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Abstract - In this paper, for the first time, we introduce the degree of approximation of 2m-periodic functions belonging to
the Lip(a,7) (0 < a < 1,r = 1) class by using (E,q)T(C, 1) Means of their Conjugate Trigonometric Fourier Series.
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1. Introduction

The studies of the degree of approximation of signals belonging to Lipschitz classes by the product summability
techniques by researchers like [3-10] have discussed the degree of approximation of functions by using single, double, and

triple product means.

Let Y:»_, U, be given an infinite series with {S,}, the sequence of its nth partial sum of the sequence to sequence transform

ct= ﬁ oSk n=0,1,2,..

Defines the Castro mean of order 1 of {S,,}.

The Series Y-, U, is said to be (€, 1) summable to S, if lim Cl =S
n— oo

The sequence-to-sequence transform

1 -
=Bl = o Zieo(l) 47 S > 0.n=0,1,2, ..

Defines the Euler means of order g > 0 of {S,,}.
Let ), a,, be given an infinite series with the sequence of partial sums {S,,}
Lett, = Xi—oAmupSy-n=1,2 ...

Defines the sequence {t,} of the t men the sequence {S,,}
Ift,—> S, asn—- o

Then the series ), a,, is said to be A Summable to S.
The condition for regular A Summability is easily seen to be

(1) sup Yo—o |@mn| <H Where H is an absolute constant.
m
(ii) lima,,, =0
n— oo
(iii) lim Yr_y Gmn =1
n— oo

The sequence-to-sequence transformation

1 n
— — n-k
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Defines the sequence {T},} of the (E, g) Mean.

1 = _
=gy Z;(k)q e
1 n k
= 7(1 T ; (Z) qnks, {Z Ay Sy }

v=0

Let T = (ay,) be an Infinite lower triangular matrix satisfying Silverman
o ... Conditions of regularly »i_oanx = lasn — o
ap, =0fork >n
Y=o l@nk] <N, N is a finite constant matrix mean of the sequence {S,} is given by
n

T —
tn - Z an,n—kSn—k

k=0

If T,V — S asn — oo then sequence {S,,} or Infinite series Y. j5_, Uy is said to be summable by matrix means to a finite number
S, if the matrix means is summable on the Cesaro means of T'C; means of the sequence{S, } is given by
n

TC, _
tn - Z an(n—k)an—k
k=0
—\yn n-k
- Zk:o Ann-k ZV:O Sv
th = Z An(n-k)On-k

n
k=0
= ZE:O Ann—k Z;l;(l)( Sy

1
n—-k+1

1
n—-k+1

If t, » S as n — o then sequence {S,} or Infinite series Yn—oq U, is said to be summable by the matrix-Cesaro mean
TC, method to S

Important Particular cases of matrix César means are
(i) (N,p)n C; means, when a,, a,_; = Z—: where B, =Y} _o P, # 0

(ii) (N,p)n C, means, when a,, a,_ = p;l_k where B, = Y 3p_o P # 0

(iii) (N, p)n C; means, when a,,, a,_, = pkq: u

where R, = Yo P i # 0

We write @(t) = f(x +t) + f(x — t) — f(x). Fourier series

n .
1 Apn-r Sin’(m—k+1)t/2
K0 =52
K

_On—k+1 sin? t/2
_TL
! = nn=k 3y k+125
k=0
n
E,q)T z v,
E 9 ETE _O(U)q v
n V= k 1 n-v
n
E, T 1 _— Z n-k Z
( q) C (1+ )Tl (k)q ak‘U U+1 Sl.
k=0 v=0 i=0
Let f(t) be a periodic function with periodic 2m, L-integrable over (—m, 1)
The Fourier Series associated with f at any point x is defined by
fx) = % + Yr_o(aycosnx + bysinnx) = Y5 _o Ap(x) 2)

Let S,,(f; x) be the nth partial sum

The L,, — norm of a function f: R = R is defined by

lI£1], = sup (IfCO)l: x € R
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and the L, —norm1sdeﬁnedby||f|| ( |f(x)|) v=>1

The degree of approximation of a function f:R — R by a triangular polynomial PB,(x) of degree n under the norm.
|I"l] , is defined by [1]

1P, = fI|, = sup {P.(x) = f(x)|:x € R}

and the degree of approximation E,, (f) of function f € L, is given by

E.(f) =

This method of approximation is called the triangular Fourier series
A function f € Lip(a) If

mm|

n_f||v

lfx+0)-fI=0(f[tI)0<a<1
We will use the following Notation throughout this paper.

