International Journal of Mathematics Trends and Technology Volume 72 Issue 1, 167-185, January 2026
ISSN: 2231-5373/ https://doi.org/10.14445/22315373/IIMTT-V7211P112 © 2026 Seventh Sense Research Group®

Original Article

Study ofthe N-Soliton Solutions of the (2+1)-
Dimensional Nonlinear Wave Equation

Wuming Li', Geyao Li?
1.2School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, China.

ICorresponding Author : liwum0626@126.com

Received: 28 November 2025 Revised: 04 January 2026 Accepted: 22 January 2026 Published: 31 January 2026

Abstract - In this paper, a (2+1)-dimensional nonlinear wave equation is investigated using the Hirota bilinear method. The
N-soliton solutions of this Equation are constructed, and the corresponding local characteristics are analyzed. By selecting
specific parameters, various localized waves are derived, including kink solitons, lump solitons, periodic solitons, and so on.
Furthermore, the dynamical behaviors of the soliton solutions are exhibited by using the symbolic computation system Maple,
and the interaction characteristics of these solutions are elaborated through the corresponding images. Lastly, the ansatz
approach is utilized to work out an interesting inelastic interaction solution where lump solitons can occur. These findings
in this study are very helpful for deepening the comprehension of the interaction mechanisms exhibited by localized waves
in nonlinear wave equations.
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1. Introduction

Solitons are an important research subject in integrable systems, and they have wide applications in various fields, such
as plasma physics, optical fibers, fluid mechanics, oceanic shock waves, molecular systems, and Bose-Einstein condensates
[1-5]. Therefore, to obtain the soliton solutions of nonlinear partial differential equations, various methods for finding exact
solutions have been constructed, including the inverse scattering transformation [6—7], The Bicklund Transformation [8—9],
The Darboux Transformation [10-11], The Riemann-Hilbert Approach [12—-13], The Sine-Gordon Expansion Approach
[14], The Modified Kudryashov Approach [15-16], The Hirota Bilinear Method [17-18], and Other Approaches [19]. For
the above-mentioned methods, each has its own merits. However, to the best of our knowledge, no single method can solve
all known nonlinear equations so far.

In 1971, the Hirota bilinear method was introduced for directly solving nonlinear wave equations [20]. Owing to the
simplicity and effectiveness of this method, it has been widely employed to obtain N-soliton solutions for various nonlinear
partial differential equations. Over the past decades, this approach has played an important role in integrable systems [21].
In [22], the lump solution of the Burgers equation is derived using the bilinear method, and the author further studies its
interaction solutions. [23] investigated the lump solutions of many types of partial differential equations via the Hirota
bilinear formulation. [17] systematically studied the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation using the
Hirota bilinear method and obtained various localized soliton solutions. Motivated by the aforementioned works, this paper
investigates a (2+1)-dimensional nonlinear wave equation [22] using the Hirota bilinear method, which is written as

Uye + A (Uyyyy = 3UyUyy — 3Wy Uy, ) + Qply, + Aslly, = 0,1, = W, (1)

whereu = u(x, y, t) serves as the potential function representing the amplitude distribution of solitons, where x and y
denote the soliton’s propagation directions in the two-dimensional spatial plane, and ¢ represents the temporal variable. The
parametersa,,a,,azare physical constants that characterize the key properties of the solitons, including dispersion strength,
nonlinear modulation intensity, and transverse wave propagation speed. By tuning these parameters to different values, this
Equation can vividly describe a diverse range of intriguing nonlinear phenomena in shallow water systems, such as the
formation of multi-soliton interactions, the propagation of lump waves, and the modulation instability of wave trains.
Therefore, in this work, we conduct a systematic and in-depth investigation into the N-soliton solutions of this Equation
using the Hirota bilinear method, which allows us to derive exact analytical expressions for solitons and reveal their dynamic
evolution behaviors. Furthermore, we present the interaction solutions between solitons and other localized wave structures,
and most notably, we successfully construct the lump solution via the ansatz method—a result that not only enriches the
solution family of the Equation but also provides a theoretical basis for understanding the non-oscillatory, localized wave

phenomena observed in shallow water environments.
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In the existing literature, numerous scholars have carried out in-depth research on relevant nonlinear wave equations
from multiple perspectives. For instance, [24] focused on the Painlevé integrability of a (2+1)-dimensional nonlinear wave
equation, and successfully derived its multi-soliton, breather, and lump solutions through rigorous theoretical deductions.
[25] investigated an extended form of a generalized (2+1)-dimensional bilinear equation, and explored its integrability
characteristics comprehensively from various angles, providing a solid theoretical basis for subsequent studies. By employing
the bilinear method, [26] obtained a variety of soliton solutions for the nonlinear wave equation, and further derived M-lump
solitons by virtue of the long wave limit transformation, enriching the solution forms of such equations. [27] Conducted a
systematic investigation on a (2+1)-dimensional nonlinear wave equation based on the Hirota bilinear method; in addition,
by applying the asymptotic analysis technique with two-soliton parameter constraints, the authors successfully obtained X-
type and Y-type solitons, which expanded the understanding of soliton interaction behaviors.

