑆(1)

′  ;  𝐷𝑆(2)
′ ; … ;  𝐷𝑆(𝑛)

′ }  where each solution of the differential equation is 

calculated by using the identified roots as follows: 𝐷𝑆(𝑖)
′ = (𝐼0 −

𝐾

𝐴0
) 𝑒𝑆𝑖

′𝑥 +
𝐾

𝐴0
. 

If there are three different roots {𝑆𝑎  ;  𝑆𝑏  ;  𝑆𝑐} among the group of n roots {𝑆(1)
′  ;  𝑆(2)

′ ; … ; 𝑆(𝑛)
′ } of the nth degree polynomial 

equation, then we can use the nth order differential equation to interconnect three arbitrary values {𝐼0 ;  𝐼1 ;  𝐼2} identified at three 

arbitrary points {(𝑥0, 𝐼1) ;  (𝑥1, 𝐼1) ; (𝑥2, 𝐼2)}. The new solutions of the differential equation are determined by using the new 

functions expressed in (Equation 317), where the coefficients {𝑅′(𝐼0) ;  𝑅′(𝐼1) ;  𝑅′(𝐼2)} are calculated by using the shown 

expressions in (Equation 318), (Equation 319), and (Equation 320). 

{𝐷𝑆(𝑛+𝑖>𝑛)
′ = 𝑅′(𝐼2)𝑒

𝑥𝑆3 + (𝑅′(𝐼1) − 𝑅′(𝐼2))𝑒
𝑥𝑆2 + (𝑅′(𝐼0) −

𝐾

𝐴0
− 𝑅′(𝐼1)) 𝑒

𝑥𝑆1 +
𝐾

𝐴0
; 𝑤ℎ𝑒𝑟𝑒 𝑆𝑘 ∊ {𝑆𝑎;  𝑆𝑏;  𝑆𝑐} }           (317) 

𝑅′(𝐼0) =
𝐼0−

𝐾

𝐴0
(1−𝑒𝑆1𝑥0)−𝑅′(𝐼1)(𝑒

𝑆2𝑥0−𝑒𝑆1𝑥0)−𝑅′(𝐼2)(𝑒
𝑆3𝑥0−𝑒𝑆2𝑥0)

𝑒𝑆1𝑥0
            (318) 

𝑅′(𝐼1) =
𝐼1−

𝐾

𝐴0
(1−𝑒𝑆1𝑥1)−𝑅′(𝐼0)𝑒

𝑆1𝑥1−𝑅′(𝐼2)(𝑒
𝑆3𝑥1−𝑒𝑆2𝑥1)

𝑒𝑆2𝑥1−𝑒𝑆1𝑥1
            (319) 

𝑅′(𝐼2) =
𝐼2−

𝐾

𝐴0
(1−𝑒𝑆1𝑥2)−𝑅′(𝐼0)𝑒

𝑆1𝑥2−𝑅′(𝐼1)(𝑒
𝑆2𝑥2−𝑒𝑆1𝑥2)

𝑒𝑆3𝑥2−𝑒𝑆2𝑥2
            (320) 

 

11.4. Fourth proposed Theorem for nth Order Differential Equations 

This subsection presents the fourth developed theorem to solve nth order differential equations that are expressed according 

to the form: {(∑ 𝐴𝑖𝐻
(𝑖)(𝑥)

𝑖=𝑁

𝑖=0
) = 𝐾} where AN ≠ 0. This Theorem identifies new additional solutions for nth order differential 
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equations by combining the use of four different roots to express the new solutions, which allows interconnecting four arbitrary 

points {(𝑥0, 𝐼0);  (𝑥1, 𝐼1) ;  (𝑥2, 𝐼2) ;  (𝑥3, 𝐼3)}. 
 

Theorem 23 

Supposing having the nth order differential equation  {(∑ 𝐴𝑖𝐻
(𝑖)(𝑥)

𝑖=𝑁

𝑖=0
) = 𝐾} which is characterized by the nth degree 

polynomial equation {(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0}  where 𝐴𝑛 ≠  0   and all coefficients are from the group of numbers ℝ. 

