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Abstract - In this paper, a (2+1)-dimensional nonlinear wave equation is investigated using the Hirota bilinear method. The 

N-soliton solutions of this Equation are constructed, and the corresponding local characteristics are analyzed. By selecting 

specific parameters, various localized waves are derived, including kink solitons, lump solitons, periodic solitons, and so on. 

Furthermore, the dynamical behaviors of the soliton solutions are exhibited by using the symbolic computation system Maple, 

and the interaction characteristics of these solutions are elaborated through the corresponding images. Lastly, the ansatz 

approach is utilized to work out an interesting inelastic interaction solution where lump solitons can occur. These findings 

in this study are very helpful for deepening the comprehension of the interaction mechanisms exhibited by localized waves 

in nonlinear wave equations. 
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1. Introduction 
Solitons are an important research subject in integrable systems, and they have wide applications in various fields, such 

as plasma physics, optical fibers, fluid mechanics, oceanic shock waves, molecular systems, and Bose-Einstein condensates 

[1–5]. Therefore, to obtain the soliton solutions of nonlinear partial differential equations, various methods for finding exact 

solutions have been constructed, including the inverse scattering transformation [6–7], The Bäcklund Transformation [8–9], 

The Darboux Transformation [10–11], The Riemann-Hilbert Approach [12–13], The Sine-Gordon Expansion Approach 

[14], The Modified Kudryashov Approach [15–16], The Hirota Bilinear Method [17–18], and Other Approaches [19]. For 

the above-mentioned methods, each has its own merits. However, to the best of our knowledge, no single method can solve 

all known nonlinear equations so far. 

 

In 1971, the Hirota bilinear method was introduced for directly solving nonlinear wave equations [20]. Owing to the 

simplicity and effectiveness of this method, it has been widely employed to obtain N-soliton solutions for various nonlinear 

partial differential equations. Over the past decades, this approach has played an important role in integrable systems [21]. 

In [22], the lump solution of the Burgers equation is derived using the bilinear method, and the author further studies its 

interaction solutions. [23] investigated the lump solutions of many types of partial differential equations via the Hirota 

bilinear formulation. [17] systematically studied the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation using the 

Hirota bilinear method and obtained various localized soliton solutions. Motivated by the aforementioned works, this paper 

investigates a (2+1)-dimensional nonlinear wave equation [22] using the Hirota bilinear method, which is written as 

 
𝑢𝑥𝑡 + 𝛼1(𝑢𝑥𝑦𝑦𝑦 − 3𝑢𝑦𝑢𝑦𝑦 − 3𝑤𝑦𝑢𝑥𝑦) + 𝛼2𝑢𝑥𝑥 + 𝛼3𝑢𝑦𝑦 = 0, 𝑢𝑦 = 𝑤𝑥 .                             (1) 

 

where𝑢 = 𝑢(𝑥, 𝑦, 𝑡) serves as the potential function representing the amplitude distribution of solitons, where x and y 

denote the soliton’s propagation directions in the two-dimensional spatial plane, and t represents the temporal variable. The 

parameters𝛼1,𝛼2,𝛼3are physical constants that characterize the key properties of the solitons, including dispersion strength, 

nonlinear modulation intensity, and transverse wave propagation speed. By tuning these parameters to different values, this 

Equation can vividly describe a diverse range of intriguing nonlinear phenomena in shallow water systems, such as the 

formation of multi-soliton interactions, the propagation of lump waves, and the modulation instability of wave trains. 

Therefore, in this work, we conduct a systematic and in-depth investigation into the N-soliton solutions of this Equation 

using the Hirota bilinear method, which allows us to derive exact analytical expressions for solitons and reveal their dynamic 

evolution behaviors. Furthermore, we present the interaction solutions between solitons and other localized wave structures, 

and most notably, we successfully construct the lump solution via the ansatz method—a result that not only enriches the 

solution family of the Equation but also provides a theoretical basis for understanding the non-oscillatory, localized wave 

phenomena observed in shallow water environments. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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In the existing literature, numerous scholars have carried out in-depth research on relevant nonlinear wave equations 

from multiple perspectives. For instance, [24] focused on the Painlevé integrability of a (2+1)-dimensional nonlinear wave 

equation, and successfully derived its multi-soliton, breather, and lump solutions through rigorous theoretical deductions. 

