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Abstract - This paper presents a unified study of integer partition theory, a foundational area of number theory and
combinatorics. The subject is situated within its historical development, from Euler’s generating function framework to
Ramanujan’s profound congruences, and then advances beyond classical exposition by synthesizing these ideas with modern
combinatorial perspectives. The work systematically develops essential tools—including Ferrers and Young diagrams, Durfee
squares, and generating functions—within a single coherent framework. Classical theorems are rigorously proved using both
Algebraic and Combinatorial Techniques, Highlighting the Complementary Nature of these approaches. A novel aspect of this
paper lies in its integrative treatment of partitions across different number systems and its qualitative exploration of
applications extending beyond pure mathematics, demonstrating how partition theory interfaces with broader mathematical
structures. By combining historical insight, illustrative constructions, and formal proofs, this study not only consolidates
foundational knowledge but also clarifies pathways toward contemporary research questions in partition theory. The results
underscore the continuing relevance of integer partitions as a unifying language in modern mathematics and provide a
pedagogically strong and research-oriented framework for future investigations in combinatorics and number theory.
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1. Introduction

Integer partitions are a field at the core of modern combinatorics and number theory. A partition essentially answers the
question: "How many ways can we write a positive integer as a sum of smaller positive integers where order does not
matter?"[1]

While the definition seems straightforward, partitions reveal a wealth of structural patterns. They connect various branches
of mathematics, including generating functions, representation theory, modular forms, and mathematical physics. The history
of partition theory goes back nearly three centuries:

e In the 18th century, Leonhard Euler introduced generating functions and proved early partition identities.

e More than a century later, Srinivasa Ramanujan transformed the field with his impressive congruences and asymptotic
formulas, many of which continue to inspire current research.

e The foundational work of Hardy and Ramanujan and the significant contributions from mathematicians like Dyson,

Andrews, and Wilf established partitions as key tools in combinatorics and analytic number theory.

Today, partition identities and bijective proofs are still active areas of research. This shows how a problem rooted in
simple arithmetic can still lead to powerful theoretical insights.

Many papers like [2] have sought to explain this field through algebraic proofs, equations, and even theory, and
consequently, understanding this field through graphs and diagrams is usually left out. This paper caters to that specific void
and helps readers obtain conceptual clarity through visual diagrams. Furthermore, to build a great foundation in the field of
integer partitions, readers must get accustomed to the foundational terms and theorems, which will then help them in thinking
about advanced proofs and theorems. This paper will help them build a strong foundation in the field of integer partitions and
also help them associate the concept of integer partitions with present-day systems and modern applications.

The following notations have been used throughout the paper:
e  P(n) = number of partitions of n
e P, (n) = number of partitions of n with at most k parts
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P¥(n) = number of partitions of n into parts of size at most k
P;(n) = number of partitions of n into distinct parts

P,(n) = number of partitions of n into odd parts

N (n) =total occurrences of k across all partitions of n

Pyn(n) = number of partitions of n with parts not divisible by m
Q(n) = number of self-conjugate partitions of n

Q, (n) = number of partitions of n with two largest parts equal

This paper explores some fundamental concepts of integer partitions along with some beautiful identities and structural
theorems.

Section 2 of this paper covers basic concepts, including Ferrers and Young diagrams, conjugate partitions, and Durfee
squares, which offer essential geometric intuition. Section 3 introduces generating functions, paying special attention to Euler’s
product formula and important variations. Section 4 states and proves several classical theorems, including Euler’s identity,
various bijections involving conjugates, and some restricted partition results using both bijective and algebraic methods.
Section 5 presents an interesting application that connects partition theory to some modern number systems. It shows that
binary, decimal, and hexadecimal representations arise naturally from restricted partitions. Finally, Section 6 situates the results
in a broader context and suggests some pathways for further study.

The main contribution of this exposition is that it combines several perspectives(visual, algebraic, and combinatorial) on
the topic to create a clear understanding of partitions and establish several significant theorems in both an intuitive and rigorous
manner. By weaving together historical insights, intuitive illustrations, and rigorous generating function arguments, this paper
strives to offer a comprehensive introduction to the fascinating and evolving field of integer partitions.

2. Basic Concepts of Integer Partitions
2.1 Partitions of n

A partition of n is a combination (unordered, with repetitions allowed) of positive integers, called the parts, that add up to
n. In other words, a partition is a multiset of positive integers that adds up to n. It is conventional to write the parts of a
partition in descending order; for example, (7,5,5,2) is a partition of 16 having 4 parts.