Supposing the group of n roots of the nth degree polynomial equation {(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0} which to be expressed as 

{𝑆(1)
′  ;  𝑆(2)

′ ; … ; 𝑆(𝑛)
′ }, whereas the group of n solutions for the corresponding nth order differential equation 

{(∑ 𝐴𝑖𝐻
(𝑖)(𝑥)

𝑖=𝑁

𝑖=0
) = 𝐾} is to be expressed as {𝐷𝑆(1)

′  ;  𝐷𝑆(2)
′ ; … ;  𝐷𝑆(𝑛)

′ }  where each solution of the differential equation is 

calculated by using the identified roots as follows: 𝐷𝑆(𝑖)
′ = (𝐼0 −

𝐾

𝐴0
) 𝑒𝑆𝑖

′𝑥 +
𝐾

𝐴0
. 

If there are four different roots {𝑆𝑎  ;  𝑆𝑏 ;  𝑆𝑐  ;  𝑆𝑑} among the group of n roots {𝑆(1)
′  ;  𝑆(2)

′ ; … ; 𝑆(𝑛)
′ } of the nth degree 

polynomial equation, then we can use the nth order differential equation to interconnect four arbitrary values {𝐼0 ;  𝐼1 ;  𝐼2 ;  𝐼3} 
identified at four arbitrary points {(𝑥0, 𝐼1) ;  (𝑥1, 𝐼1) ;  (𝑥2, 𝐼2) ;  (𝑥3, 𝐼3) }. The new solutions of the differential equation are 

determined by using the new functions expressed in (Equation 321), where the coefficients {𝑅′(𝐼0) ;  𝑅′(𝐼1) ;  𝑅′(𝐼2) ;  𝑅′(𝐼3)} are 

calculated by using the shown expressions in (Equation 322), (Equation 323), (Equation 324), and (Equation 325). 

{𝐷𝑆(𝑛+𝑖>𝑛)
′ = 𝑅′(𝐼3)𝑒

𝑥𝑆4 + (𝑅′(𝐼2) − 𝑅′(𝐼3))𝑒
𝑥𝑆3 + (𝑅′(𝐼1) − 𝑅′(𝐼2))𝑒

𝑥𝑆2 + (𝑅′(𝐼0) −
𝐾

𝐴0
− 𝑅′(𝐼1)) 𝑒

𝑥𝑆1 +
𝐾

𝐴0
; 𝑤ℎ𝑒𝑟𝑒 𝑆𝑘 ∊

{𝑆𝑎;  𝑆𝑏;  𝑆𝑐  ;  𝑆𝑑} }          (321) 

𝑅′(𝐼0) =
𝐼0−

𝐾

𝐴0
(1−𝑒𝑆1𝑥0)−𝑅′(𝐼1)(𝑒

𝑆2𝑥0−𝑒𝑆1𝑥0)−𝑅′(𝐼2)(𝑒
𝑆3𝑥0−𝑒𝑆2𝑥0)−𝑅′(𝐼3)(𝑒

𝑆4𝑥0−𝑒𝑆3𝑥0)

𝑒𝑆1𝑥0
        (322) 

𝑅′(𝐼1) =
𝐼1−

𝐾

𝐴0
(1−𝑒𝑆1𝑥1)−𝑅′(𝐼0)𝑒

𝑆1𝑥1−𝑅′(𝐼2)(𝑒
𝑆3𝑥1−𝑒𝑆2𝑥1)−𝑅′(𝐼3)(𝑒

𝑆4𝑥1−𝑒𝑆3𝑥1)

𝑒𝑆2𝑥1−𝑒𝑆1𝑥1
          (323) 

𝑅′(𝐼2) =
𝐼2−

𝐾

𝐴0
(1−𝑒𝑆1𝑥2)−𝑅′(𝐼0)𝑒

𝑆1𝑥2−𝑅′(𝐼1)(𝑒
𝑆2𝑥2−𝑒𝑆1𝑥2)−𝑅′(𝐼3)(𝑒

𝑆4𝑥2−𝑒𝑆3𝑥2)