Although the Hirota bilinear method has been maturely applied to solving soliton solutions, existing studies still have
limitations. Most of them only focus on the construction of soliton solutions, with insufficient quantitative analysis on the
parameter selection of the bilinear form and dynamic characteristics such as soliton collision behavior. Aiming at the above
limitations, this study establishes a quantitative analysis framework for the correlation between bilinear parameters and
dynamic characteristics. Combining numerical simulation with theoretical derivation, it clarifies the influence of the
coefficient parameters in the bilinear Equation on soliton collision, thus enriching the application of the Hirota bilinear
method in the analysis of nonlinear systems.

Therefore, different from the above-mentioned works, the core goal of this study is to put forward an efficient approach
to constructing novel categories of soliton solutions for Equation (1) by leveraging the Hirota bilinear method. Specifically,
the N-soliton solutions of this Equation are first derived and their intrinsic local properties analyzed. Furthermore, the
evolutionary behaviors of interactions between various soliton solutions are graphically exhibited via Maple software. The
subsequent structure of this paper is arranged as follows: In Section 2, the N-soliton solutions of the Equation are derived,
and then various types of localized wave interaction solutions are obtained by constraining and assigning values to the
parameters of the soliton solutions. Section 3 focuses on presenting the inelastic interaction solutions of mixed lump-kink
solitons for Equation (1) and conducts a visual discussion on the inelastic interactions between these soliton solutions.
Finally, this research is summarized in Section 4.

2. The N-Soliton Solution of the (2+1)-Dimensional Nonlinear Wave Equation
In this section, the Hirota bilinear method is used to obtain the N-soliton solution of Equation (1). In order to transform
the nonlinear Equation (1) into a bilinear form, the following Hopf-Cole transformation is performed

u=-=-2(Inf)y,w=-2(nf), 2)

For Equation (1), integrating with respect to x once and setting the integration constant to 0, we obtain

2011 e + 3 (2000 fyyy + 300 Fay - QU Fyy))) + 201N e + €3 (2[00 )y = 0 (3)

The bilinear form of Eq.(1) is as follows

(D:Dy + a;D, D3 + a;DZ + asDy)f - f =0 4)
whereD,,D,andD, are bilinear derivative operators, defined as
DyDyDIf - g = (85 — 0,0 (9y — 0,)" (0 — 0 )™ f(x, ¥, )g(x", ¥y, t)x =x",y =y’ t =’ 6))
The Eq.(4) is equivalent to
ffxt - fxft + al(fxyyyf - 3fxyyfy + 3fxyfyy - fxfyyy) + az(ffxx - fxz) + a3(ffyy - fyz) =0 (6)

Here, the function fis assumed to have the following form, expressed as

i=1 i;]’ i<{;l<k i=1
f =1 + Z e"i + ZA,:jBnﬁ—nj + Z Ai],AikAjkeni'HU'F’]k + -+ (HAU)B i (7)

i<j

where
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ib3+aya?+azb?
M = ax + by + cit + 1y ¢; = — LTI ()

aj

_a(ai—aj) (bi=bj)3+az(a;—aj)*+az(bi=bj)*+(ai-a;)(ci=cj)

Aij = l,] = 1;2:'”ﬁN (9)

al(ai+aj)(bi+bj)3+a2(ai+aj)2+a3(bi+bj)2+(ai+aj)(ci+c]-)
Moreover, the parametersa;,b;andn,;are constants.

2.1. The One-Soliton Solution
To derive the one-soliton solution of Equation (1), by virtue of Equation (7), we have the following expression

f=1+em (10)

The one-soliton solution to Equation (1), which is derived by substituting Equation (10) into the bilinear transformation
in Equation (2), is given as
u = —a;[1+ tanh(2)] (11)

w = —by[1 + tanh(%)] (12)
Where?’]l = aqx + bly + Clt + No1-

Specifically, taking the parametersa; = 1,b; = =1,y = 0,a; = 1, ¢, = —1, a3 = —1in Equations (11) and (12), we
can obtain the specific expressions of u and w. It is noticed that settinga, = 1leads to negative values for the component u,
while setting b; = —1 results in positive values for the component w. With the parametersa; = 1,a, = =1, a3 = —1 and
t = 0, we acquire the one-soliton solution to Equation (1), with the corresponding 3D structural plot and 2D density plot
presented in Figure 1. As visualized in the figure, the # and w exhibit characteristics of a kink soliton and an anti-kink soliton,
respectively.

2.2. The Two-Soliton Solutions

In this subsection, a study is conducted on the classification and value assignment of the parameters of the two-soliton
solution under four different scenarios, thereby obtaining soliton types with distinct morphologies. A detailed analysis of
these cases is presented below. WhenN = 2it follows from Equation (7) that

f =14+eM e+ A123W1+772 (13)

The two-soliton solution of Equation (1) is obtained by substituting Equation (13) into Equation (2). The expressions
for you and w are
areM+aye2+A,,(ay+aq)e1t12
1+eMi+eN2+A,eM1+2

u=-2 (14)

bieM+bye2+A,,(by+bq)e1H12
w=_2m 2 12(P1+b1) (15)

1+eM1+eM2+A,,eM1+M2

wheren; = a;x + by + ¢c;t + Noq, M2 = X + by + Ct + Nz

2.2.1. The Two-Kink Soliton Solutions
When all parameters take real values, two kink-shaped soliton solutions are derived, with the specific cases detailed as
follows. Specifically, taking the parameters a; = 3,b; = 2,a, = 5,b, = 7,191 = 0,19, = 0,01y = 4,0, = 2,a; =1, the

two-soliton solutions are obtained, and the corresponding structures are shown in Figure 2. Specifically, Figure 2 (al),(b1)
displays the two kink soliton structures of solution u, while Figures 2 (a2),(b2) illustrate the two kink soliton structures of
solution w. From the density plots, it can be observed that the kink solution of you exhibits an X-shape in the plane, whereas
the kink solution of w exhibits a Y-shape.