[25] investigated an extended form of a generalized (2+1)-dimensional bilinear equation, and explored its integrability 

characteristics comprehensively from various angles, providing a solid theoretical basis for subsequent studies. By employing 

the bilinear method, [26] obtained a variety of soliton solutions for the nonlinear wave equation, and further derived M-lump 

solitons by virtue of the long wave limit transformation, enriching the solution forms of such equations. [27] Conducted a 

systematic investigation on a (2+1)-dimensional nonlinear wave equation based on the Hirota bilinear method; in addition, 

by applying the asymptotic analysis technique with two-soliton parameter constraints, the authors successfully obtained X-

type and Y-type solitons, which expanded the understanding of soliton interaction behaviors. 

 

Although the Hirota bilinear method has been maturely applied to solving soliton solutions, existing studies still have 

limitations. Most of them only focus on the construction of soliton solutions, with insufficient quantitative analysis on the 

parameter selection of the bilinear form and dynamic characteristics such as soliton collision behavior. Aiming at the above 

limitations, this study establishes a quantitative analysis framework for the correlation between bilinear parameters and 

dynamic characteristics. Combining numerical simulation with theoretical derivation, it clarifies the influence of the 

coefficient parameters in the bilinear Equation on soliton collision, thus enriching the application of the Hirota bilinear 

method in the analysis of nonlinear systems. 

Therefore, different from the above-mentioned works, the core goal of this study is to put forward an efficient approach 

to constructing novel categories of soliton solutions for Equation (1) by leveraging the Hirota bilinear method. Specifically, 

the N-soliton solutions of this Equation are first derived and their intrinsic local properties analyzed. Furthermore, the 

evolutionary behaviors of interactions between various soliton solutions are graphically exhibited via Maple software. The 

subsequent structure of this paper is arranged as follows: In Section 2, the N-soliton solutions of the Equation are derived, 

and then various types of localized wave interaction solutions are obtained by constraining and assigning values to the 

parameters of the soliton solutions. Section 3 focuses on presenting the inelastic interaction solutions of mixed lump-kink 

solitons for Equation (1) and conducts a visual discussion on the inelastic interactions between these soliton solutions. 

Finally, this research is summarized in Section 4. 

2. The N-Soliton Solution of the (2+1)-Dimensional Nonlinear Wave Equation 
In this section, the Hirota bilinear method is used to obtain the N-soliton solution of Equation (1). In order to transform 

the nonlinear Equation (1) into a bilinear form, the following Hopf-Cole transformation is performed  

                                   𝑢 = −2(𝑙𝑛 𝑓)𝑥, 𝑤 = −2(𝑙𝑛 𝑓)𝑦                        (2) 

 

For Equation (1), integrating with respect to x once and setting the integration constant to 0, we obtain 

    2(𝑙𝑛 𝑓)𝑥𝑡 + 𝛼1(2(𝑙𝑛 𝑓)𝑥𝑦𝑦𝑦 + 3(2(𝑙𝑛 𝑓)𝑥𝑦 ⋅ (2(𝑙𝑛 𝑓)𝑦𝑦))) + 𝛼2(2(𝑙𝑛 𝑓)𝑥𝑥 + 𝛼3(2(𝑙𝑛 𝑓)𝑦𝑦 = 0                       (3) 

 

The bilinear form of Eq.(1) is as follows 

                             (𝐷𝑡𝐷𝑥 + 𝛼1𝐷𝑥𝐷𝑦
3 + 𝛼2𝐷𝑥

2 + 𝛼3𝐷𝑦
2)𝑓 ⋅ 𝑓 = 0                    (4) 

where𝐷𝑡 ,𝐷𝑥and𝐷𝑦are bilinear derivative operators, defined as 

    
𝐷𝑥

𝑙 𝐷𝑦
𝑛𝐷𝑡

𝑚𝑓 ⋅ 𝑔 = (𝜕𝑥 − 𝜕𝑥′)𝑙(𝜕𝑦 − 𝜕𝑦′)𝑛(𝜕𝑡 − 𝜕𝑡′)𝑚𝑓(𝑥, 𝑦, 𝑡)𝑔(𝑥′, 𝑦′, 𝑡′)|𝑥 = 𝑥′, 𝑦 = 𝑦′, 𝑡 = 𝑡′                       (5) 

