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Abstract - In this paper, we present an approach to establish some integrals associated with the Incomplete H-Function and 

engage them to derive Fourier Series for the Incomplete H-Function. Various Fourier Series are derived for the Incomplete 

Meijer G-function, the Incomplete Fox-Wright function. The results presented here have a wide applicability in science and 

engineering. 
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1. Introduction 
In this segment, a concise recapitulation of vital definitions and explanations has been investigated in specific earlier 

studies [1-7] related to incomplete function, which are used for the whole of this work. 

 

1.1. Incomplete Gamma Function (IGF) 

The lower incomplete gamma function 𝛾(𝜇, 𝑥) and the incomplete upper gamma function 𝛤(𝜇, 𝑥)indicate by  

 

 𝛾(𝜇, 𝑥) = ∫ 𝑡𝜇−1𝑥

0
𝑒−𝑡𝑑𝑡;             (ℜ(𝜇) > 0; 𝑥 ≥ 0) (1)     

                                                                     

 𝛤(𝜇, 𝑥) = ∫ 𝑡𝜇−1𝑒−𝑡𝑑𝑡
∞

𝑥
;          (𝑥 ≥ 0;ℜ(𝜇) > 0 when 𝑥 = 0) (2) 

 

The sum of equations (1) and (2) gives the complete gamma function:             

                  

 𝛾(𝜇, 𝑥) + 𝛤(𝜇, 𝑥) = 𝛤(𝜇);    (ℜ(𝜇) > 0) (3) 

1.2. Incomplete H-function 

The incomplete H-function defined by Srivastava et al. [7] [equation (2.1) -(2.4)] as follows: 

 

𝛤𝑝,𝑞
𝑚,𝑛(𝑧) = 𝛤𝑝,𝑞

𝑚,𝑛 [𝑧 |
(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)

(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 

 

 = 𝛤𝑝,𝑞
𝑚,𝑛 [𝑧 |

(𝑢1, 𝑈1, 𝑥); (𝑢2, 𝑈2), . . . , (𝑢𝑝, 𝑈𝑝)

(𝑣1, 𝑉1), (𝑣2, 𝑉2), . . . , (𝑣𝑞 , 𝑉𝑞)
] =

1

2𝜋𝑖
∫ 𝜃(𝜉, 𝑥)𝑧𝜉𝑑𝜉,

𝐿
 (4) 

  
where   

 𝜃(𝜉, 𝑥) =
𝛤(1−𝑢1+𝑈1𝜉,𝑥) ∏ 𝛤(𝑣𝑗−𝑉𝑗𝜉) ∏ 𝛤(1−𝑢𝑗+𝑈𝑗𝜉)𝑛

𝑗=2
𝑚
𝑗=1

∏ (1−𝑣𝑗+𝑉𝑗𝜉) ∏ 𝛤(𝑢𝑗−𝑈𝑗𝜉)
𝑝
𝑗=𝑛+1

𝑞
𝑗=𝑚+1

 (5) 

and 

𝛾𝑝,𝑞
𝑚,𝑛(𝑧) = 𝛾𝑝,𝑞

𝑚,𝑛 [𝑧 |
(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)

(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 

= 𝛾𝑝,𝑞
𝑚,𝑛 [𝑧 |

(𝑢1, 𝑈1, 𝑥); (𝑢2, 𝑈2), . . . , (𝑢𝑝, 𝑈𝑝)

(𝑣1, 𝑉1), (𝑣2, 𝑉2), . . . , (𝑣𝑞 , 𝑉𝑞)
] =

1

2𝜋𝑖
∫ 𝜃(𝜉, 𝑥)𝑧𝜉𝑑𝜉,

𝐿
                                                         (6)  
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where  𝜃(𝜉, 𝑥) =
𝛾(1−𝑢1+𝑈1𝜉,𝑥) ∏ 𝛤(𝑣𝑗−𝑉𝑗𝜉) ∏ 𝛤(1−𝑢𝑗+𝑈𝑗𝜉)𝑛