(8
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Fig. 1 The One-Soliton Solution of the Equation (1) at =0 ; (al) 3D Structure of u;(a2) 3D Structure of w; (b1) 2D Density Plot of u; (b2) 2D
Density Plot of w
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Fig. 2 The Two-Soliton Solution of the Equation (1) at 7= 0; (al) 3D Structure of u; (a2) 3D Structure of w; (b1) 2D Density Plot of u; (b2) 2D

Density Plot of w

2.2.2. One y-Periodic Soliton Solutions

A notable phenomenon emerges when transitioning from Section 2.2.1 to Section 2.2.2, namely that the periodic
solutions arise as parameter values change from real to imaginary numbers. Specifically, taking the parameters
a,=1.b =i,a,=2,b,=—i,1,, =0,m9, = 0,0y, =4, a, =3,a3 =5,t =0, where i is the imaginary unit satisfying

i? = —1, the soliton structures of you and w are shown in Figure 3. As observed from Figure 3, when b and b, take purely

imaginary values, the profile of the two-soliton solution transforms from a kink solution to a localized breathing solution,
with both u and w being perpendicular to the x-axis.
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(b1) (b2)
Fig. 3 The y-Periodic Soliton Solution of the Equation (1) at = 0; (al) 3D Structure of u; (a2) 3D Structure of w; (b1) 2D Density Plot of u; (b2)
2D Density Plot of w

2.2.3. One (x, y)-Periodic Soliton Solutions

When some of the parameters vary from purely imaginary values to complex numbers, the periodic solutions of Equation
(1) trans- form from y-type to (x,y)-type. Specifically, taking the parametersa; = 1,b; = 1+1i,a, = 2,b, =1 —1i,1p1 =
0,M92 =0,a; = —0.1,a, = 3,23 =5, the solutions u and w with (x, y)-periodic soliton structures t = Oare shown in

>

Figure 4.

When b, and b, take complex values, the periodic solitons are no longer oriented perpendicularly to the x-axis, with their
movement shifting toward the y-direction. In the course of a collision, the solution retains its shape with merely a phase
offset generated, a key property inherent to soliton solutions.

2.2.4. One Lump Soliton Solutions

The lump solitons are remarkable due to their unique stability and localization. Under the condition of some small
parameters, their energy distribution and density profiles exhibit sharp, well-defined boundaries and concentrated amplitude
regions.

Weseta; =1, -g,a,=1,-6,by =ny &by, =n, 609 =1 7,1y, = —Ii -, into Equation (13). By takinge — 0and
following the long-wave limit method [29], the function f'can be expanded into

f =0.0,e*+ 0(g?) (16)
where
azn?
61 = llx +n1y - (azll + L )t
a3n§
92 = l2x + nzy - (azlz + 1 )t (17)
2

The lump soliton solutions associated with u# and w can be calculated by substituting Equations (16) and (17) into
Equation (3), and their specific forms are illustrated as

= a4l
u= 2(91+92)
w=-202+3) (18)

Specifically, taking the parametera; = 0.01,b; = 0.01 + 0.01i,a, = 0.01,b, = 0.01 — 0.01i,ny; = im, Ny =
—im,a; = —0.1,a, = 3,3 = 5, we can analyze the lump soliton behavior (as shown in Fig.5). The observed differences

in extrema between u and w may arise from distinct nonlinear dynamics or coupling effects in the underlying Equation,
highlighting the richness of soliton behavior in multidimensional systems. Such localized structures have profound
implications in various fields such as optical fiber communication, condensed matter physics, quantum technology, and even
biological systems.

Table 1 records the classification of different wave types in the soliton solutions of Equation (1) and presents the results
of different parameter selections for the two-soliton solution.
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Table 1. Types of Two-Soliton Localized Waves for Equation (1) Under Different Parameter Selections

N-soliton solutions

Wave structures

Parameter selections

Two kink-type solitons

One y-periodic soliton

One (x, y)-periodic soliton

One lump soliton

a; =3,by =2,a, =5b; =7,191 =0,
Nz =0, =4,a, =2,a3=1

a = 1,b1 = i,az = Z,bz = _i,no:l
=O'
No2 = 0,0(1 = _O.l,az = 3,“3 =5

a4 =1b =1+i,a,=2,b, =1—i,7, =0,
noz = 0, al = _01, 0(2 = 3, a3 = 5,

a, = 0.01,b, = 0.01 + 0.01i,a, = 0.01,
b, =0.01-0.01i,73,, =im,n, =—ir,

ax, = _01, a, = 3, asz = 5,

Fig. 4 The (x,p)-Periodic Soliton Solution of the Equation (1) at 7= 0; (al) 3D Structure of u; (a2) 3D Structure of w; (b1) 2D Density Plot of u;

(al)

(b1

- 0 * 10
X
(b2)

(b2) 2D Density Plot of w.
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. [ '[.o
X
(b1) (b2)
Fig. 5 The Lump Soliton Solution of the Equation (1) at 7 =0; (al) 3D Structure of u; (a2) 3D Structure of w; (b1) 2D Density Plot of u; (b2) 2D
Density Plot of w.