𝑒𝑆3𝑥2−𝑒𝑆2𝑥2
          (324) 

𝑅′(𝐼3) =
𝐼3−

𝐾

𝐴0
(1−𝑒𝑆1𝑥3)−𝑅′(𝐼0)𝑒

𝑆1𝑥3−𝑅′(𝐼1)(𝑒
𝑆2𝑥3−𝑒𝑆1𝑥3)−𝑅′(𝐼2)(𝑒

𝑆3𝑥3−𝑒𝑆2𝑥3)

𝑒𝑆4𝑥3−𝑒𝑆3𝑥3
           (325) 

 

11.5. Fifth proposed Theorem for nth Order Differential Equations 

This subsection presents the fifth developed theorem to solve nth order differential equations that are expressed according 

to the form: {(∑ 𝐴𝑖𝐻
(𝑖)(𝑥)

𝑖=𝑁

𝑖=0
) = 𝐾} where AN ≠ 0. This Theorem identifies new additional solutions for nth order differential 

equations by combining the use of T different roots to express the new solutions, which can allow interconnecting T arbitrary 

points. 

 

Theorem 24 

Supposing having the nth order differential equation  {(∑ 𝐴𝑖𝐻
(𝑖)(𝑥)

𝑖=𝑁

𝑖=0
) = 𝐾} which is characterized by the nth degree 

polynomial equation {(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0}  where 𝐴𝑛 ≠  0   and all coefficients are from the group of numbers ℝ. 

Supposing the group of n roots of the nth degree polynomial equation {(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0} which to be expressed as 

{𝑆(1)
′  ;  𝑆(2)

′ ; … ; 𝑆(𝑛)
′ }, whereas the group of n solutions for the corresponding nth order differential equation 

{(∑ 𝐴𝑖𝐻
(𝑖)(𝑥)

𝑖=𝑁

𝑖=0
) = 𝐾} is to be expressed as {𝐷𝑆(1)

′  ;  𝐷𝑆(2)
′ ; … ;  𝐷𝑆(𝑛)

′ }  where each solution of the differential equation is 

calculated by using the identified roots as follows: 𝐷𝑆(𝑖)
′ = (𝐼0 −

𝐾

𝐴0
) 𝑒𝑆𝑖

′𝑥 +
𝐾

𝐴0
. 

If there are T different roots {𝑆𝑝1;  𝑆𝑝2; … ; 𝑆𝑝𝑇} among the group of n roots {𝑆(1)
′  ;  𝑆(2)

′ ; … ; 𝑆(𝑛)
′ } of the nth degree 

polynomial equation, then we can use the nth order differential equation to interconnect T arbitrary values {𝐼0 ; … ; 𝐼𝑇−1} identified 

at T  arbitrary points {(𝑥0, 𝐼0) ; … ;  (𝑥𝑇−1, 𝐼𝑇−1)}. The new solutions of the differential equation are determined by using the new 

functions expressed in (Equation 326), where the values of the coefficients {𝑅′(𝐼0) ;  𝑅′(𝐼1) ; … ;  𝑅′(𝐼𝑇−1)} are calculated by using 
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the shown expressions in (Equation 327), whereas the used parameters 𝑅(𝑥𝑘), 𝑂(𝐼𝑘,   𝑥𝑘), 𝑃(𝑥𝑘) are as shown in (Equation 328), 

(Equation 329), and (Equation 330). 

 

{𝐷𝑆(𝑛+𝑖>𝑛)
′ = 𝑅′(𝐼(𝑇−1))𝑒

𝑥𝑆𝑇 + (∑ [(𝑅′(𝐼𝑘) − 𝑅′(𝐼(𝑘+1))) 𝑒
𝑥𝑆(𝑘+1)]

𝑘=𝑇−2

𝑘=1
) + (𝑅′(𝐼0) −

𝐾

𝐴0
− 𝑅′(𝐼1)) 𝑒

𝑥𝑆1 +
𝐾

𝐴0
; 𝑤ℎ𝑒𝑟𝑒 𝑆𝑗 ∊

{𝑆𝑝1;  𝑆𝑝1; … ; 𝑆𝑝𝑇} }            (326) 

