

Original Article

A Study on Approximation of a Conjugate Function using Triple Product Mean

Ramesh Kumar¹, Ajay Kumar²

¹Department Of Mathematics, Patliputra University, Patna, Bihar, India.

²Department Of Mathematics, College Of Commerce, Arts & Science, Patna Patliputra University, Patna, Bihar, India.

¹Corresponding Author : prasad.rameshkumar@gmail.com

Received: 24 November 2025

Revised: 31 December 2025

Accepted: 19 January 2026

Published: 30 January 2026

Abstract - In this paper, for the first time, we introduce the degree of approximation of 2π -periodic functions belonging to the $\text{Lip}(\alpha, r)$ ($0 < \alpha \leq 1, r \geq 1$) class by using $(E, q)T(C, 1)$ Means of their Conjugate Trigonometric Fourier Series.

Keywords - Conjugate trigonometric Fourier Series, $\text{Lip}(\alpha, r)$ class, $(E, q)T(C, 1)$ Means.

1. Introduction

The studies of the degree of approximation of signals belonging to Lipschitz classes by the product summability techniques by researchers like [3-10] have discussed the degree of approximation of functions by using single, double, and triple product means.

Let $\sum_{n=0}^{\infty} U_n$ be given an infinite series with $\{S_n\}$, the sequence of its nth partial sum of the sequence to sequence transform

$$C_n^1 = \frac{1}{n+1} \sum_{k=0}^n S_k \quad n = 0, 1, 2, \dots$$

Defines the Castro mean of order 1 of $\{S_n\}$.

The Series $\sum_{n=0}^{\infty} U_n$ is said to be $(C, 1)$ summable to S, if $\lim_{n \rightarrow \infty} C_n^1 = S$

The sequence-to-sequence transform

$$t_r^{Eq} = E_n^q = \frac{1}{(1+q)^n} \sum_{k=0}^n \binom{n}{k} q^{n-k} S_k, q > 0, n = 0, 1, 2, \dots$$

Defines the Euler means of order $q > 0$ of $\{S_n\}$.

Let $\sum a_n$ be given an infinite series with the sequence of partial sums $\{S_n\}$

Let $t_n = \sum_{k=0}^n a_{m,v} S_v, n = 1, 2 \dots$

Defines the sequence $\{t_n\}$ of the t men the sequence $\{S_n\}$

If $t_n \rightarrow S$, as $n \rightarrow \infty$

Then the series $\sum a_n$ is said to be A Summable to S.

The condition for regular A Summability is easily seen to be

- (i) $\sup_m \sum_{n=0}^{\infty} |a_{mn}| < H$ Where H is an absolute constant.
- (ii) $\lim_{n \rightarrow \infty} a_{mn} = 0$
- (iii) $\lim_{n \rightarrow \infty} \sum_{m=0}^{\infty} a_{mn} = 1$

The sequence-to-sequence transformation

$$T_n = \frac{1}{(1+q)^n} = \sum_{k=0}^n \binom{n}{k} q^{n-k} S_k$$

This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>)

Defines the sequence $\{T_n\}$ of the (E, q) Mean.

$$\begin{aligned} T_n &= \frac{1}{(1+q)^n} = \sum_{k=0}^n \binom{n}{k} q^{n-k} t_k \\ &= \frac{1}{(1+q)^n} \sum_{k=0}^n \binom{n}{k} q^{n-k} S_k \left\{ \sum_{v=0}^k a_{k,v} S_v \right\} \end{aligned}$$

Let $T = (a_{nk})$ be an Infinite lower triangular matrix satisfying Silverman

To ... Conditions of regularly $\sum_{k=0}^n a_{n,k} \rightarrow 1$ as $n \rightarrow \infty$

$a_{nk} = 0$ for $k > n$

$\sum_{k=0}^{\infty} |a_{nk}| \leq N$, N is a finite constant matrix mean of the sequence $\{S_n\}$ is given by

$$t_n^T = \sum_{k=0}^n a_{n,n-k} S_{n-k}$$

If $T_n^T \rightarrow S$ as $n \rightarrow \infty$ then sequence $\{S_n\}$ or Infinite series $\sum_{k=0}^{\infty} u_k$ is said to be summable by matrix means to a finite number S , if the matrix means is summable on the Cesaro means of TC_1 means of the sequence $\{S_n\}$ is given by

$$\begin{aligned} t_n^{TC_1} &= \sum_{k=0}^n a_{n(n-k)} \sigma_{n-k} \\ &= \sum_{k=0}^n a_{n,n-k} \frac{1}{n-k+1} \sum_{v=0}^{n-k} S_v \\ t_n &= \sum_{k=0}^n a_{n(n-k)} \sigma_{n-k} \\ &= \sum_{k=0}^n a_{n,n-k} \frac{1}{n-k+1} \sum_{r=0}^{n-k} S_r \end{aligned}$$

If $t_n \rightarrow S$ as $n \rightarrow \infty$ then sequence $\{S_n\}$ or Infinite series $\sum_{n=0}^{\infty} u_n$ is said to be summable by the matrix-Cesaro mean TC_1 method to S .