We write |[1] = n to indicate that A is a partition of n. Sometimes the notation A - n is also used to represent the same
thing. In this paper, P(n) denotes the total number of partitions of an integer n. If n = 0, then P(n) = 1; if n € N, then
P(n) =0.

2.2. Young Diagrams and Ferrers Diagrams

There are two common diagrammatic methods to represent partitions: as Ferrers diagrams, named after Norman Macleod
Ferrers, and as Young diagrams, named after Alfred Young. Both have several possible conventions; here, we use English
notation, with diagrams aligned in the upper-left corner. These diagrams provide a visual representation of a partition that
simplifies the study of partition properties and identities.[3]

2.2.1. Young Diagram
The Young Diagram of a partition A - n is a rectangular array of n boxes (or cells), with one row of length j for each part
jof A.[4]

For example, the Young Diagram for the partition A = (7,5,5,2) is shown in Figure 1, with rows aligned to the left and
decreasing in length from top to bottom:

Fig. 1 Young Diagram of the Partition (7,5,5,2)
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2.2.2. Ferrers Diagram
The Ferrers Diagram is quite similar to the Young Diagram. The only difference is that the Ferrers Diagram uses
dots instead of boxes. [4]

For example, the Ferrers Diagram for the partition A = (7,5,5,2) is represented in Figure 2 as follows:

Fig. 2 Ferrers Diagram of the Partition (7,5,5,2)

2.3. Conjugate of a Partition

The conjugate of a partition A - n is the partition of n whose Diagram you get by reflecting the Diagram of 4 about
the principal diagonal (the diagonal originating from the upper left corner of the Diagram) so that rows become columns
and columns become rows. [5] We use the notation 1* for the conjugate of A.

In the example with A = (7,5,5,2), the conjugate is A* = (4,4,2,2,2,1,1), the Diagram of which is given by Figure 3 as
follows:

Fig.3 Young Diagram of the Conjugate of the Partition
Some useful facts about A*:

1. (A")* = A (the conjugate of the conjugate is the original partition)

2. The number of parts of 1 is equal to the largest part of A*
Therefore, the number of partitions of n with k parts equals the number of partitions of n with the largest part. ; =
k.

The conjugate 1* can be computed directly. Let A = (14, A5, ..., 4;) and denote its conjugate by 1* = (13,13, ..., A3,).
Then 4; is the number of parts > i in A.

For example, (6,6,5,3,3,3,2,1,1)* = (9,7,6,3,3,2).

A partition A is called self-conjugate if A* = A. [4] This means its Young Diagram is symmetric about the principal
diagonal.
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2.4. Durfee Square

A Durfee square, for a given partition represented by a Ferrers diagram, is the largest square that fits in the upper left
corner of that Diagram. [6] For example, the partition 4 = (8,5,5,3,3,2,2,2) has a Durfee square of size 3, demarcated by
the red box, given by the following Figure 4 :

Fig. 4 Representation of the Durfee Square of the Partition (8,5, 5, 3,3,2,2,2)

An easy way to determine the dimension of the Durfee square without drawing its Ferrers diagram is to calculate the rank
of the partition. The rank of a partition is the largest number k such that the partition contains at least k parts of size at least k.

For example, the partition 4 + 3 + 3 + 2 + 1 + 1 has rank 3 because it contains 3 parts that are > 3, but does not contain
4 parts that are > 4.

The rank that we find is the dimension of the Durfee square. On finding the rank of the partition, we can draw the Durfee
square by drawing a square of dimension = rank, in the top left corner of the Ferrers diagram of the partition.

3. A Look at Generating Functions
Before examining generating functions, it is imperative to understand the meaning of a formal power series.

3.1. Formal Power Series
A formal power series is a series given by the following Equation 1:

f(x) =ag+ax +ax?+ - =Y7, apx” (1)
Here:

e a, are coefficients (usually real or complex numbers, but can also be from other rings like integers or finite fields)
e x is an indeterminate (a placeholder symbol)
Most importantly, we do not worry about convergence because we are not evaluating f(x) at a number.
3.2. Generating Functions
A generating function is a clothesline on which we hang up a sequence of numbers for display. [7] In simple terms,

generating functions are a clever way to store a whole sequence of numbers inside a single algebraic expression and represent it
as a power series. [3]

Consider the Fibonacci numbers: though we do have a recurrence relation and even formulas for getting the nth Fibonacci
number, we might get it by taking it as the coefficient of x™ in the expansion of the function as a power series about the

1-x—x2
origin.