 
The Eq.(4) is equivalent to 

            
𝑓𝑓𝑥𝑡 − 𝑓𝑥𝑓𝑡 + 𝛼1(𝑓𝑥𝑦𝑦𝑦𝑓 − 3𝑓𝑥𝑦𝑦𝑓𝑦 + 3𝑓𝑥𝑦𝑓𝑦𝑦 − 𝑓𝑥𝑓𝑦𝑦𝑦) + 𝛼2(𝑓𝑓𝑥𝑥 − 𝑓𝑥

2) + 𝛼3(𝑓𝑓𝑦𝑦 − 𝑓𝑦
2) = 0                      (6) 

 

Here, the function f is assumed to have the following form, expressed as 

         
𝑓 = 1 + ∑

𝑖=1
𝑁

𝑒𝜂𝑖 + ∑

𝑖<𝑗
𝑁

𝐴𝑖𝑗𝑒𝜂𝑖+𝜂𝑗 + ∑

𝑖<𝑗<𝑘
𝑁

𝐴𝑖𝑗𝐴𝑖𝑘𝐴𝑗𝑘𝑒𝜂𝑖+𝜂𝑗+𝜂𝑘 + ⋯ + ( ∏
𝑖<𝑗

𝐴𝑖𝑗)𝑒 ∑

𝑖=1
𝑁

𝜂𝑖                         (7) 

where 
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𝜂𝑖 = 𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖𝑡 + 𝜂0𝑖, 𝑐𝑖 = −

𝛼1𝑎𝑖𝑏𝑖
3+𝛼2𝑎𝑖

2+𝛼3𝑏𝑖
2

𝑎𝑖                 
(8)

  
 

𝐴𝑖𝑗 = −
𝛼1(𝑎𝑖−𝑎𝑗)(𝑏𝑖−𝑏𝑗)3+𝛼2(𝑎𝑖−𝑎𝑗)2+𝛼3(𝑏𝑖−𝑏𝑗)2+(𝑎𝑖−𝑎𝑗)(𝑐𝑖−𝑐𝑗)

𝛼1(𝑎𝑖+𝑎𝑗)(𝑏𝑖+𝑏𝑗)3+𝛼2(𝑎𝑖+𝑎𝑗)2+𝛼3(𝑏𝑖+𝑏𝑗)2+(𝑎𝑖+𝑎𝑗)(𝑐𝑖+𝑐𝑗) 
𝑖, 𝑗 = 1,2, ⋯ , 𝑁

              
(9) 

 

Moreover, the parameters𝑎𝑖,𝑏𝑖and𝜂0𝑖are constants. 

2.1. The One-Soliton Solution 

To derive the one-soliton solution of Equation (1), by virtue of Equation (7), we have the following expression 

 
𝑓 = 1 + 𝑒𝜂1                     (10)

                                                                         
 

The one-soliton solution to Equation (1), which is derived by substituting Equation (10) into the bilinear transformation 

in Equation (2), is given as 

                                    𝑢 = −𝑎1[1 + 𝑡𝑎𝑛ℎ(
𝜂1

2
)]                     (11) 

 

                                         𝑤 = −𝑏1[1 + 𝑡𝑎𝑛ℎ(
𝜂1

2
)]                      (12) 

where𝜂1 = 𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑡 + 𝜂01.
 

Specifically, taking the parameters𝑎1 = 1, 𝑏1 = −1, 𝜂01 = 0, 𝛼1 = 1, 𝛼2 = −1, 𝛼3 = −1in Equations (11) and (12), we 

can obtain the specific expressions of u and w. It is noticed that setting𝑎1 = 1leads to negative values for the component u, 

while setting 𝑏1 = −1 results in positive values for the component w. With the parameters𝛼1 = 1, 𝛼2 = −1, 𝛼3 = −1 and 

𝑡 = 0, we acquire the one-soliton solution to Equation (1), with the corresponding 3D structural plot and 2D density plot 

presented in Figure 1. As visualized in the figure, the u and w exhibit characteristics of a kink soliton and an anti-kink soliton, 

respectively. 

