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Abstract - In this paper, for the first time, we introduce the degree of approximation of 2𝜋-periodic functions belonging to 

the Lip(𝛼, 𝑟) (0 < 𝛼 ≤ 1, 𝑟 ≥ 1) class by using (𝐸, 𝑞)𝑇(𝐶, 1) Means of their Conjugate Trigonometric Fourier Series. 
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1. Introduction  

The studies of the degree of approximation of signals belonging to Lipschitz classes by the product summability 

techniques by researchers like [3-10] have discussed the degree of approximation of functions by using single, double, and 

triple product means.  

 

Let ∑ 𝑈𝑛
∞
𝑛=0  be given an infinite series with {𝑆𝑛}, the sequence of its nth partial sum of the sequence to sequence transform 

   

  𝐶𝑛
1 =

1

𝑛+1
∑ 𝑆𝑘

𝑛
𝑘=0    𝑛 = 0, 1, 2, … 

 

Defines the Castro mean of order 1  of {𝑆𝑛}. 

 

The Series ∑ 𝑈𝑛
∞
𝑛=0  is said to be (𝐶, 1) summable to S, if lim

𝑛→ ∞
𝐶𝑛

1 = 𝑆 

 

The sequence-to-sequence transform  

 𝑡𝑟
𝐸𝑞

= 𝐸𝑛
𝑞

=
1

(1+𝑞)𝑛
∑ (𝑛

𝑘
)𝑛

𝑘=0 𝑞𝑛−𝑘 𝑆𝑘 , 𝑞 > 0, 𝑛 = 0, 1, 2, … 

 

Defines the Euler means of order 𝑞 > 0 of {𝑆𝑛}.  

 

Let ∑ 𝑎𝑛 be given an infinite series with the sequence of partial sums {𝑆𝑛}  

 

Let 𝑡𝑛 = ∑ 𝑎𝑚,𝑣𝑆𝑣
𝑛
𝑘=0 , 𝑛 = 1, 2 … 

 

Defines the sequence {𝑡𝑛} of the 𝑡 men the sequence {𝑆𝑛} 

If 𝑡𝑛 → 𝑆,  as 𝑛 → ∞  

 

Then the series  ∑ 𝑎𝑛 is said to be A Summable to S. 

The condition for regular A Summability is easily seen to be  

(i)  sup
𝑚

∑ |𝑎𝑚𝑛| <∞
𝑛=0 𝐻  Where H is an absolute constant. 

(ii) lim
𝑛→ ∞

𝑎𝑚𝑛 = 0 

(iii) lim
𝑛→ ∞

∑  ∞
𝑛=0 𝑎𝑚𝑛 = 1 

 

The sequence-to-sequence transformation 

𝑇𝑛 =
1

(1 + 𝑞)𝑛
= ∑ (

𝑛

𝑘
) 𝑞𝑛−𝑘𝑆𝑘 

𝑛

𝑘=0
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Defines the sequence {𝑇𝑛} of the (𝐸, 𝑞) Mean. 

𝑇𝑛 =
1

(1 + 𝑞)𝑛
= ∑ (

𝑛

𝑘
) 𝑞𝑛−𝑘𝑡𝑘 

𝑛

𝑘=0

 

=
1

(1 + 𝑞)𝑛
∑ (

𝑛

𝑘
) 𝑞𝑛−𝑘𝑆𝑘  {∑ 𝑎𝑘,𝑣𝑆𝑣  

𝑘

𝑣=0

}

𝑛

𝑘=0

 

 

Let 𝑇 = (𝑎𝑛𝑘) be an Infinite lower triangular matrix satisfying Silverman 

To … Conditions of regularly  ∑ 𝑎𝑛,𝑘 → 1𝑛
𝑘=0  as 𝑛 → ∞ 

𝑎𝑛𝑘 = 0 for 𝑘 > 𝑛 

 ∑ |𝑎𝑛𝑘| ≤∞
𝑘=0 𝑁, 𝑁 is a finite constant matrix mean of the sequence {𝑆𝑛} is given by  

𝑡𝑛
𝑇 = ∑ 𝑎𝑛,𝑛−𝑘𝑆𝑛−𝑘

𝑛

𝑘=0

 

 

If  𝑇𝑛
𝑇 → 𝑆 as 𝑛 → ∞ then sequence {𝑆𝑛} or Infinite series ∑ 𝑢𝑘

∞
𝑘=0  is said to be summable by matrix means to a finite number 

S, if the matrix means is summable on the Cesaro means of 𝑇𝐶1 means of the sequence{𝑆𝑛} is given by 