𝑅′(𝐼𝑘) =
𝐼𝑘−

𝐾

𝐴0
(1−𝑒𝑆1𝑥𝑘)−𝑅(𝑥𝑘)+𝑂(𝐼𝑘,   𝑥𝑘)

𝑃(𝑥𝑘)
              (327) 

𝑅(𝑥𝑘) = 𝑅
′
(𝐼0)𝑒

𝑆1𝑥𝑘 +∑ 𝑅′(𝐼𝑗)(𝑒
𝑆𝑗+1𝑥𝑘 − 𝑒𝑆𝑗𝑥𝑘) 

𝑗=𝑇−1

𝑗=1
           (328) 

𝑂(𝐼𝑘,   𝑥𝑘) = {
𝑅′(𝐼0)𝑒

𝑆1𝑥𝑘 , 𝑘 = 0

𝑅′(𝐼𝑘)(𝑒
𝑆𝑘+1𝑥𝑘 − 𝑒𝑆𝑘𝑥𝑘), 𝑘 > 0

             (329) 

 

𝑃(𝑥𝑘) = {
𝑒𝑆1𝑥𝑘 , 𝑘 = 0

(𝑒𝑆𝑘+1𝑥𝑘 − 𝑒𝑆𝑘𝑥𝑘), 𝑘 > 0
              (330) 

 

11.6. Sixth proposed Theorem for nth Order Differential Equations 

This subsection presents the sixth developed theorem to solve nth order differential equations that are expressed according 

to the form: {(∑ 𝐴𝑖 ∗ 𝐻
(𝑖)(𝑥)

𝑖=𝑁

𝑖=0
) = 𝐾} where AN ≠ 0. This Theorem identifies new additional solutions for nth order 

differential equations by combining the use of  𝑇′ different roots {𝑇 ’ ∊ ⟦2, 𝑇⟧} to express the new solutions, which can allow 

interconnecting  𝑇 ’arbitrary points {(𝑥𝑞1 , 𝐼0) ; … ; (𝑥𝑞𝑇′
, 𝐼𝑇′−1)}. 

Theorem 25 

Supposing having the nth order differential equation  {(∑ 𝐴𝑖𝐻
(𝑖)(𝑥)

𝑖=𝑁

𝑖=0
) = 𝐾} which is characterized by the nth degree 

polynomial equation {(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0}  where 𝐴𝑛 ≠  0   and all coefficients are from the group of numbers ℝ. 

Supposing the group of n roots of the nth degree polynomial equation {(∑ 𝐴𝑖𝑋
𝑖𝑖=𝑁

𝑖=0
) = 0} which to be expressed as 

{𝑆(1)
′  ;  𝑆(2)

′ ; … ; 𝑆(𝑛)
′ }, whereas the group of n solutions for the corresponding nth order differential equation {(∑ 𝐴𝑖 ∗

𝑖=𝑁

𝑖=0

𝐻(𝑖)(𝑥)) = 𝐾} is to be expressed as {𝐷𝑆(1)
′  ;  𝐷𝑆(2)

′ ; … ;  𝐷𝑆(𝑛)
′ }  where each solution of the differential equation is calculated by 

using the identified roots as follows: 𝐷𝑆(𝑖)
′ = (𝐼0 −

𝐾

𝐴0
) 𝑒𝑆𝑖

′𝑥 +
𝐾

𝐴0
. 