𝑗=2
𝑚
𝑗=1

∏ (1−𝑣𝑗+𝑉𝑗𝜉) ∏ 𝛤(𝑢𝑗−𝑈𝑗𝜉)
𝑝
𝑗=𝑛+1

𝑞
𝑗=𝑚+1

                                                                  (7) 

Where 𝑖 = (−1)
1

2 and  

{
𝑢𝑗, [𝑗 = 1,2, . . . , 𝑝]

𝑣𝑗 , [𝑗 = 1,2, . . . , 𝑞]
 are complex numbers with their corresponding coefficients.  {

𝑈𝑗 , [𝑗 = 1,2, . . . , 𝑝]

𝑉𝑗 , [𝑗 = 1,2, . . . , 𝑞]
 belong to 𝑅+, and 𝐿stand 

for the contours that are taken up at the point𝜍 − 𝑖∞and expand to the point 𝜍 + 𝑖∞with 𝜍 ∈ 𝑅 . The integrals in (4) and (6) are 

convergent subject to the conditions provided by Srivastava et al. [21]. 

 

If     |𝑎𝑟𝑔 𝑧| <
𝜋

2
𝛺 

Where𝜑 ≡ ∑ 𝑈𝑗 + ∑ 𝑉𝑗
𝑞
𝑗=1

𝑝
𝑗=1                                                                                                                                                      (8) 

 

and 𝛺 = ∑ 𝑈𝑗
𝑛
𝑗=1 − ∑ 𝑈𝑗

𝑝
𝑗=𝑛+1 + ∑ 𝑉𝑗

𝑚
𝑗=1 − ∑ 𝑉𝑗

𝑞
𝑗=𝑚+1 ≤ 0          (9) 

 

 Where 𝑚, 𝑛, 𝑝, 𝑞 it belongs to 𝐼+ and is limited by the 0 ≤ 𝑛 ≤ 𝑝𝑞 ≥ 𝑚 ≥ 0 inequalities in (8) impose restrictions on the 

acceptable values of the complex variables 𝑧. The points 𝑧 = 0 and other inconsistent cases are being excluded. As shown by 

Srivastava and Panda [13], we get  

 

𝛤[𝑧𝜉] = 𝑂(|𝑧|𝜕) ( 𝑙𝑖𝑚
1≤𝑗≤𝑚

‖𝑧𝑗‖ → 0) 

Where 
1

Relim
j

j m
j

v

V 

 
 =  

 
 

 

 Here 𝐿 designate a Mellin-Barnes contour from 𝜑 − 𝑖∞to 𝜑 + 𝑖∞with(𝜉 ∈ ℜ), and suitable indented, as required to 

separate poles of the integrand. 

  

 The incomplete H-function in (4) and (6), respectively, is valid for all 𝑥 ≥ 0subject to the same set of admissibility 

conditions and contour requirement as reported in Srivastava et al. [7], Mathai and Saxena [8], and Kilab et al. [11]. 

 

2. Preliminaries 
As listed I. S. Gradshteyn, M. I. Ryzhik ([12], p. 397 Equation (5.12)), the following Integral representation is given as: 

 

∫ (𝑠𝑖𝑛 𝜙)2𝛼𝜋

0
𝑠𝑖𝑛(2𝑛 + 1) 𝜙𝑑𝜙 =

(−1)𝑛√𝜋𝛤(
1

2
+𝛼)𝛤(𝛼+1)

𝛤(
1

2
+𝛼−𝑛)𝛤(

3

2
+𝛼+𝑛)

, for𝑅(𝛼) > −
1

2
                                                                            (10) 

∫ (𝑠𝑖𝑛 𝜙)2𝛼 𝑐𝑜𝑠 2 𝑛𝜙
𝜋

0
𝑑𝜙 =

(−1)𝑛√𝜋𝛤(
1

2
+𝛼)𝛤(𝛼+1)

𝛤(1+𝛼−𝑛)𝛤(1+𝛼+𝑛)
, for𝑅(𝛼) > −

1

2
                                                                            (11) 

 

3. Main Result 
In this section, we derive certain integrals by using (10) and (11). 

 