𝑡𝑛
𝑇𝐶1 = ∑ 𝑎𝑛(𝑛−𝑘)𝜎𝑛−𝑘

𝑛

𝑘=0

 

= ∑ 𝑎𝑛,𝑛−𝑘
1

𝑛−𝑘+1 
∑ 𝑆𝑣

𝑛−𝑘
𝑣=0

𝑛
𝑘=0   

𝑡𝑛 = ∑ 𝑎𝑛(𝑛−𝑘)𝜎𝑛−𝑘

𝑛

𝑘=0

 

= ∑ 𝑎𝑛,𝑛−𝑘
1

𝑛−𝑘+1 
∑ 𝑆𝑟

𝑛−𝑘
𝑟=0

𝑛
𝑘=0   

 

If  𝑡𝑛 → 𝑆 as 𝑛 → ∞ then sequence {𝑆𝑛} or Infinite series ∑ 𝑢𝑛
∞
𝑛=0   is said to be summable by the matrix-Cesaro mean                            

𝑇𝐶1 method to S.  

Important Particular cases of matrix César means are  

(i) (𝑁, 𝑝)𝑛 𝐶1 means, when 𝑎𝑛 , 𝑎𝑛−𝑘 =
𝑝𝑘

𝑝𝑛
  where 𝑃𝑛 = ∑ 𝑃𝑘

𝑛
𝑘=0 ≠ 0 

(ii) (𝑁, 𝑝)𝑛 𝐶1 means, when 𝑎𝑛 , 𝑎𝑛−𝑘 =
𝑝𝑛−𝑘

𝑝𝑛
  where 𝑃𝑛 = ∑ 𝑃𝑘

𝑛
𝑘=0 ≠ 0 

(iii) (𝑁, 𝑝)𝑛 𝐶1 means, when 𝑎𝑛 , 𝑎𝑛−𝑘 =
𝑝𝑘𝑞𝑛−𝑘

𝑅𝑛
  where 𝑅𝑛 = ∑ 𝑃𝑘

𝑛
𝑘=0 𝑞𝑛−𝑘 ≠ 0 

 

We write  𝜑(𝑡) = 𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡) − 𝑓(𝑥). Fourier series 

𝑘(𝑛, 𝑡) =
1

2𝜋
∑

𝑎𝑛,𝑛−𝑘

𝑛 − 𝑘 + 1

sin2(𝑛 − 𝑘 + 1) 𝑡/2 

sin2 𝑡/2

𝑛

𝑘=0

 

𝑡𝑛
𝑇𝐶1 = ∑ 𝑎𝑛,𝑛−𝑘

1

𝑛 − 𝑘 + 1 
∑ 𝑆𝑣

𝑛−𝑘

𝑣=0

𝑛

𝑘=0

 

(𝐸, 𝑞)𝑇 =
1

(1 + 𝑞)𝑛
∑ (

𝑛

𝑣
) 𝑞𝑛−𝑣𝑆𝑣 

𝑛

𝑣=0

 

(𝐸, 𝑞)𝑇𝐶1 =
1

(1 + 𝑞)𝑛
∑ (

𝑛

𝑘
) 𝑞𝑛−𝑘  

𝑛

𝑘=0

∑ 𝑎𝑘,𝑣 .

𝑘

𝑣=0

1

𝑣 + 1
 ∑ 𝑆𝑖

𝑛−𝑣

𝑖=0

 

 

Let 𝑓(𝑡) be a periodic function with periodic 2𝜋, L-integrable over (−𝜋, 𝜋) 

 

The Fourier Series associated with 𝑓 at any point 𝑥 is defined by 

𝑓(𝑥) ≔
𝑎

2
+ ∑ (𝑎𝑛𝑐𝑜𝑠𝑛𝑥 + 𝑏𝑛𝑠𝑖𝑛𝑛𝑥) ≡ ∑ 𝐴𝑛(𝑥)∞

𝑛=0
∞
𝑛=0                     (2) 

Let 𝑆𝑛(𝑓; 𝑥) be the nth partial sum  

 

The 𝐿∞ − 𝑛𝑜𝑟𝑚 of a function 𝑓: 𝑅 → 𝑅 is defined by  

 

||𝑓||
∞

= sup {|𝑓(𝑥)|: 𝑥 ∈ 𝑅} 
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and  the 𝐿𝑣 − 𝑛𝑜𝑟𝑚 is defined by ||𝑓||
𝑣

= (∫ |𝑓(𝑥)|𝑣2𝜋

0
)