2.3. The Three-Soliton Solutions
In this subsection, four kinds of three-soliton wave solutions are considered. WhenN = 3it follows from Equation (7)
that we can obtain

f=14+eM 42 +4eMs +Alzen1+772 +A13e771+773 +A23e772+113 + A1233n1+712+713 (19)

where A;,3 = A;,A4134,3. The three-soliton solution of Equation (1) is obtained by substituting Equation (19) into
Equation (2). Due to the extremely complex forms of the expressions, they are omitted here.

2.3.1. The Three Kink Soliton Solutions

When N = 3 and all parameter values are real numbers, Equation (1) yields two kink-type three-soliton solutions u and
w. Specifically, taking the parametersa; =1,b; =1,a, =1,b, =2,a3=1,b3=3,191 =0,19, =0,193=0,; =
—0.1,a, = 0.1, a3 = 0.1, the three-soliton structures t = Oare presented in Figure 6. We observe that both u and w are

composed of three kink-shaped solitons.

9

b ¢ b

(b1) (b2)

Fig. 6 The three soliton solution of the Eq.(1) at = 0; (al) 3D structure of u; (a2) 3D structure of w; (b1) 2D density plot of u; (b2) 2D density
plot of w

X

2.3.2. One y-Periodic Soliton and One Kink Soliton Solution

When the parameters b; and b, take purely imaginary values, the three-soliton solution is composed of one y-periodic
soliton solution and one kink soliton solution. Specifically, the parameters are taken asa; = 1,b; = 2i,a, = 1,b, =
—2i,a3 =1,b3=0,n9; = 0,192 =0,m93 = 0,2, = 4, a, = 2,a;3 = 1. Through the utilization of Maple software, we

obtain the 3D structures and 2D density plots, which are illustrated in Figures 7 and 8. The parallel interaction between one
kink soliton and one y-periodic soliton for you is depicted in Figure 7. As observed, the kink soliton propagates along the
positive x-axis, while the y-periodic soliton propagates along the negative x-axis. Before the collision, they propagate at
almost the same speed. After interaction, the two parallel solitons move away from each other while retaining their original
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shapes and speeds, indicating that their interaction is elastic. Figure 8 shows the parallel movement of the y-periodic solitons
of w over time, with their directions also oriented perpendicularly to the x-axis. Furthermore, it is noted that w exhibits only
a y-periodic soliton, propagating along the negative x-axis.

2.3.3. One y-Periodic Soliton and One Inclined Kink Soliton Solution

In this subsection, the parameter b; is assigned a non-zero value, and the three-soliton solution morphology of Equation
(1) manifests a distinct structural shift. Specifically, the parameters @, =1,b, = 2i,a, =1,b, = -2i,a, =1,b, =0.5,1,, =0,
Moz = 0,M93 = 0,7 = 4,a, = 2, a3 = 1, are adopted, and the structure of u and w is derived. The visualization in Figure 9
reveals the interaction between one inclined kink soliton solution and one y-periodic soliton solution of you, and the y-
periodic soliton is oriented perpendicular to the x-axis. Figure 10 depicts the interaction between one inclined kink soliton
and one y-periodic soliton of w. As observed in Figure 10, the kink soliton propagates along the positive x-axis while the y-
periodic soliton propagates along the negative x-axis over time. After the interaction, they move away from each other while
retaining their original shapes and speeds, indicating that their interaction is elastic.

2.3.4. One Inclined Kink Soliton and One Lump Soliton Solutions

With a, and a3 taking extremely small real values and b, and b3 adopting small conjugate imaginary numbers
simultaneously, the solution of Equation (1) exhibits the interaction of one inclined kink soliton and one lump soliton. This
interaction not only enriches the soliton solution spectrum of Equation (1) but also provides a new perspective for exploring
multidimensional nonlinear dynamics. Specifically, taking the parametersa; =1,b; =1,a, = 0.01,b, = 0.01 +
0.01i,a; = 0.01, b3 = 0.01 — 0.01i,m9; = 0,9, = 0,93 =0,y = —1,a, = 2,3 =1, we can observe the elastic

interaction between different types of solitons. The time evolution process of the elastic interaction between the soliton
structures of you is presented in Figure 11. Notably, w demonstrates structural similarity to you, with its interaction dynamics
aligning well with those observed for you, as depicted in Figure 12.

Table 2 systematically documents the classification of distinct wave types in the soliton solutions of Equation (1), along
with the corresponding parameter tuning strategies for the three-soliton solution used to achieve such classification.