3.1. First Integral 

( ) ( )
2

0

sin sin 2 1n




 + 𝛤𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2𝛿 𝜙 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 𝑑𝜙 

( )1
n

= − 𝛤𝑝+2,𝑞+2
𝑚,𝑛+2 [𝑧 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

; (−𝛼 +
1

2
; 𝛿) ; (−𝛼; 𝛿)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

; (−𝛼 ±
1

2
± 𝑛; 𝛿)

]                                                  (12) 

and 

( ) ( )
2

0

sin sin 2 1n




 + 𝛾𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2𝛿 𝜙 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 𝑑𝜙 
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( )1
n

= − 𝛾𝑝+2,𝑞+2
𝑚,𝑛+2 [𝑧 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

; (−𝛼 +
1

2
; 𝛿) ; (−𝛼; 𝛿)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

; (−𝛼 ±
1

2
± 𝑛; 𝛿)

]             (13) 

 

3.2. Second Integral 

( )
2

0

sin cos 2n




  𝛤𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2𝛿 𝜙 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 𝑑𝜙 

( )1
n

= − 𝛤𝑝+2,𝑞+2
𝑚,𝑛+2 [𝑧 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

; (−𝛼 +
1

2
; 𝛿) ; (−𝛼; 𝛿)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

; (−𝛼 ± 𝑛; 𝛿)
]                           (14) 

and 

( )
2

0

sin cos 2n




  𝛾𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2𝛿 𝜙 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 𝑑𝜙 

( )1
n

= − 𝛾𝑝+2,𝑞+2
𝑚,𝑛+2 [𝑧 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

; (−𝛼 +
1

2
; 𝛿) ; (−𝛼; 𝛿)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

; (−𝛼 ± 𝑛; 𝛿)
]                                                                                (15) 

 

3.3. Proof of First Integral 

The integrand, which includes the incomplete H-Function, is describable as a Mellin-Barnes type Integral. We have the 

LHS of equation (12) 

⇒ ( ) ( )
2

0

sin sin 2 1n




 + 𝛤𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2𝛿 𝜙 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 𝑑𝜙 

( ) ( )
2

0

sin sin 2 1n




 = + [
1

2𝜋𝑖
∫ 𝜃(𝜉, 𝑥)𝑧𝜉𝑑𝜉

𝐿
] 𝑑𝜙 

 

The absolute convergence of the integrals explains the interchange of the order of integration. 

=
1

2𝜋𝑖
( ),

L

x z  [∫ (𝑠𝑖𝑛 𝜙)2(𝛼+𝛿𝜉)𝜋

0
𝑠𝑖𝑛(2𝑛 + 1) 𝜙𝑑𝜙]𝑑𝜉 

 

Now, by using (10), we have 

( )1

2

n

i





−
= ∫ 𝜃(𝜉, 𝑥)

𝛤(
1

2
+𝛼+𝛿𝜉)𝛤(𝛼+𝛿𝜉+1)

𝛤(
1

2
+𝛼+𝛿𝜉−𝑛)𝛤(

3

2
+𝛼+𝛿𝜉+𝑛)

𝑧𝜉
𝐿

𝑑𝜉 

 

By using (4), we get the RHS of (12) 

( )1
n

= − 𝛤𝑝+2,𝑞+2
𝑚,𝑛+2 [𝑧 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

; (−𝛼 +
1

2
; 𝛿) ; (−𝛼; 𝛿)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

; (−𝛼 ±
1

2
± 𝑛; 𝛿)

] 

 

Similarly, we get proof of equation (13) by using (10) and (6) 

 

3.4 Proof of the Second integral  

The integrand, which includes the incomplete H-Function, is describable as a Mellin-Barnes type Integral. We have the LHS of 

equation (14) 

( )
2

0

sin cos 2n




   𝛤𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2𝛿 𝜙 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 𝑑𝜙 

( )
2

0

sin cos 2n




 =  [
1

2𝜋𝑖
∫ 𝜃(𝜉, 𝑥)𝑧𝜉𝑑𝜉

𝐿
] 𝑑𝜙 

The absolute convergence of the integrals explains the interchange of the order of integration. 
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=
1

