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Abstract - In this paper, we present an approach to establish some integrals associated with the Incomplete H-Function and
engage them to derive Fourier Series for the Incomplete H-Function. Various Fourier Series are derived for the Incomplete
Meijer G-function, the Incomplete Fox-Wright function. The results presented here have a wide applicability in science and
engineering.
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1. Introduction

In this segment, a concise recapitulation of vital definitions and explanations has been investigated in specific earlier
studies [1-7] related to incomplete function, which are used for the whole of this work.

1.1. Incomplete Gamma Function (IGF)
The lower incomplete gamma function y(y, x) and the incomplete upper gamma function I" (i, x)indicate by

y(ux) = [y e et (R(w) > 0;x = 0) M
r'(u,x) = f: t e tdt; (x = 0; R(u) > 0whenx = 0) )

The sum of equations (1) and (2) gives the complete gamma function:
Yy x) +T'wx) =T@; (R >0) (€)

1.2. Incomplete H-function
The incomplete H-function defined by Srivastava et al. [7] [equation (2.1) -(2.4)] as follows:

(ulv Ul) x): (u] l]])
mn _ pmn +1(2,p)
Lg (2) =g

(vj' Vf)(l’q)

(uq, Uy, x); (uy, Uy), U,
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Y- +U1E ) ML, (0= ) ], T (1—uj+U€)
H?=m+1(1_vi+vi§) 1-I;,=n+1 F(uj_uif)

where 0(&,x) = (7

1
Where i = (—1)z and

{uj’ U=12....p] are complex numbers with their corresponding coefficients {U U=12,...p] belong to R, and Lstand
v, i = 12,...,q] p ponding : [,_12 q] g

for the contours that are taken up at the pointg — icoand expand to the point ¢ + icowith ¢ € R . The integrals in (4) and (6) are

convergent subject to the conditions provided by Srivastava et al. [21].

If |argz| < g.()
Wherep = ¥7_, U; + X1_, V; 8)

and 0 =Y7 U= X0 U+ X Vi =X, V<0 9)

j=m+1

Where m, n, p, q it belongs to I'* and is limited by the 0 < n < pq = m = 0 inequalities in (8) impose restrictions on the
acceptable values of the complex variables z. The points z = 0 and other inconsistent cases are being excluded. As shown by
Srivastava and Panda [13], we get

2] = 0(1z1°) (1Sljigln Iz - 0)

Where 0 = lim Re| —
1<j<m I/j
Here L designate a Mellin-Barnes contour from ¢ — iooto ¢ + icowith(¢ € R), and suitable indented, as required to
separate poles of the integrand.

The incomplete H-function in (4) and (6), respectively, is valid for all x > Osubject to the same set of admissibility
conditions and contour requirement as reported in Srivastava et al. [7], Mathai and Saxena [8], and Kilab et al. [11].

2. Preliminaries
As listed I. S. Gradshteyn, M. 1. Ryzhik ([12], p. 397 Equation (5.12)), the following Integral representation is given as:

(-D)™aEr(G+a)r(a+1)

T, . 2a . _ _ l
Jy (sin$)?*sin(2n + 1) pd¢ = Era-n)rCrarm) , forR(a) > - (10)
, (-)™rr(3+a)r(a+1)
fon(sm )% cos2npde = I’(1+a—rg)21"(1)+a+n) , forR (a) > —% (11)
3. Main Result

In this section, we derive certain integrals by using (10) and (11).

3.1. First Integral

V4
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3.2. Second Integral
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(¥, V)) 0y (CX £ 1:6)

3.3. Proof of First Integral
The integrand, which includes the incomplete H-Function, is describable as a Mellin-Barnes type Integral. We have the
LHS of equation (12)

(ulr Ulr X); (uj,Uj)
(vj' V})(l_q)

f (sing)™ sin(2n+1)¢ [—f 0(¢, x)zfdf] do

ﬂj Sln¢ “sin(2n+1)¢ L" zsin?® ¢ (2p)
0

The absolute convergence of the integrals explains the interchange of the order of integration.