3.3. Euler's Generating Function

The generating function F(n) =), P(n)x", also known as Euler's generating function,[8] counts all partitions of all
numbers n with weight x™.
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To choose an arbitrary partition A of unrestricted n, we decide independently for each positive integer i how many times to
include i as a part of 1. Each use of i as a part contributes i to the total size n.

For example, if partitions are formed only using 1, then the generating function for the choice of any number of repetitions
of 1 is given by the following Equation 2:

1+xt+x24- =

P 2
If we have two or more types of parts (1, 2, 3, etc.), we can choose the repetitions of each part in the partition
independently. Using the rule of product from combinatorics, we multiply for all i, getting the following Equation 3:

1

o 1
F(x) = Zn P(n)xn = Hi=1 ﬁ = (1-2)(1-x2)(1-x3)---

A3)

When all the fractions are multiplied, each product of powers of x represents a different way to form a number n. Each
factor chooses how many times a part appears in the sum. So when it has expanded out, the coefficient of x™ informs how
many partitions of n exist[4].

This infinite product need not be disturbing. If a particular coefficient P(n) is required, only factors involving x to a power
n or less need to be multiplied, and there are finitely many of these. Thus, the infinite product makes sense since only a finite
number of the factors contribute to any given term.

3.4. Variations of Generating Functions
The strategy used to write down F(x), in Equation 3 above, lends itself to endless variations. Here are some examples:

1. Partitions with parts < k: Use only the factors for i = 1,2, ..., k to get the following Equation 4:

— n_k -t 000
Feoe(x) = X Poe(m)x™ = [, Toxl (1= (1—x2(1-xF) 4

Taking the conjugate partition gives a bijection between partitions of n with parts < k and partitions of n with at most k parts.

2. Partitions with exactly k parts: To count partitions with exactly k parts, we use the following Equation 5:

k
— n_ X
Fe(x) =Y, P(n, k)x™ = YR 5)
3. Partitions with only odd parts: The following Equation 6 will give us the equation for calculating the partitions with
only odd parts :

1 1

0(x) = Xn P (m)x™ =11 o4 PR (1—x)(1-x3)(1—-x5) (©)

4. Partitions with distinct parts: For each i, a choice is made whether to use the part i once or not at all, as given by the
following Equation 7:

Q() =Xy Pam)x™ =T[Z; A +xD) =1 +x)(A+a?)(1+x%) - (7

4. Partitions with distinct, odd parts: The following Equation 8 will give us the equation for calculating the partitions
with distinct, odd parts :

K(x) = X0 Poax™ =Tlioaa (1 +x) =1 +x)(1+x*)(1+x%) ®)

6. Two-variable generating function: Counting each partition 1 = (14, 4,, ..., ;) + n with weight y*x™ as given by the
following Equation 9:

1 1

P(,y) = g P I)Y*x™ = T124 1oyxl  (—y0(1-yx?)(1-yx)- ©

Setting y = 1 recovers the original generating function P (x).
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4. Theorems and Identities

4.1. Theorem 1: Conjugate Partition Bijection

Statement: The number of partitions of n into parts of size at most k, denoted P¥(n), is equal to the number of partitions of n
into at most k parts, denoted Py (n).

Proof: Consider the Ferrers diagram representation for any partition. The operation of taking the conjugate (transposing the
Young Diagram about the principal diagonal) establishes a one-to-one correspondence. Any partition 4, with parts of size at
most k has the property that (1;,)* has at most k parts. Conversely, any partition with at most k parts has a conjugate with parts
of size at most k. Since this operation is reversible and one-to-one, this serves as a bijection[1,3,4] as given by the following
Equation 10:

P¥(n) = P(n) (10)

The bijective correspondence between Ferrers diagram conjugates reflects a structural uniqueness similar to the
decomposition of abelian groups into direct cyclic components.[9]

4.2. Theorem 2: Euler's Identity (Distinct vs. Odd Partitions)

Statement: The number of partitions of n having distinct parts, P;(n), is equal to the number of partitions of n having odd
parts, P,(n).