2𝜋𝑖
( ),

L

x z  [∫ (𝑠𝑖𝑛 𝜙)2(𝛼+𝛿𝜉)𝜋

0
𝑐𝑜𝑠 2 𝑛𝜙𝑑𝜙]𝑑𝜉 

 

Now, by using (11), we have 

( )1

2

n

i





−
= ∫ 𝜃(𝜉, 𝑥)

𝛤(
1

2
+𝛼+𝛿𝜉)𝛤(𝛼+𝛿𝜉+1)

𝛤(1+𝛼+𝛿𝜉−𝑛)𝛤(1+𝛼+𝛿𝜉+𝑛)
𝑧𝜉

ℑ
𝑑𝜉 

 

By using (4), we get the RHS of (14) 

( )1
n

= − 𝛤𝑝+2,𝑞+2
𝑚,𝑛+2 [𝑧 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

; (−𝛼 +
1

2
; 𝛿) ; (−𝛼; 𝛿)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

; (−𝛼 ± 𝑛; 𝛿)
] 

 

Similarly, we get proof of equation (15) by using (11) and (6) 

 

4. Specific Cases 
In (4), supposing 𝜉 ∈ 𝑧+ (positive integer), and putting 𝑈𝑗 = 𝑉𝑗 = 1: (𝑗 = 1,2, . . . , 𝑝: 𝑗 = 1,2, . . . , 𝑞), and 𝛿 = 1, then  

 

𝛤𝑝,𝑞
𝑚,𝑛(𝑧) = 𝐺𝛤

𝑝,𝑞
𝑚,𝑛 [𝑧 |

(𝑢1, 𝑥); (𝑢𝑗)
(2,𝑝)

(𝑣𝑗)
(1,𝑞)

] 

 Clarify with the help of (12) 

∫ (𝑠𝑖𝑛 𝜙)2𝛼
𝜋

0

𝑠𝑖𝑛(2𝑛 + 1) 𝜙𝛤𝐺𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2 𝜙 |

(𝑢1, 𝑥); (𝑢𝑗)
(2,𝑝)

(𝑣𝑗)
(1,𝑞)

] 𝑑𝜙 

 

= (−1)𝑛√𝜋𝛤𝐺𝑝+2,𝑞+2
𝑚,𝑛+2 [𝑧 |

(𝑢1, 𝑥); (𝑢𝑗)
(2,𝑝)

; (−𝛼 +
1

2
) ; (−𝛼)

(𝑣𝑗)
(1,𝑞)

; (−𝛼 ±
1

2
± 𝑛)

]              (16) 

 

And clarify with the help of (13) 

( ) ( )
2

0

sin sin 2 1n




 + 𝛾𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2𝛿 𝜙 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 𝑑𝜙 

 

= (−1)𝑛√𝜋𝛾𝐺𝑝+2,𝑞+2
𝑚,𝑛+2 [𝑧 |

(𝑢1, 𝑥); (𝑢𝑗)
(2,𝑝)

; (−𝛼 +
1

2
) ; (−𝛼)

(𝑣𝑗)
(1,𝑞)

; (−𝛼 ±
1

2
± 𝑛)

]               (17) 

 

Similarly, with the help of (16) 

∫ (𝑠𝑖𝑛 𝜙)2𝛼 𝑐𝑜𝑠 2 𝑛𝜙
𝜋

0

𝛤𝐺𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2 𝜙 |

(𝑢1, 𝑥); (𝑢𝑗)
(2,𝑝)

(𝑣𝑗)
(1,𝑞)

] 𝑑𝜙 

 

= (−1)𝑛√𝜋𝛤𝐺𝑝+2,𝑞+2
𝑚,𝑛+2 [𝑧 |

(𝑢1, 𝑥); (𝑢𝑗)
(2,𝑝)

; (−𝛼 +
1

2
) ; (−𝛼)

(𝑣𝑗)
(1,𝑞)

; (−𝛼 ± 𝑛)
]              (18) 

 

And clarify with the help of (17) 