=— Le(g,x)zg [y (sin $)2@*89) sin(2n + 1) pdp|dE

Now, by using (10), we have

( +a+6§)r(a+6§+1)
+(x+5$ n) (+a+8$+n

)zf dé

By using (4), we get the RHS of (12)

1
oy gz [, [0 e @)y (e 4550 i)
- p+2,q+2
CANY (~atitno)

Similarly, we get proof of equation (13) by using (10) and (6)

3.4 Proof of the Second integral
The integrand, which includes the incomplete H-Function, is describable as a Mellin-Barnes type Integral. We have the LHS of
equation (14)

(uq, Uy, x); (u}UJ)

(v}" Vj)(l,q)

2p)

= J.(sin(/ﬁ)za cos2ng Le™ |z sin? ¢

T s1n¢ 0052n¢[ [ 6, x)zfdf] do

The absolute convergence of the integrals explains the interchange of the order of integration.
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= ﬁj@(f,x)zf [fon(Sin 2@ cos 2 npdp|dé

Now, by using (11), we have

_( ) \/_ ( +a+6§)r(a+5§+1)

¢
= fe(f )F(1+a+55 n)r(1+a+5€+n)z d¢

By using (4), we get the RHS of (14)
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=(-1)’ J_F+2q+2 z 'p_ _
(17]', ‘/j)(l‘q)l (—(X i n, 6)

Similarly, we get proof of equation (15) by using (11) and (6)

4. Specific Cases
In (4), supposing ¢ € z* (positive integer), and putting U; = V; = 1: (j = 1,2,...,p:j =

( 1, ); j
, [Z X (u])(Z.p)l
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= (-D)™myG)hei, [z

(1,2 () , i (—a +3); (—a)]

(19)
(vj)(l,q); (_a T Tl)
5. The Fourier Series of Incomplete H-Function
5.1 Fourier Sine Series of Incomplete H-Function
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5.2. Fourier Cosine Series of Incomplete H-Function
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where ¢ = ¥0_ U + 39, V;
and 0 =31 U =Y U+ V=20,V >0, largzl < gn
Proof:
To prove (20), let
(uq, Uy, x); (uj‘Uj)
F(¢) =(sing)™ Lot |zsin® (v, (2"’)] dp = Y2 oA, sin(k + 1) ¢ (24)
Vir¥i) (,q)

Equation (20) holds under the assumption that the function F(¢)is continuous and of bounded variation on (0, 7), when
RQ2a) = 0.

Multiplying bysin(2n + 1) ¢in both sides of (20) and integrating from Otomw. r. t.¢p, we get
(uy, Uy, %); (Uj,Uj)

(sin ¢)2a sin(2n+1)¢ L
- (vj' V})(l_q)

zsin?% ¢

S =y

(2.p)] dp =Y, A, f(:T sin2n+1) ¢psin(2xk +1) ¢

Employing the orthogonality of the trigonometric sine function along with (12), we derive.

1
4 2260 e (y, Uy, )3 (4,07 (—a+3:6);(-a;8)

kK == lpi24+2|2 1 (25)
N (vj,l/})(l‘q); (—a otk 6)
From equations (23) and (24), the result (20) is derived.
Similarly, to prove (21), we assume that the conditions for the Incomplete H-function yﬁin in equation (6) are fulfilled.
To prove (22), let
(ult Ul‘ x); (u],U])
F(¢) =(sin ¢)2a L |z sin® ¢ @) de = % + Y% 1 Bc.cosk (26)
(vj' Vf)(l’q)
Multiplying by cos n ¢in both sides of equation (26) and integrating from Otorrw. r. t. Owe find
p (uy, Uy, x); (u}U])
[cosng(sing)™” Lo | zsin*e ¢ (5, 7) CP\dg = [ cosnp [22 + ¥z_y B, cos k ¢| dep 27)
0 Vi g

Employing the orthogonality of the trigonometric sine function along with (15), we derive.
1
_ 26D o | (0 Un ) (w,U)), (—a +o 6) i (—a; 6)

B,
p+2,q+2
G (¥, V)) (g gy (G2 1:6)

From equations (26) and (27), the result (22) is derived.

Similarly, to prove (23), we assume that the conditions for the Incomplete H-function ygzn in equation (6) are fulfilled.

6. Specific Case of Fourier Series of Incomplete H-Function:
In equations (20) to (23), assuming ¢ € z* (positive integer), putting a; = 1,(j = 1,2,...,¢):B; = 1,(j = 1,2,...,q) and
u = 1, two Fourier series for the Incomplete G-function is derived.

(ur, 2); (1 )(z.p)] do

(sin )T Gy [z sin? ¢
(vj)(l_q)
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7. Conclusion

In this paper, we have expected sine and cosine Fourier series involving the Incomplete H-function. These results are then
applied to evaluate a Fourier series expansion of the Incomplete Meijer G-function. The Fourier series derived in this analysis
is of a general form and may work as a basis for expanding several results relevant to practical and applied contexts.
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