) = flx+ )+ flx—t) = 2f (%)

Ko t) = 1211: Apn-r Sin®(m—k+1)t/2
Y=o _On—k+1 sin? t/2

Further, the (E, )T (C, 1) is assumed to be regular.

2. Known Theorem
Dealing with the degree of approximation by the product (E, q), A mean of the Fourier series [2] produced the
following theorem

Let A = (@xn)oxeo be a regular matrix. If f is 2m —periodic function of Class Lipa, then the degree of
approximation by the Product (E, q¢) summability means that its Fourier series is given by ||T —-f || = 0( 0<

a<l1
Where T, = (E,q)T(C,1)

)

3. Main Theorem
Let f: R — R be 2m periodic Lebesgue integrable Lipa function in (—m, ). Then, the degree of approximation of
the function F by the Euler-Matrix, Cesaro means of the Fourier series is given by

||Tn—f||oo= ((n+1)“) 0<a<l1 Where T,, = (E,q)T(C,1)

A part of the following are important lemmas to prove the assumed theorem

Lemma (1)
. L1
n n) n—-k vk 1 k -v sm(HE)t
k(n,t) = —Zn(1+q)n k=0 (k q Yv=0 A k—v ka1 Zi=0 Qe k- v{—sing
For0<t< n_+1’ we have sinnt < nsint
(2i+1)sin£
v i
=0 75111% p— (k=v+1)
n k
n
< IV ()Y e
2ﬂ(1+q)" Z k)4 kv
=0 v=0

()

k=0

27r(1 +qr
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e Y
=2 =0(1)

This proves the lemma.
Lemma (2)

1 . t t .
For —y < t < m, We have by Jordan’s Lemma sin (E) = —,sin nt <1
1

. L1
n _ 1 _ SlTL(L+— t
k(n,t) = 2+ k=0 (k) qn " Zﬁ:o A k—v ~ o0 f:(}; A k—v {75) }

n—-k+1

sinE
k—-v
1
£ t/m
1 n k
n
< Z ) qn_k Z Ak k—
n k v
2 (1 + q)"t k=0N r

This proves the lemma.

4. Proof of the Main Theorem

Using Riemann-Lévesque theorem, we have for the n' partial sum. S,, (f; x). The Fourier Series is given by

T n _ _,Sin i+2)t
SulF3 ) = F) = = [T p(®) B0 (1) 4" Bl Wjems - s TS Lo g

v+1 in—
sinz

- f “ o (OKu(D) - dt
0

R T AR

=1 + I, say
1 T n (MY n—k yk 1 yk-v sin(i+3)e
J§i+ o) Xk=o (k) q" Lv=0Gieje—v 7y 2imo Heke—v Tomk dt

1Ll = 2 (1+q)"

1
<0(1) f()n?kp(t)l ~dt using Lemma (1)
1
= 0(1) Jp+]t®| - dt

1
=0 [(a+1)(n+1)‘1+1]
1

(n+1)@+1

L] < jlqb(t)nkn(mdt

n+1

= fll(j)(t) |0(%)dt, using Lemma (2)
n+1
= [Mlt%lo()dt,
n+11
=0 [(n+1)“]

|tE‘h:C1 —f(x)| — 0[

This completes the proof of the main theorem.

Then from (I;) and (1), we have
1
(n+1)%

L0<a<1

S. Conclusion
The result established here is a general form of the (E, )T mean. When C=1.
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