∫ (𝑠𝑖𝑛 𝜙)2𝛼 𝑐𝑜𝑠 2 𝑛𝜙
𝜋

0

𝛾𝐺𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2 𝜙 |

(𝑢1, 𝑥); (𝑢𝑗)
(2,𝑝)

(𝑣𝑗)
(1,𝑞)

] 𝑑𝜙 
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= (−1)𝑛√𝜋𝛾𝐺𝑝+2,𝑞+2
𝑚,𝑛+2 [𝑧 |

(𝑢1, 𝑥); (𝑢𝑗)
(2,𝑝)

; (−𝛼 +
1

2
) ; (−𝛼)

(𝑣𝑗)
(1,𝑞)

; (−𝛼 ± 𝑛)
]              (19) 

 

5. The Fourier Series of Incomplete H-Function 
5.1 Fourier Sine Series of Incomplete H-Function 

( )
2

sin


 𝛤𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2𝛿 𝜙 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 𝑑𝜙 

 

( )
( )

0

2 1
sin 2 1





 




=

−
= + 𝛤𝑝+2,𝑞+2

0,𝑛+2 [𝑧 |
(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)

(2,𝑝)
; (−𝛼 +

1

2
; 𝛿) ; (−𝛼; 𝛿)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

; (−𝛼 ±
1

2
± 𝜅; 𝛿)

]           (20) 

𝑅(2𝛼) ≥ 0,0 ≤ 𝜙 ≤ 𝜋 

and 

( )
2

sin


 𝛾𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2𝛿 𝜙 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 𝑑𝜙 

 

 
( )

( )
0

2 1
sin 2 1





 




=

−
= + 𝛾𝑝+2,𝑞+2

0,𝑛+2 [𝑧 |
(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)

(2,𝑝)
; (−𝛼 +

1

2
; 𝛿) ; (−𝛼; 𝛿)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

; (−𝛼 ±
1

2
± 𝜅; 𝛿)

]           (21) 

 

𝑅(2𝛼) ≥ 0,0 ≤ 𝜙 ≤ 𝜋 

 

5.2. Fourier Cosine Series of Incomplete H-Function 

( )
2

sin


 𝛤𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2𝛿 𝜙 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 𝑑𝜙 

 

( )1




−
= 𝛤𝑝+2,𝑞+2

𝑚,𝑛+2 [𝑧 |
(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)

(2,𝑝)
; (−𝛼 +

1

2
; 𝛿)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

; (−𝛼; 𝛿)
] 

 

( )

1

2 1
cos










=

−
+ 𝛤𝑝+2,𝑞+2

0,𝑛+2 [𝑧 |
(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)

(2,𝑝)
; (−𝛼 +

1

2
; 𝛿) ; (−𝛼; 𝛿)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

; (−𝛼 ± 𝜅; 𝛿)
]            (22) 

𝑅(2𝛼) ≥ 0,0 ≤ 𝜙 ≤ 𝜋 

and 

( )
2

sin


 𝛾𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2𝛿 𝜙 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 𝑑𝜙 

 

( )1




−
= 𝛾𝑝+2,𝑞+2

𝑚,𝑛+2 [𝑧 |
(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)

(2,𝑝)
; (−𝛼 +

1

2
; 𝛿)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

; (−𝛼; 𝛿)
] 

 

( )

1

2 1
cos










=

−
+ 𝛤𝑝+2,𝑞+2

𝑚,𝑛+2 [𝑧 |
(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)

(2,𝑝)
; (−𝛼 +

1

2
; 𝛿) ; (−𝛼; 𝛿)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

; (−𝛼 ± 𝜅; 𝛿)
]            (23) 

 
𝑅(2𝛼) ≥ 0,0 ≤ 𝜙 ≤ 𝜋 
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where 𝜑 ≡ ∑ 𝑈𝑗 + ∑ 𝑉𝑗
𝑞
𝑗=1