Important Particular cases of matrix César means are

- (i) $(N, p)_n C_1$ means, when $a_n, a_{n-k} = \frac{p_k}{p_n}$ where $P_n = \sum_{k=0}^n P_k \neq 0$
- (ii) $(N, p)_n C_1$ means, when $a_n, a_{n-k} = \frac{p_{n-k}}{p_n}$ where $P_n = \sum_{k=0}^n P_k \neq 0$
- (iii) $(N, p)_n C_1$ means, when $a_n, a_{n-k} = \frac{p_k q_{n-k}}{R_n}$ where $R_n = \sum_{k=0}^n P_k q_{n-k} \neq 0$

We write $\varphi(t) = f(x+t) + f(x-t) - f(x)$. Fourier series

$$\begin{aligned} k(n, t) &= \frac{1}{2\pi} \sum_{k=0}^n \frac{a_{n,n-k}}{n-k+1} \frac{\sin^2(n-k+1)t/2}{\sin^2 t/2} \\ t_n^{TC_1} &= \sum_{k=0}^n a_{n,n-k} \frac{1}{n-k+1} \sum_{v=0}^{n-k} S_v \\ (E, q)T &= \frac{1}{(1+q)^n} \sum_{v=0}^n \binom{n}{v} q^{n-v} S_v \\ (E, q)TC^1 &= \frac{1}{(1+q)^n} \sum_{k=0}^n \binom{n}{k} q^{n-k} \sum_{v=0}^k a_{k,v} \frac{1}{v+1} \sum_{i=0}^{n-v} S_i \end{aligned}$$

Let $f(t)$ be a periodic function with periodic 2π , L-integrable over $(-\pi, \pi)$

The Fourier Series associated with f at any point x is defined by

$$f(x) := \frac{a}{2} + \sum_{n=0}^{\infty} (a_n \cos nx + b_n \sin nx) \equiv \sum_{n=0}^{\infty} A_n(x) \quad (2)$$

Let $S_n(f; x)$ be the nth partial sum

The L_{∞} – norm of a function $f: R \rightarrow R$ is defined by

$$\|f\|_{\infty} = \sup \{|f(x)|: x \in R\}$$

and the L_v – norm is defined by $\|f\|_v = \left(\int_0^{2\pi} |f(x)|^v \, dx\right)^{\frac{1}{v}}$, $v \geq 1$

The degree of approximation of a function $f: R \rightarrow R$ by a triangular polynomial $P_n(x)$ of degree n under the norm. $\|\cdot\|_\infty$ is defined by [1]

$$\|P_n - f\|_\infty = \sup \{P_n(x) - f(x) : x \in R\}$$

and the degree of approximation $E_n(f)$ of function $f \in L_v$ is given by

$$E_n(f) = \min_{P_n} \|P_n - f\|_v$$

This method of approximation is called the triangular Fourier series

A function $f \in \text{Lip}(\alpha)$ If

$$|f(x+t) - f(x)| = 0 \quad (f|t|^\alpha) \quad 0 < \alpha \leq 1$$

We will use the following Notation throughout this paper.

$$\varphi(t) = f(x+t) + f(x-t) - 2f(x)$$

$$k(n, t) = \frac{1}{2\pi} \sum_{k=0}^n \frac{a_{n,n-k}}{n-k+1} \frac{\sin^2(n-k+1) t/2}{\sin^2 t/2}$$

Further, the $(E, q)T(C, 1)$ is assumed to be regular.