Table 2. Types of Three-Soliton Localized Waves for Equation (1) Under Different Parameter Selections

N-soliton solutions Wave structures Parameter selections
Three kink solitons a, =1,by =1,a,=1,b, =2,a3=1,b3 =3,
o1 = 0,770, = 0,77, =0,, =-0.1,¢, = 0.1,
(Z3 = 0.1.

a,=1,b =2i,a,=1,b, =-2i,a, =1,b, =0,
One y-periodic soliton and one kink soliton |y . = 0,75,, = 0,13 = 0, a; = 4, a, =2,
(Z3 =1.

N=3 a, = 1, bl = 21, a, = 1,b2 = _21, as = 1,

. . . . . b3 =O'557701 =05 Noz = 0)”03 = 0,6(1 = 4'
One y-periodic soliton and one inclined
kink soliton a,=2,a3=1.

a; =1,b; =1,a, =0.01,b, = 0.01 + 0.01,
a, =0.01,b, =0.01-0.01i,7,, =0,7,, =0,
Moz = 0,“1 = —1,(12 = 2,“3 =1.

One lump soliton and one kink soliton
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(b1) (b2) (b3) (b4) (bS)
Fig. 7 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the component u. (al) 3D Structure at = -5; (a2) 3D Structure at ¢
=-1; (a3) 3D Structure at # = 0; (a4) 3D Structure at = 1; (aS) 3D Structure at = 5; (b1) 2D Density Plot at ¢ = -5; (b2) 2D Density Plot at = -1;
(b3) 2D Density Plot at = 0; (b4) 2D Density Plot at # = 1; (bS) 2D Density Plot at =5
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Fig. 8 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the component w. (al) 3D Structure at ¢ =-5; (a2) 3D Structure at ¢
=-1; (a3) 3D Structure at # = 0; (a4) 3D Structure at = 1; (a5) 3D Structure at = 5; (b1) 2D Density Plot at ¢ = -5; (b2) 2D Density Plot at = -1;
(b3) 2D Density Plot at = 0; (b4) 2D Density Plot at # = 1; (b5) 2D Density Plot at 7 =5.
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Fig. 9 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the component «. (al) 3D Structure at ¢ =-3; (a2) 3D Structure at ¢

=-1; (a3) 3D Structure at = 0; (a4) 3D Structure at ¢ =1; (a5) 3D Structure at = 3; (b1) 2D Density Plot at # = -3; (b2) 2D Density Plot at #=-1;
(b3) 2D Density Plot at ¢ = 0; (b4) 2D Density Plot at # = 1; (bS) 2D Density Plot at 7 = 3.
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(b1) (b2) (b3) (b4) (b5)
Fig. 10 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the component w. (al) 3D Structure at 7 =-3; (a2) 3D Structure at
t=-1; (a3) 3D Structure at = 0; (a4) 3D Structure at = 1; (a5) 3D Structure at #=3; (b1) 2D Density Plot at # =-3; (b2) 2D Density Plot at r =-1;
(b3) 2D Density Plot at = 0; (b4) 2D Density Plot at # = 1; (b5) 2D Density Plot at 7 = 3.
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(b1) (b2) (b3) (b4) (b5)
Fig. 11 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the component u. (al) 3D Structure at ¢ = -3; (a2) 3D Structure at ¢
=-1; (a3) 3D Structure at = 0; (a4) 3D Structure at 7 =1; (a5) 3D Structure at = 3; (b1) 2D Density Plot at 7 = -3; (b2) 2D Density Plot at 7 =-1;
(b3) 2D Density Plot at ¢ = 0; (b4) 2D Density Plot at # = 1; (b5) 2D Density Plot at 7 =3.
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Fig. 12 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component w. (al) 3D Structure at t = -3; (a2) 3D

Structure at t = -1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t =3; (b1) 2D Density Plot at t = -3; (b2) 2D
Density Plot at t = -1; (b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at t = 3.
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2.4. The Four-Soliton Solutions
Subsequently, we discuss the different cases of the parameter values of Equation (1) from four aspects. WhenN =
4it follows from Equation (7) that we can obtain
=14+eM +e72 4" 4 e

+A% 3771+712 +A13e"1+773 +A14en1 M4 4+ A, el2tm3 + Ay,em? N4 4 As 9713"'774
1

+A12 eM*nz+n3 4 A 2404 4 A en1+n3+n4 + A e"I2+773 N4 4 A 123 ﬁ} 1241347, (20)

Where Aj,34 = A15A4134144234,4A43,. The four-soliton solution of Equation (1) is derived by substituting Equation (20)
into Equation (2), and its explicit form is omitted here.

2.4.1. The Four Kink Soliton Solutions

When all parameters take real values, the four-kink soliton morphology of Equation (1) is obtained. Specifically, the
parameters are takenas a; = 1,b; = 1,a, = 1,b, = 2,a;3; =1,b3 =3,a, = 1,b, = 4,191 = 0,192 = 0,93 = 0,194 =
0,a; = —0.1,a, = —1, a3 = —1, and the four-soliton solutions # and w of Equation (1) are depicted in Figure 13 at t = 0.
It is evident that the four-soliton solutions for you and w each correspond to a specific morphology consisting of four kink
solitons.