𝑝
𝑗=1  

and  𝛺 = ∑ 𝑈𝑗
𝑛
𝑗=1 − ∑ 𝑈𝑗

𝑝
𝑗=𝑛+1 + ∑ 𝑉𝑗

𝑚
𝑗=1 − ∑ 𝑉𝑗

𝑞
𝑗=𝑚+1 > 0,    |𝑎𝑟𝑔 𝑧| <

𝜋

2
𝛺 

 

Proof: 

To prove (20), let 

𝐹(𝜙) = ( )
2

sin


 𝛤𝑝,𝑞
0,𝑛 [𝑧 𝑠𝑖𝑛2𝛿 𝜙 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 𝑑𝜙 = ∑ 𝛢𝜅
∞
𝜅=0 𝑠𝑖𝑛(2𝜅 + 1) 𝜙           (24) 

 

 Equation (20) holds under the assumption that the function 𝐹(𝜙)is continuous and of bounded variation on (0, 𝜋), when 

𝑅(2𝛼) ≥ 0. 

 

Multiplying by𝑠𝑖𝑛(2𝑛 + 1) 𝜙in both sides of (20) and integrating from 0𝑡𝑜𝜋w. r. t.𝜙, we get 

 

( ) ( )
2

0

sin sin 2 1n




 + 𝛤𝑝,𝑞
0,𝑛 [𝑧 𝑠𝑖𝑛2𝛿 𝜙 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 𝑑𝜙 = ∑ 𝛢𝜅
∞
𝜅=0 ∫ 𝑠𝑖𝑛(2𝑛 + 1)

𝜋

0
𝜙 𝑠𝑖𝑛(2𝜅 + 1) 𝜙 

 

Employing the orthogonality of the trigonometric sine function along with (12), we derive. 

𝛢𝜅 =
( )2 1





−
𝛤𝑝+2,𝑞+2

𝑚,𝑛+2 [𝑧 |
(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)

(2,𝑝)
; (−𝛼 +

1

2
; 𝛿) ; (−𝛼; 𝛿)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

; (−𝛼 ±
1

2
± 𝜅; 𝛿)

]          (25) 

 

From equations (23) and (24), the result (20) is derived. 

 

Similarly, to prove (21), we assume that the conditions for the Incomplete H-function 𝛾𝑝,𝑞
𝑚,𝑛

 in equation (6) are fulfilled.  

To prove (22), let 

𝐹(𝜙) = ( )
2

sin


 𝛤𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2𝛿 𝜙 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 𝑑𝜙 =
𝛣0

2
+ ∑ 𝛣𝜅 𝑐𝑜𝑠 𝜅 𝜙∞

𝜅=1                          (26) 

 

Multiplying by 𝑐𝑜𝑠 𝑛 𝜙in both sides of equation (26) and integrating from 0𝑡𝑜𝜋w. r. t. 𝜃we find  

( )
2

0

cos sinn




  𝛤𝑝,𝑞
0,𝑛 [𝑧 𝑠𝑖𝑛2𝛼 𝜙 |

(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)
(2,𝑝)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

] 𝑑𝜙 = ∫ 𝑐𝑜𝑠 𝑛 𝜙
𝜋

0
[

𝛣0

2
+ ∑ 𝛣𝜅 𝑐𝑜𝑠 𝜅 𝜙∞

𝜅=1 ] 𝑑𝜙               (27) 

 

Employing the orthogonality of the trigonometric sine function along with (15), we derive. 

𝛣𝜅 =
2(−1)𝜅

√𝜋
𝛤𝑝+2,𝑞+2

0,𝑛+2 [𝑧 |
(𝑢1, 𝑈1, 𝑥); (𝑢𝑗,𝑈𝑗)

(2,𝑝)
; (−𝛼 +

1

2
; 𝛿) ; (−𝛼; 𝛿)

(𝑣𝑗 , 𝑉𝑗)
(1,𝑞)

; (−𝛼 ± 𝜅; 𝛿)
] 

 

From equations (26) and (27), the result (22) is derived. 

 

Similarly, to prove (23), we assume that the conditions for the Incomplete H-function 𝛾𝑝,𝑞
𝑚,𝑛

 in equation (6) are fulfilled.  