1

𝑣
, 𝑣 ≥ 1 

 

The degree of  approximation of a function  𝑓: 𝑅 → 𝑅 by a triangular polynomial   𝑃𝑛(𝑥)  of degree  𝑛 under the norm. 

||∙||
∞

 is defined by [1] 

 

||𝑃𝑛 − 𝑓||
∞

= sup {𝑃𝑛(𝑥) − 𝑓(𝑥)|: 𝑥 ∈ 𝑅} 

 

and the degree of approximation 𝐸𝑛(𝑓) of function 𝑓 ∈ 𝐿𝑣  is given by  

 

𝐸𝑛(𝑓) =
𝑚𝑖𝑛
𝑃𝑛

||𝑃𝑛 − 𝑓||
𝑣
 

This method of approximation is called the triangular Fourier series  

A function 𝑓 ∈ 𝐿𝑖𝑝(𝛼) If 

 
|𝑓(𝑥 + 𝑡) − 𝑓(𝑥)| = 0 (𝑓|𝑡|𝛼) 0 < 𝛼 ≤ 1 

 

We will use the following Notation throughout this paper. 

 

𝜑(𝑡) = 𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡) − 2𝑓(𝑥) 

 

𝑘(𝑛, 𝑡) =
1

2𝜋
∑

𝑎𝑛,𝑛−𝑘

𝑛 − 𝑘 + 1

sin2(𝑛 − 𝑘 + 1) 𝑡/2 

sin2 𝑡/2

𝑛

𝑘=0

 

 

Further, the (𝐸, 𝑞)𝑇(𝐶, 1) is assumed to be regular. 

 

2. Known Theorem 
Dealing with the degree of approximation by the product (𝐸, 𝑞), A mean of the Fourier series [2] produced the 

following theorem 

 

Let 𝐴 = (𝑎𝑚×𝑛)∞×∞ be a regular matrix. If 𝑓 is 2𝜋 −periodic function of Class Lip𝛼, then the degree of 

approximation by the Product (𝐸, 𝑞) summability means that its Fourier series is given by ||𝑇𝑛 − 𝑓||
∞

= 0 (
1

(𝑛+1)𝛼) , 0 <

𝛼 < 1 

Where 𝑇𝑛 = (𝐸, 𝑞)𝑇(𝐶, 1) 

 

3. Main Theorem 
Let 𝑓: 𝑅 → 𝑅 be 2𝜋 periodic Lebesgue integrable Lip𝛼 function in (−𝜋, 𝜋). Then, the degree of approximation of 

the function 𝐹 by the Euler-Matrix, Cesaro means of the Fourier series is given by 

 

                                                      ||𝑇𝑛 − 𝑓||
∞

= 0 (
1

(𝑛+1)𝛼) , 0 < 𝛼 < 1          Where 𝑇𝑛 = (𝐸, 𝑞)𝑇(𝐶, 1)  

 

 A part of the following are important lemmas to prove the assumed theorem 

        
Lemma (1) 

                      𝑘(𝑛, 𝑡) =
1

2𝜋(1+𝑞)𝑛
∑ (

𝑛
𝑘

) 𝑞𝑛−𝑘 ∑ 𝑎𝑘,𝑘−𝑣 𝑘
𝑣=0

1

𝑛−𝑘+1
∑ 𝑎𝑘,𝑘−𝑣

𝑘−𝑣
𝑖=0 {

𝑠𝑖𝑛(𝑖+
1

2
)𝑡 

sin
𝑡

2

}𝑛
𝑘=0   

                     For 0 ≤ 𝑡 ≤
1

𝑛+1
, we have sin 𝑛𝑡 ≤ 𝑛 sin 𝑡 

         ∑  𝑘−𝑣
𝑖=0

(2𝑖+1) sin
𝑡

2

sin
𝑡

2

  
1

𝑘−𝑣+1
(𝑘 − 𝑣 + 1) 

≤
1

2𝜋(1 + 𝑞)𝑛
| ∑ (

𝑛
𝑘

) 𝑞𝑛−𝑘 ∑ 𝑎𝑘,𝑘−𝑣

𝑘

𝑣=0

𝑛

𝑘=0

| 

≤
𝑁

2𝜋(1 + 𝑞)𝑛
| ∑ (

𝑛
𝑘

) 𝑞𝑛−𝑘

𝑛

𝑘=0

| 
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=
𝑁

2𝜋(1 + 𝑞)𝑛
(1 + 𝑞)𝑛 

                     =
𝑁

2𝜋
= 𝑂(1)  

                          This proves the lemma. 