2.4.2. One y-Periodic Soliton and Two Kink Solitons

When b; and b, take purely imaginary values with b4 = 0, the periodic breather solution and the kink solutions emerge.
Specifically, a, =1,b, =2i,a, =1,b, =-2i,a, =1,b, =l,a, =1,b, =0,77,, =0,77,, =0,77;; =0, 104 = 0,2, = 4,2, =
3,a3 = 2, Figures 14 and 15 present the structural distributions of you and w at various times, respectively. Figure 14

demonstrates the time evolution of the interaction between one y-periodic soliton and two kink solitons for you, which
exhibits elastic behavior. Figure 15 shows a similar behavior for w, except that the y-periodic soliton differs in shape.

(al)
w »
n 1%
| l- -
X
(bl) (b2)
Fig. 13 The Four-Soliton Solution of Equation (1) at t = 0; (al) 3D Structure of u; (a2) 3D Structure of w; (b1) 2D Density Plot of u; (b2) 2D
Density Plot of w
o —
Lk' | «
P2
u -
; s n n 1 E18 ___’/ ' - " -
:‘VI;: ¥ - ’l" v - "l .
' - ‘l‘ B 2 " - —— :_r' J B o ! :I. ~ -
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(b1) (b2) (b3) (b4) (b5)
Fig. 14 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component «. (al) 3D Structure at # =-2; (a2) 3D Structure at
t =-1; (a3) 3D Structure at #=0; (a4) 3D Structure at = 1; (aS) 3D Structure at #=2; (b1) 2D Density Plot at t =-2; (b2) 2D Density Plot at r =-1;
(b3) 2D Density Plot at ¢ = 0; (b4) 2D Density Plot at # = 1; (b5) 2D Density Plot at 7 =2.
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(b1) (b2) (b3) (b4) (bS) '

Fig. 15 The Evolution Behavior Of The Mixed-Type Soliton of Equation (1) for the Component w. (al) 3D Structure at = -2; (a2) 3D Structure
at ¢t =-1; (a3) 3D Structure at ¢ = 0; (a4) 3D Structure at 7 = 1; (a5) 3D Structure at ¢t =2; (b1) 2D Density Plot at # =-2; (b2) 2D Density Plot at ¢ =
-1; (b3)2D Density Plot at # = 0; (b4) 2D Density Plot at = 1; (b5) 2D Density Plot att = 2.

2.4.3. Two y-Periodic Solitons

When b1, b, b3, and by all take purely imaginary values, the patterns have changed significantly. Specifically, taking
a, =1,b; =1, a,=1,b, = —i,a3 =1,b; =2i,a, =1,b, = =20i,191 = 0,102 = 0,193 = 0,Mp4 =0,y = 4,a, =
3, a3 = 2, the structural plots pertaining to # and w, which t = —2, —1,0,1,2are illustrated in Figures 16 and 17, respectively.
Figure 16 reveals that you exhibits interactions between two periodic solitons, and its temporal evolution confirms elastic
behavior—after collision, the solitons still keep their original form unchanged. Figure 17 shows a similar elastic collision
behavior for solution w, albeit with distinct periodic soliton morphologies. Remarkably, a distinct fusion and fission process
is evident in Figure 17.

2.4.4. One y-Periodic Soliton and One (x, y)-Periodic Soliton

When b, and b; take purely imaginary values, while b3 and b4 take complex values, the soliton structures change
noticeably. Specifically, taking the parametersa; =1,b; =i,a, =1,b, = —i,a3 =1,b3 =2+ 2i,a,=1,b, =2 —
2i,M91 = 0,192 = 0,793 = 0,194 = 0,y = —0.01, @, = 4,3 = 1, he structural plots of you and w t = —2,—1,0,1,2are

depicted in Figures 18 and 19, respectively. Figure 18 shows that the structure of solution u consists of one y-periodic soliton
and one (x, y)-periodic soliton. It is noted that as time increases, both solitons propagate toward the positive x-axis with
continuous interaction, while maintaining their original shapes. Figure 19 shows similar behavior for w, albeit with the y-
periodic soliton propagating toward the positive x-axis and the (x, y)-periodic soliton toward the positive y-axis, while their
shapes remain unchanged.

Table 3 summarizes the characteristic types of distinct waves, which are obtained by selecting appropriate parameters
for the four-soliton solution of Equation (1).
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Table 3 Types of Three-Soliton Localized Waves for Equation (1) Under Different Parameter Selections
Parameter selections

al = 1,b1 = 1,(12 = 1,b2 = 2,(13 =

1, b3 = 3,

a,=Lb,=4,n, =0,n, =0,17,; =0,

Mosa = 0,00 = —0.1,a, = —1,a3 = —1.

N-soliton solutions Wave structures

Four kink solitons

a, = 1,b1 = Zi,az = 1,bz = —Zi,a3
=1,

N4 One y-periodic soliton and two kink solitons by=1,a, =1,b, =0,1,, =0,7,, =0,

T]04 = 0,a1 = 4‘,“2 = 3,“3 = 2.
al :l7b1 :i,az = 1,b2 = _i,a3 = 1,

Two y-periodic solitons b, =2i,a, =1,b, =—2i,n,, = 0,17,, =0,
Moz = 0,104 = 0,01 = 4,0, = 3,3 =
2.

a, =1,by =i,a,=1,b, =
—i,a; =1,
b,=2+2i,a,=1,b, =2-2i,
One y-periodic soliton and one (x, y)-periodic soliton g1 = 0,79, = 0,793 =

0,704 =0, ¢, =—0.01,; =

4, a; = 1.