 

6. Specific Case of Fourier Series of Incomplete H-Function: 
In equations (20) to (23), assuming 𝜉 ∈ 𝑧+ (positive integer), putting 𝛼𝑗 = 1, (𝑗 = 1,2, . . . , 𝑞): 𝛣𝑗 = 1, (𝑗 = 1,2, . . . , 𝑞) and 

𝑢 = 1, two Fourier series for the Incomplete G-function is derived. 

 

(𝑠𝑖𝑛 𝜙)2𝛼𝛤𝐺𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2 𝜙 |

(𝑢1, 𝑥); (𝑢𝑗)
(2,𝑝)

(𝑣𝑗)
(1,𝑞)

] 𝑑𝜙 
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= ∑
2(−1)𝜅

√𝜋

∞
𝜅=0 𝑠𝑖𝑛(2𝜅 + 1) 𝜙𝛤𝐺𝑝+2,𝑞+2

𝑚,𝑛+2 [𝑧 |
(𝑢1, 𝑥); (𝑢𝑗)

(2,𝑝)
; (−𝛼 +

1

2
) ; (−𝛼)

(𝑣𝑗)
(1,𝑞)

; (−𝛼 ±
1

2
± 𝜅)

]            (28) 

and the other is 

(𝑠𝑖𝑛 𝜙)2𝛼𝛤𝐺𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2 𝜙 |

(𝑢1, 𝑥); (𝑢𝑗)
(2,𝑝)

(𝑣𝑗)
(1,𝑞)

] 𝑑𝜙 

 

=
𝛣0

2
+ ∑

2(−1)𝜅

√𝜋

∞
𝜅=1 𝑐𝑜𝑠 𝜅 𝜙𝛤𝐺𝑝+2,𝑞+2

𝑚,𝑛+2 [𝑧 |
(𝑢1, 𝑥); (𝑢𝑗)

(2,𝑝)
; (−𝛼 +

1

2
) ; (−𝛿)

(𝑣𝑗)
(1,𝑞)

; (−𝛼 ±
1

2
± 𝜅)

]                                   (29) 

Similarly, we get 

(𝑠𝑖𝑛 𝜙)2𝛼𝛾𝐺𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2 𝜙 |

(𝑢1, 𝑥); (𝑢𝑗)
(2,𝑝)

(𝑣𝑗)
(1,𝑞)

] 𝑑𝜙 

 

= ∑
2(−1)𝜅

√𝜋

∞
𝜅=0 𝑠𝑖𝑛(2𝜅 + 1) 𝜙𝛾𝐺𝑝+2,𝑞+2

𝑚,𝑛+2 [𝑧 |
(𝑢1, 𝑥); (𝑢𝑗)

(2,𝑝)
; (−𝛼 +

1

2
) ; (−𝛼)

(𝑣𝑗)
(1,𝑞)

; (−𝛼 ±
1

2
± 𝜅)

]            (30) 

and the other is 

(𝑠𝑖𝑛 𝜙)2𝛼𝛾𝐺𝑝,𝑞
𝑚,𝑛 [𝑧 𝑠𝑖𝑛2 𝜙 |

(𝑢1, 𝑥); (𝑢𝑗)
(2,𝑝)

(𝑣𝑗)
(1,𝑞)

] 𝑑𝜙 

 

=
𝛣0

2
+ ∑

2(−1)𝜅

√𝜋

∞
𝜅=1 𝑐𝑜𝑠 𝜅 𝜙𝛾𝐺𝑝+2,𝑞+2

𝑚,𝑛+2 [𝑧 |
(𝑢1, 𝑥); (𝑢𝑗)

(2,𝑝)
; (−𝛼 +

1

2
) ; (−𝛿)

(𝑣𝑗)
(1,𝑞)

; (−𝛼 ±
1

2
± 𝜅)

]                                             (31) 

7. Conclusion 
In this paper, we have expected sine and cosine Fourier series involving the Incomplete H-function. These results are then 

applied to evaluate a Fourier series expansion of the Incomplete Meijer G-function. The Fourier series derived in this analysis 

is of a general form and may work as a basis for expanding several results relevant to practical and applied contexts.  
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