Lemma (2) 

For 
1

𝑛+1
≤ 𝑡 ≤ 𝜋, We have by Jordan’s Lemma sin (

𝑡

2
) ≥

𝑡

𝜋
 , sin 𝑛𝑡  ≤ 1 

𝑘(𝑛, 𝑡) =
1

2𝜋(1+𝑞)𝑛
∑ (

𝑛
𝑘

) 𝑞𝑛−𝑘 ∑ 𝑎𝑘,𝑘−𝑣 𝑘
𝑣=0

1

𝑛−𝑘+1
∑ 𝑎𝑘,𝑘−𝑣

𝑘−𝑣
𝑖=0 {

𝑠𝑖𝑛(𝑖+
1

2
)𝑡 

sin
𝑡

2

}𝑛
𝑘=0   

≤ ________ ∑
1

𝑡/𝜋

𝑘−𝑣

𝑖=0

 

≤
1

2𝜋(1 + 𝑞)𝑛𝑡
| ∑ (

𝑛
𝑘

) 𝑞𝑛−𝑘 ∑ 𝑎𝑘,𝑘−𝑣

𝑘

𝑣=0

𝑛

𝑘=0

| 

=
𝑁

0 (
1
𝑡

)
 

This proves the lemma. 

 

4. Proof of the Main Theorem 
Using Riemann-Lévesque theorem, we have for the nth partial sum. 𝑆𝑛(𝑓; 𝑥). The Fourier Series is given by  

𝑆𝑛(𝑓; 𝑥) − 𝑓(𝑥) =
1

2𝜋
∫ 𝜑(𝑡)

𝜋

0
∑ (

𝑛
𝑘

) 𝑞𝑛−𝑘 ∑ 𝑎𝑘,𝑘−𝑣
𝑘
𝑣=0

𝑛
𝑘=0 ∙

1

𝑘−𝑣+1
∑

sin(𝑖+
1

2
)𝑡

sin
𝑡

2

𝑘−𝑣
𝑖=0 ∙ 𝑑𝑡  

= ∫ 𝜑(𝑡)𝐾𝑛(𝑡) ∙ 𝑑𝑡
𝜋

0

 

                                                                             = {∫ + ∫  
𝜋
1

𝑛+1

1

𝑛+1
 

0
} 𝜑(𝑡)𝐾𝑛(𝑡) ∙ 𝑑𝑡  

                                                                             = 𝐼1 + 𝐼2 say 

           |𝐼1| =
1

2𝜋(1+𝑞)𝑛 |∫ 𝜑(𝑡)
1

𝑛+1
0

∑ (
𝑛
𝑘

) 𝑞𝑛−𝑘 ∑ 𝑎𝑘,𝑘−𝑣 𝑘
𝑣=0

1

𝑛−𝑘+1
∑ 𝑎𝑘,𝑘−𝑣

𝑘−𝑣
𝑖=0 {

𝑠𝑖𝑛(𝑖+
1

2
)𝑡 

sin
𝑡

2

} 𝑑𝑡𝑛
𝑘=0 |  

                                                                           ≤ 𝑂(1) ∫ |𝜑(𝑡)| ∙ 𝑑𝑡
1

𝑛+1
0

  using  Lemma  (1) 

                                                                         = 𝑂(1) ∫ |𝑡𝛼| ∙ 𝑑𝑡
1

𝑛+1
0

 

                                                                                   = 𝑂(1) [
1

(𝛼+1)(𝑛+1)𝛼+1]   

                      = 𝑂 [
1

(𝑛+1)𝛼+1]  

|𝐼2| ≤ ∫|𝜙(𝑡)||𝑘𝑛(𝑡)|𝑑𝑡

𝜋

1
𝑛+1

 

                                                               = ∫ |𝜙(𝑡)|𝑜(
1

𝑡
)𝑑𝑡

𝜋
1

𝑛+1

,    using Lemma (2) 

                                                                                            = ∫ |𝑡𝛼|𝑜(
1

𝑡
)𝑑𝑡

𝜋
1

𝑛+1

,                             

                                                                                         = 𝑂 [
1

(𝑛+1)𝛼]  

Then from (𝐼1) and (𝐼2), we have  

                                                                |𝑡𝐸𝑞𝑡𝐶1
− 𝑓(𝑥)| =  𝑂 [

1

(𝑛+1)𝛼] , 0 < 𝛼 < 1 

This completes the proof of the main theorem.  

 

5. Conclusion 

The result established here is a general form of the (𝐸, 𝑞)𝑇 mean. When C=1.  
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