Proof: The generating function for partitions with all odd parts is given by the following Equation 11:

o 1
F,(m) = 1liZo 7ozt (11)

The generating function for partitions with distinct parts is given by modifying Equation 7 as:

[oe]

= 1 —x2k
Pd(n)=1_[(1+x")= —
k=1

k=1

1— 2k

Note that 1 + x* can be written as . So Equation 12 can be written as follows:

1-xk

1-x2k

Pa(m) = [Ixz T (12)

All of the terms in the numerator of this product also appear in the denominator at some point, so the entire numerator cancels,
and the terms that remain in the denominator are those of the form 1 — x* for odd k, as seen in the following Equation 13

Pa(n) = T2 1 = Ro(0) (13)

Alternatively, this can be visualized as:

1—x% 1—x* 1—x° 1 1 1

= . . e = . . ... = ODD
1—x 1—x2 1—2x3 1—x 1—x3 1—x5

DISTINCT = (1 4+ x)(1 + x2)(1 + x3) -

An interesting thing to note is that this demonstrates how any equality of infinite products can be interpreted as generating
functions for restricted classes of partitions, yielding a partition identity. [8]

4.3. Theorem 3: Partitions Not Divisible by 3
Statement: The number of partitions of n having parts not divisible by 3, denoted Py;(n), is equal to the number of partitions
of n into parts repeated at most once, denoted P, (n).

Proof: The generating function for partitions where each part is repeated at most once is given by the following Equation 14 :
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Poi(n) =1 +x+x)A+x2+x")(Q+x3+x°) - (14)
Each factor (1 + x! + x2) represents: 1 (part i absent), x (part i used once), or x?* (part i used twice).

Algebraically:
P A+ x+ ) -0+ 22+ - 21+ 2% +x0) (1 - x3) -
ra(n) = A -0 —x2)(1 —x%)

1-x»A-x501-x%--
(1 _ x)(l _ xZ)(l —x3... (1 — x6... (1 — x9)

The remaining terms in the denominator are those with indices not divisible by 3 as given by Equation 15:

o 1
Pr,l(n) = 1lli=0 (1—x3i+1)(1—x3i+2) (15)

This is precisely the generating function for partitions with parts not divisible by 3:
Pri(n) = P3(n)

4.4. Theorem 4: Self-Conjugate Partitions
Statement: The number of self-conjugate partitions of n is equal to the number of partitions of n into distinct odd parts.

Proof: The Ferrers diagram of a self-conjugate partition can be decomposed into hooks centered on the principal diagonal.
Each hook consists of one box on the diagonal and an equal number of boxes extending to the right and down, forming an "L"
shape. Importantly, each such hook contributes an odd number of boxes.

For the partition 4 = (5,5,3,2,2), the decomposition yields hooks of sizes 9, 7, and 1, corresponding to the partition 9 +
7 + 1 into distinct odd parts.

The bijection is constructed as follows: Given a self-conjugate partition, identify the diagonal hook sizes (which are
necessarily odd). These sizes form a set of distinct odd integers summing to n. Conversely, given a partition of n into distinct
odd parts, place symmetric hooks of these sizes along the principal diagonal to construct a unique self-conjugate Ferrers
diagram.

Thus, the mapping is bijective[1,3].
4.5. Theorem 5: Occurrences of Parts
Statement: For any two positive integers k and n, the total number of occurrences of part k across all partitions of n, denoted.
Ny (n), is given by the recurrence relation:
N,(n) =Ny (n—k)+P(n—k)
where P(i) = 0 fori < 0 and Ny (i) = 0 fori < k.
Proof: Consider any partition of n that includes at least one part k. Such a partition can be written as {k, A}, where 1 is some
partition of n — k. For each distinct partition A of n — k, forming {k, A} creates a unique partition of n containing at least one

k. The number of such distinct partitions A of n — k is precisely P(n — k), each contributing at least one occurrence of k.

Additionally, the partition A of n — k might itself contain occurrences of k. The total number of k's occurring within all
partitions of n — k is N, (n — k). Combining these, the following Equation 16 is obtained:

Ny(n) = Ny(n—k)+P(n—k) (16)
Base Case:

e Ifn <k, apart of size k cannot exist in a partition of n, so Ni(n) = 0.
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e Ifn = k, only the partition (k) contains k, with Ny (k) = 1.

Expanding the recurrence fully, we get Equation 17:
k .
Nie() = Ne (n = 2| k) + 29 P — jik) (17)
Since the first term equals 0, we ultimately get Equation 18:

Ne(n) = M p(n - jk) (18)

Jj=1

4.6. Theorem 6: Partitions Without 1s
Statement: The number of partitions of n with no part equal to 1 is given by P(n) — P(n — 1). This equals the number of
partitions of n with the two largest parts being equal, denoted. Q,(n).