2. Known Theorem

Dealing with the degree of approximation by the product (E, q) , A mean of the Fourier series [2] produced the following theorem

Let $A = (a_{m \times n})_{\infty \times \infty}$ be a regular matrix. If f is 2π – periodic function of Class $\text{Lip}\alpha$, then the degree of approximation by the Product (E, q) summability means that its Fourier series is given by $\|T_n - f\|_\infty = 0 \left(\frac{1}{(n+1)^\alpha} \right)$, $0 < \alpha < 1$

Where $T_n = (E, q)T(C, 1)$

3. Main Theorem

Let $f: R \rightarrow R$ be 2π periodic Lebesgue integrable $\text{Lip}\alpha$ function in $(-\pi, \pi)$. Then, the degree of approximation of the function F by the Euler-Matrix, Cesaro means of the Fourier series is given by

$$\|T_n - f\|_\infty = 0 \left(\frac{1}{(n+1)^\alpha} \right), \quad 0 < \alpha < 1 \quad \text{Where } T_n = (E, q)T(C, 1)$$

A part of the following are important lemmas to prove the assumed theorem

Lemma (1)

$$k(n, t) = \frac{1}{2\pi(1+q)^n} \sum_{k=0}^n \binom{n}{k} q^{n-k} \sum_{v=0}^k a_{k,k-v} \frac{1}{n-k+1} \sum_{i=0}^{k-v} a_{k,k-v} \left\{ \frac{\sin(i+\frac{1}{2})t}{\sin \frac{t}{2}} \right\}$$

For $0 \leq t \leq \frac{1}{n+1}$, we have $\sin nt \leq n \sin t$

$$\begin{aligned} \sum_{i=0}^{k-v} \frac{(2i+1) \sin \frac{t}{2}}{\sin \frac{t}{2}} \frac{1}{k-v+1} (k-v+1) \\ \leq \frac{1}{2\pi(1+q)^n} \left| \sum_{k=0}^n \binom{n}{k} q^{n-k} \sum_{v=0}^k a_{k,k-v} \right| \\ \leq \frac{N}{2\pi(1+q)^n} \left| \sum_{k=0}^n \binom{n}{k} q^{n-k} \right| \end{aligned}$$

$$= \frac{N}{2\pi(1+q)^n} (1+q)^n \\ = \frac{N}{2\pi} = O(1)$$

This proves the lemma.

Lemma (2)

For $\frac{1}{n+1} \leq t \leq \pi$, We have by Jordan's Lemma $\sin\left(\frac{t}{2}\right) \geq \frac{t}{\pi}$, $\sin nt \leq 1$

$$k(n, t) = \frac{1}{2\pi(1+q)^n} \sum_{k=0}^n \binom{n}{k} q^{n-k} \sum_{v=0}^k a_{k,k-v} \frac{1}{n-k+1} \sum_{i=0}^{k-v} a_{k,k-v} \left\{ \frac{\sin\left(\frac{i+1}{2}\right)t}{\sin\frac{t}{2}} \right\} \\ \leq \sum_{i=0}^{k-v} \frac{1}{t/\pi} \\ \leq \frac{1}{2\pi(1+q)^n t} \left| \sum_{k=0}^n \binom{n}{k} q^{n-k} \sum_{v=0}^k a_{k,k-v} \right| \\ = \frac{N}{O\left(\frac{1}{t}\right)}$$

This proves the lemma.

4. Proof of the Main Theorem

Using Riemann-Lévesque theorem, we have for the n^{th} partial sum. $S_n(f; x)$. The Fourier Series is given by

$$S_n(f; x) - f(x) = \frac{1}{2\pi} \int_0^\pi \varphi(t) \sum_{k=0}^n \binom{n}{k} q^{n-k} \sum_{v=0}^k a_{k,k-v} \cdot \frac{1}{k-v+1} \sum_{i=0}^{k-v} \frac{\sin\left(\frac{i+1}{2}\right)t}{\sin\frac{t}{2}} \cdot dt \\ = \int_0^\pi \varphi(t) K_n(t) \cdot dt \\ = \left\{ \int_0^{\frac{1}{n+1}} + \int_{\frac{1}{n+1}}^\pi \right\} \varphi(t) K_n(t) \cdot dt \\ = I_1 + I_2 \text{ say}$$

$$|I_1| = \frac{1}{2\pi(1+q)^n} \left| \int_0^{\frac{1}{n+1}} \varphi(t) \sum_{k=0}^n \binom{n}{k} q^{n-k} \sum_{v=0}^k a_{k,k-v} \frac{1}{n-k+1} \sum_{i=0}^{k-v} a_{k,k-v} \left\{ \frac{\sin\left(\frac{i+1}{2}\right)t}{\sin\frac{t}{2}} \right\} dt \right| \\ \leq O(1) \int_0^{\frac{1}{n+1}} |\varphi(t)| \cdot dt \text{ using Lemma (1)} \\ = O(1) \int_0^{\frac{1}{n+1}} |t^\alpha| \cdot dt \\ = O(1) \left[\frac{1}{(\alpha+1)(n+1)^{\alpha+1}} \right] \\ = O\left[\frac{1}{(n+1)^{\alpha+1}}\right]$$