-al =3 -~ 0 "

" " 3 -al -3

w9 M 3 -a) -3 - o0 1 i
X X X X

(b2) (b3) (b4) (bS)

(b1)

Fig. 16 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component «. (al) 3D Structure at # =-2; (a2) 3D Structure at
t =-1; (a3) 3D Structure at # = 0; (a4) 3D Structure at = 1; (a5) 3D Structure at #=2; (b1) 2D Density Plot at t =-2; (b2) 2D Density Plot at r =-1;
(b3) 2D Density Plot at ¢ = 0; (b4) 2D Density Plot at # = 1; (bS) 2D Density Plot at 7 =2.
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(b1) (b2) (b3) (b4)

Fig. 17 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component w. (al) 3D Structure at t = -2; (a2) 3D Structure at
t=-1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t =2; (b1) 2D Density Plot at t = -2; (b2) 2D Density Plot at t = -
1; (b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (bS) 2D Density Plot at t = 2.

10 T BT TR T
X

x X
(b1) (b2) (b3) (b4) (bS)
Fig. 18 The Evolution Behavior of the Mixed-Type Soliton of Equation(1) for the Component u. (al) 3D Structure at t = -2; (a2) 3D Structure at t
=-1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t =2; (b1) 2D Density Plot at t = -2; (b2) 2D Density Plot at t =-1;
(b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (bS) 2D Density Plot at t = 2.

(b1) (b2) (b3) (b4) (b5)
Fig. 19 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component w. (al) 3D Structure at t = -2; (a2) 3D Structure at
t=-1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (aS) 3D Structure at t =2; (b1) 2D Density Plot at t =-2; (b2) 2D Density Plot at t = -
1; (b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t =1; (bS) 2D Density Plot at t =2.

3. The Inelastic Interactions Between Different Types of Solitons
We have examined in detail the various solutions describing elastic interactions for Equation (1) in Section 2. By
contrast, within this section, some novel inelastic interaction solutions are derived by using the ansatz method.
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The Eq.(1) is equivalent to
D.Di(f, f) + a1 (DL D3 (f, f) + az(DZ(f, ) + as (D7 (f, f)))
02 0 a 0* 03 d 02 2
3o 2 DG+ 011(2(Wf)f - 6(Wf)(@f) + 6(@]()(6—}]2]()
“2G-NGE M + RGN — 262N + @GR Hf 250D @D

To achieve this end, it is set that

f=g*+h+ke (22)
with
g =a1x+a2y+a3t+a4
h=asx +agy + a,t + ag
l=kix+k,y+kst+k, (23) wherea;(1 < i <8),kandk;(1 <) <
4) are undetermined parameters. After substituting Equations (22) and (23) into Equation (6), all terms are collected with

the same power ofx‘y/t* exp( )™, wherei, j, k, m € Z, and set their coefficients to zero to solve the Equation, thereby
deriving an overdetermined system of nonlinear algebraic equations for the unknownaiandkj(i =12,-.8j=12,--,4).

Using the symbolic computation software Maple, we can solve for the values of a;andk;. Here, we present one set of
results as follows

2as3 3a%k‘2‘+4a2a3
kzk,k1=_3 ,k2=k2,k3: ,k4=k4,
a1k, 6a1k;,
2a;a, 3askia, a2k} — da,a3)a
a, = a, = — as; =
3a.k3’ 2a5 6a, k2 '
(9a%k§—4a2a3)a5
Ay = Q4,05 = 45,06 = g, A7 = ———————,0g = Ag (24)

4as

Substituting Equation (24) into Equation (22) and (23) and setting k > 0, the expression for f'can be obtained, which is
written as

(9a?k; — 4a,a3)as 2xazas 3yaskia,

=(t- + + a,)?
r=q 6a. k3 3a.k3 2a; +)
Qa?ks — da,a3)a
+(t- 1oz 203) 5+xa5 + yag + ag)?
4ay
. _ 2xag BaZki+iazaz)t
+k - exp( aiks + vk, + I — +ky) (25)

whereay, as, ag, ag, k, k,, kydenote arbitrary real numbers. As the denominator cannot be zero, the conditiona; # 0, k, #
0, a3 # 0 must hold for Eq.(24).

Substituting Equation (25) into Equation (2), the expressions for # and w are obtained

tag(9a?kf-aaza3)  2xazas 3yaskja;
4 f ta,)aza

(C 6a1k3 3a1k3 2a3 DLELH t(9a?ks—4aas)as
—(2( +2(

3a,k? 4ay

2xaz (3a%k§+4a2a3)“+k
2kaze 3a kg 2V 6a1ky trie

3aqk,

+xas + yae + ag)as —

)

t(9aki—4a,as)as

+a4_)2 +(

tag(9alki—4a,a3) | 2xasae 3yaskia,
(@ 6a k2 3a,k? - 2a;
2xaz | I(3a%k3+4a2a3)
+xas + yag + ag)? + ke k2T sk

4a;

t+ky

(26)

The expression for w is similar to that for you; thus, it is not presented here. To gain a deeper understanding of the
propagation properties of the solutions to the Equation, appropriate parameters are selected for discussion.