Proof: Any partition of n with no part equal to 1 corresponds bijectively to a partition of n — 1 with all parts > 2 (by removing
one occurrence of any part and allowing the adjustment).

More formally: For partitions of n without a 1, take their conjugate. Since all original parts are = 2, the first two columns of
each part contain boxes. Upon conjugation, rows become columns, so the first two rows of the conjugate will have the same
length (both have n boxes across at least the first two positions).

This establishes the bijection given by Equation 19:
Q:(n) =P(m) —P(n—1) (19)

where Q,(n) counts partitions with the largest two parts.

5. Application of Integer Partitions to Number Systems
Many modern number systems can be understood as special cases of integer partitions, where numbers are represented as
sums of structured units such as powers, factorials, or Fibonacci terms.[1]

5.1. Binary Number System
The binary number system is a positional number system with base 2 and has only two digits: 0 and 1.

For example, the binary number
10110 = (1 X 2*) + (0 x 23) + (1 x 22) + (1 x 21) + (0 x 2°) = 22 in decimal.
Thus, in the binary system, every integer can be expressed as a sum of distinct powers of 2, given by Equation 20:

n=ay(2% + a;(2YH) + a,(2%) + a3 (23 + - (20)
where a; € {0,1}.

A number written as a sum of distinct powers of 2 is a special type of integer partition: "a partition of an integer into distinct
parts, where each part is a power of 2."

In integer partition theory, there is a subset called restricted partitions, where we limit which numbers can be used as parts.
Thus, the binary system appears as a subset of restricted integer partitions, where each integer is written as the sum of distinct
parts that are powers of 2.

An interesting observation: Due to the constraints of the binary system, there exists only one such partition (representation) for
each integer. However, if the condition for distinctness or the restriction to powers of 2 is removed, many more partitions of the

given integer can be obtained.

5.2. Decimal Number System
The decimal number system is also a positional number system with base 10 and has ten digits: 0 through 9.
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For example, the decimal number
98797 = (9 x 10*) + (8 X 10%) + (7 X 10%) + (9 x 10') + (7 x 10°) = 98797.

Thus, in the decimal system, every integer can be expressed as a sum of the product of distinct powers of 10 and a constant, as
given by Equation 21:

n = ay(10%) + a,(10) + a,(10%) + a5(103) + --- 20

Just like the binary number system, the decimal number system also appears as a subset of the restricted integer partitions
group, where each part is a power of 10.

5.3. Hexadecimal Number System
The hexadecimal number system is another positional number system with base 16, having a set of alphanumeric digits: 0—
9 and A-F, where: A=10,B=11,C=12,D=13,E=14,F =15

For example, the hexadecimal number
A98BD = (10 x 16*) + (9 x 163) + (8 x 16%) + (11 x 161) + (13 x 16°) = 104637 in decimal.
Thus, in the Hexadecimal System, every integer can be expressed in the following manner as given by Equation 22:
n=ay(16°) + a,(16) + a,(16%) + a3 (163) + -+ (22)
The Hexadecimal System also appears as a subset of the restricted integer partitions group, with parts being powers of 16.

6. Conclusion

This paper explores the world of integer partitions, breaking down their basic concepts, classical theorems, and
modern applications. It covers Ferrers and Young diagrams, conjugate and self-conjugate partitions, and Durfee squares.
The work combines historical perspective, visual representations, and rigorous algebra to clarify why partitions matter so
much in combinatorics and number theory.

The classical results presented demonstrate enduring relevance—these results continue to appear in modular forms,
g-series, statistical mechanics, and other areas.[7] The connections to different number systems (binary, decimal,
hexadecimal) illustrate how partition theory provides a unified framework when computational or mathematical physics
applications are considered.

This paper emphasizes classical foundations and important theorems with historical context, emphasizing the need
for diagrams for a concrete understanding of the field. Newer computational techniques and probabilistic methods are
less developed here, and there is limited coverage of analytic methods or advanced applications beyond traditional
discrete mathematics.

Future research directions include: developing new bijective proofs; exploring connections to modular forms and
g-series; advancing computational algorithms for partition counting; and investigating applications in quantum
computing, cryptography, and data science. The intersection of partition theory with statistical mechanics and random
matrix theory also offers a significant opportunity for advancement.
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