$$|I_2| \leq \int_0^\pi |\phi(t)| |k_n(t)| dt \\ = \int_{\frac{1}{n+1}}^{\frac{1}{n+1}} |\phi(t)| o\left(\frac{1}{t}\right) dt, \text{ using Lemma (2)} \\ = \int_{\frac{1}{n+1}}^\pi |t^\alpha| o\left(\frac{1}{t}\right) dt, \\ = O\left[\frac{1}{(n+1)^\alpha}\right]$$

Then from (I_1) and (I_2) , we have

$$|t^{E^q t C^1} - f(x)| = O\left[\frac{1}{(n+1)^\alpha}\right], 0 < \alpha < 1$$

This completes the proof of the main theorem.

5. Conclusion

The result established here is a general form of the $(E, q)T$ mean. When $C=1$.

References

- [1] Antoni Zygmund, *Trigonometric Series*, Cambridge University Press, 3rd Ed., 2002. [Google Scholar] [Publisher Link]
- [2] B.P. Padhy et al., "On Degree of Approximation of Fourier Series by Product Means $(E, q)A$," *International Journal of Mathematics and Computation*, vol. 19, no. 2, pp. 34-41, 2013. [Google Scholar] [Publisher Link]

- [3] K. Qureshi, "On the Degree of Approximation of Functions Belonging to the Lipschitz Class by Means of Conjugate Series," *Indian Journal of Pure and Applied Mathematics*, vol. 12, no. 9, pp. 1120-1123, 1981. [[Google Scholar](#)]
- [4] Rupesh Kumar Mishra, and Shambhu Kumar Mishra, "Degree of Approximation of the Conjugate of Functions Belonging to Lip (α, r) -Class by $(C, 1)(E, q)(E, q)$ Means of Conjugate Fourier Series," *Communications on Applied Nonlinear Analysis*, vol. 32, no. 4s, pp. 118-124, 2024. [[CrossRef](#)] [[Google Scholar](#)] [[Publisher Link](#)]
- [5] Rupesh Kumar Mishra, and Shambhu Kumar Mishra, "A Study of Euler-Matrix Triple Product Summability Method of the Fourier Series," *IOSR Journal of Mathematics*, vol. 21, no. 3, pp. 49-53, 2025. [[Publisher Link](#)]
- [6] M.L. Mittal et al., "Approximation of Functions (Signals) Belonging to Lip $(\xi(t), p)$ -Class by Means of Conjugate Fourier Series Using Linear Operators," *Indian Journal of Mathematics*, vol. 47, pp. 217-229, 2005. [[Publisher Link](#)]
- [7] M.L. Mittal, B.E. Rhoades, and Vishnu Narayan Mishra, "Approximation of Signals (Functions) Belonging to the Weighted $W(L_p, \xi(t))$ -Class by Linear Operators," *International Journal of Mathematics and Mathematical Sciences*, vol. 2006, no. 1, pp. 1-12, 2006. [[CrossRef](#)] [[Google Scholar](#)] [[Publisher Link](#)]
- [8] Ramesh Kumar, and Ajay Kumar, "Degree of Approximation of the Conjugate of Functions Belonging to Lip (α, r) -Class by $(E, q)(C, 1)(E, q)$ Means of Conjugate Fourier Series," *IOSR Journal of Mathematics*, vol. 21, no. 2, pp. 68-75, 2025. [[Publisher Link](#)]
- [9] Shyam Lal, and Prem Narain Singh, "Degree of Approximation of Conjugate of Lip (α, p) Function by $(C, 1)(E, 1)$ means of Conjugate Series of a Fourier Series," *Tamkang Journal of Mathematics*, vol. 33, no. 3, pp. 269-274, 2002. [[CrossRef](#)] [[Google Scholar](#)] [[Pubalisher Link](#)]
- [10] Smita Sonker, and Uday Singh, "Degree of Approximation of the Conjugate of Signals (Functions) belonging to Lip (α, r) -Class by $(C, 1)(E, q)$ Means of Conjugate Trigonometric Fourier Series," *Journal of Inequalities and Applications*, vol. 2012, pp. 1-7, 2012. [[CrossRef](#)] [[Google Scholar](#)] [[Publisher Link](#)]