3.1. Inelastic Collision in the Form of Splitting
When the parameters take real values, the solution to Equation (1) exhibits a fission interaction, and the structure of the
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solitons changes, which is characteristic of an inelastic collision. Specifically, taking the parameterk = 1,k, = 2,k, =
2,a4 =1,a5 =2,a54 =3,a3 =4, = —1, a, = 4, a3 = 2. the relevant evolution diagrams are shown in Figures 20 and

21, respectively. Figure 20 illustrates the soliton solution structure of u. From this figure, it is evident that as time evolves,
the structure of you splits from one kink soliton into one lump soliton and one kink soliton. As shown in Figure 21, the
solution morphology of w differs from that of you, while the splitting process is analogous.

n o xn
X
(b1) (b2) (b3) (b4) (bS)
Fig. 20 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component «. (al) 3D Structure at #=-2; (a2) 3D Structure
at = -1; (a3) 3D Structure at = 0; (a4) 3D Structure at = 1; (a5) 3D Structure at # =2; (b1) 2D Density Plot at  =-2; (b2) 2D Density Plot at ¢
= -1; (b3) 2D Density Plot at = 0; (b4) 2D Density Plot at # = 1; (bS) 2D Density Plot at = 2.

(b1) (b2) (b3) (b4) (b5)
Fig. 21 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component w. (al) 3D Structure at # =-2; (a2) 3D Structure at
=-1; (a3) 3D Structure at = 0; (a4) 3D Structure at 7 =1; (aS) 3D Structure at #=2; (b1) 2D Density Plot at # = -2; (b2) 2D Density Plot at r =-
1; (b3) 2D Density Plot at £ =0; (b4) 2D Density Plot at =1; (bS) 2D Density Plot at ¢ = 2.

3.2. Inelastic Collision in the Form of Fusion

When some of these parameters take negative real values, the solution to Equation (1) exhibits a fusion interaction—a
typical characteristic of inelastic collisions. Such phenomena differ from the elastic interactions discussed in Section 2.
Specifically, taking the parametersk =1, k,=-1,k,=-1,a,=-1,a5=2,a=-3,a3=—4,a;, =-1,a, =
—4,a; = —2,, the relevant evolution diagrams are shown in Figures 22 and 23. Figure 22 illustrates the energy distribution
of u. It can be observed from the figure that as time evolves, one lump soliton and one kink soliton merge into one kink
soliton. The situation of w is similar to that of you, as presented in Figure 23.

182



Wuming Li & Geyao Li / [JMTT, 72(1), 167-185, 2026

b s 3 2 B 2D O W N X
X X X X X

(b1) (b2) (b3) (b4) (bS)

Fig. 22 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component u. (al) 3D Structure at = -5; (a2) 3D Structure
at ¢ =-1; (a3) 3D Structure at ¢ = 0; (a4) 3D Structure at 7 = 1; (a5) 3D Structure at ¢ =5; (b1) 2D Density Plot at # =-5; (b2) 2D Density Plot at ¢ =
-1; (b3) 2D Density Plot at = 0; (b4) 2D Density Plot at #=1; (b5) 2D Density Plot at #=S5.

(b1) (b2) (b3) (b4) (bS)
Fig. 23 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component w. (al) 3D Structure at 7 =-5; (a2) 3D Structure at
=-1; (a3) 3D Structure at = 0; (a4) 3D Structure at #=1; (a5) 3D Structure at = 5; (b1) 2D Density Plot at ¢t = -5; (b2) 2D Density Plot at = -
1; (b3) 2D Density Plot at = 0; (b4) 2D Density Plot at #=1; (b5) 2D Density Plot at 7 =S5.

4. Conclusion

In this paper, utilizing the Hirota bilinear approach, the N-soliton solutions and localized nonlinear interaction solutions
are derived for the (2+1)-dimensional nonlinear wave equation. Through the ingenious selection of parameters, specific
interaction solutions among distinct soliton types, including kink solitons, anti-kink solitons, lump solitons, and periodic
solitons, are obtained. Compared with the limitation of existing studies that only focus on a single type of soliton solutions
or simple interaction patterns, this paper, through the precise regulation and ingenious selection of parameters, provides a
new idea for the research on solutions of integrable equations of the same type, with its parameter regulation and solution
classification methods. To validate the dynamic behaviors of these solitons, a numerical simulation is conducted. Over time,
graphical plots (generated via Maple) are used to exhibit various interaction phenomena between different solitons, and it is
shown that there exist elastic and inelastic localized wave solitons for the studied Equation in this paper. The obtained results
are novel, interesting, and also very helpful for better understanding the nonlinear phenomena of a number of wave equations
in integrable systems. Future work will explore the complex interactions between nonlinear terms and higher-order dispersion
terms in other nonlinear wave equations. Additionally, the applications of the obtained soliton solutions in specific physical
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scenarios will be investigated, the connection between theoretical solutions and actual physical phenomena established, and
new breakthroughs provided for solving practical engineering and physical problems.
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