If there are T different roots {𝑆𝑝1;  𝑆𝑝2; … ; 𝑆𝑝𝑇} among the group of n roots {𝑆(1)
′  ;  𝑆(2)

′ ; … ; 𝑆(𝑛)
′ } of the nth degree 

polynomial equation, then for each value of  𝑇′ (2 ≤ 𝑇′ ≤ 𝑇), we can select a specific group of  𝑇′ different roots 

{𝑆𝑞1;  𝑆𝑞2; … ; 𝑆𝑞𝑇′
}, then we can use the nth order differential equation to interconnect  𝑇′  arbitrary values {𝐼0 ; … ; 𝐼𝑇′−1} 

identified at  𝑇′ arbitrary points {(𝑥0, 𝐼0) ; … ; (𝑥𝑇′−1, 𝐼𝑇′−1)}. The new solutions of the differential equation are determined by 

using the new functions expressed in (Equation 331), where the values of the coefficients {𝑅′(𝐼0) ;  𝑅′(𝐼1) ; … ;  𝑅′(𝐼𝑇′−1)} are 

calculated by using the shown expressions in (Equation 332), whereas the used parameters 𝑅(𝑥𝐿), 𝑂(𝐼𝐿,   𝑥𝐿), 𝑃(𝑥𝐿) are as shown in 

(Equation 333), (Equation 334), and (Equation 335). 

 

{𝐷𝑆(𝑛+𝑖>𝑛)
′ = 𝑅′(𝐼(𝑇′−1))

𝑒𝑥𝑆𝑇′ +∑ [(𝑅′(𝐼𝐿) − 𝑅′(𝐼(𝐿+1))) 𝑒
𝑥𝑆(𝑙+1)]

𝐿=𝑇′−2

𝐿=1
+ (𝑅′(𝐼0) −

𝐾

𝐴0
− 𝑅′(𝐼1)) 𝑒

𝑥𝑆1 +
𝐾

𝐴0
; 𝑤ℎ𝑒𝑟𝑒 𝑆𝑘 ∊

{𝑆𝑞1;  𝑆𝑞2; … ; 𝑆𝑞𝑇′
} }          (331) 

𝑅′(𝐼𝐿) =
𝐼𝐿−

𝐾

𝐴0
(1−𝑒𝑆1𝑥𝐿)−𝑅(𝑥𝐿)+𝑂(𝐼𝐿,   𝑥𝐿)

𝑃(𝑥𝐿)
              (332) 

𝑅(𝑥𝐿) = 𝑅
′
(𝐼0)𝑒

𝑆1𝑥𝐿 +∑ 𝑅′(𝐼𝑗)(𝑒
𝑆𝑗+1𝑥𝐿 − 𝑒𝑆𝑗𝑥𝐿) 

𝑇′−1

𝑗=1
          (333) 
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𝑂(𝐼𝐿,   𝑥𝐿) = {
𝑅′(𝐼0)𝑒

𝑆1𝑥𝐿 , 𝐿 = 0

𝑅′(𝐼𝐿)(𝑒
𝑆𝐿+1𝑥𝐿 − 𝑒𝑠𝐿𝑥𝐿), 𝐿 > 0

           (334) 

𝑃(𝑥𝐿) = {
𝑒𝑆1𝑥𝐿 , 𝐿 = 0

(𝑒𝑆𝐿+1𝑥𝐿 − 𝑒𝑠𝐿𝑥𝐿), 𝐿 > 0
           (335) 

12. Conclusion 
This paper presents new engineered methodologies to solve nth order differential equations and nth degree polynomial 

equations step by step, while providing the necessary logic, expressions, conditions, and formulas to solve these equations. 

 

This paper presents the results of deploying the proposed engineered methodologies into solving fourth degree, fifth degree, 

and sixth degree polynomial equations in general forms while presenting the results according to specific theorems and formulas. 

 

This paper also presents the results of deploying the proposed engineered methodologies into solving fourth-order, fifth-order, 

and sixth-order differential equations in general forms while presenting the results of this deployment according to specific 

theorems and formulas expressing the solutions of these differential equations. 

 

In addition, this paper presents generalized theorems along with specific formulated solutions which we propose to solve nth 

order differential equations and nth degree polynomial equations in general forms and in complete forms. 

 

Furthermore, this paper presents new theorems expressing new additional solutions for nth order differential equations in 

order to allow the use of these differential equations and their roots in interconnecting many arbitrary values accorded to specific 

points, which opens the way toward scaling up the use of these differential equations and their solutions in business analytics, data 

analytics, predictive analysis, and systems control. 
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