2.2. The Two-Soliton Solutions 
 In this subsection, a study is conducted on the classification and value assignment of the parameters of the two-soliton 
solution under four different scenarios, thereby obtaining soliton types with distinct morphologies. A detailed analysis of 
these cases is presented below. When𝑁 = 2it follows from Equation (7) that 
 

                                          
𝑓 = 1 + 𝑒𝜂1 + 𝑒𝜂2 + 𝐴12𝑒𝜂1+𝜂2                   (13) 

 

The two-soliton solution of Equation (1) is obtained by substituting Equation (13) into Equation (2). The expressions 

for you and w are 

    

𝑢 = −2
𝑎1𝑒𝜂1+𝑎2𝑒𝜂2+𝐴12(𝑎1+𝑎1)𝑒𝜂1+𝜂2

1+𝑒𝜂1+𝑒𝜂2+𝐴12𝑒𝜂1+𝜂2
                    (14) 

 

   

𝑤 = −2
𝑏1𝑒𝜂1+𝑏2𝑒𝜂2+𝐴12(𝑏1+𝑏1)𝑒𝜂1+𝜂2

1+𝑒𝜂1+𝑒𝜂2+𝐴12𝑒𝜂1+𝜂2
                   (15) 

where𝜂1 = 𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑡 + 𝜂01, 𝜂2 = 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑡 + 𝜂02.
 

 

2.2.1. The Two-Kink Soliton Solutions 
When all parameters take real values, two kink-shaped soliton solutions are derived, with the specific cases detailed as 

follows. Specifically, taking the parameters 𝑎1 = 3, 𝑏1 = 2, 𝑎2 = 5, 𝑏2 = 7, 𝜂01 = 0, 𝜂02 = 0, 𝛼1 = 4, 𝛼2 = 2, 𝛼3 = 1,
 , 

the 

two-soliton solutions are obtained, and the corresponding structures are shown in Figure 2. Specifically, Figure 2 (a1),(b1) 
displays the two kink soliton structures of solution u, while Figures 2 (a2),(b2) illustrate the two kink soliton structures of 
solution w. From the density plots, it can be observed that the kink solution of you exhibits an X-shape in the plane, whereas 
the kink solution of w exhibits a Y-shape. 

 

         
                                                                                            (a1)                                                         (a2) 



Wuming Li & Geyao Li  / IJMTT, 72(1), 167-185, 2026
 

  

170 

    
(b1)                                                  (b2) 

Fig. 1 The One-Soliton Solution of the Equation (1) at t = 0 ; (a1) 3D Structure of u;(a2) 3D Structure of w; (b1) 2D Density Plot of u; (b2) 2D 

Density Plot of w 

 

 

                
(a1)                                                            (a2) 
 

          
                                                                                               (b1)                                                            (b2) 

Fig. 2 The Two-Soliton Solution of the Equation (1) at t = 0; (a1) 3D Structure of u; (a2) 3D Structure of w; (b1) 2D Density Plot of u; (b2) 2D 

Density Plot of w 

2.2.2. One y-Periodic Soliton Solutions 
A notable phenomenon emerges when transitioning from Section 2.2.1 to Section 2.2.2, namely that the periodic 

solutions arise as parameter values change from real to imaginary numbers. Specifically, taking the parameters

,0,,2,,1 012211 =−==== ibaiba 𝜂02 = 0, 𝛼1 = 4,
      

𝛼2 = 3, 𝛼3 = 5, 𝑡 = 0, where i is the imaginary unit satisfying 

𝑖2 = −1, the soliton structures of you and w are shown in Figure 3. As observed from Figure 3, when b1 and b2 take purely 

imaginary values, the profile of the two-soliton solution transforms from a kink solution to a localized breathing solution, 

with both u and w being perpendicular to the x-axis. 

 

       

(a1)                                                    (a2) 
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                                                                                    (b1)                                                                          (b2) 

Fig. 3 The y-Periodic Soliton Solution of the Equation (1) at t = 0; (a1) 3D Structure of u; (a2) 3D Structure of w; (b1) 2D Density Plot of u; (b2) 

2D Density Plot of w 

 

2.2.3. One (x, y)-Periodic Soliton Solutions 
When some of the parameters vary from purely imaginary values to complex numbers, the periodic solutions of Equation 

(1) trans- form from y-type to (x,y)-type. Specifically, taking the parameters𝑎1 = 1, 𝑏1 = 1 + 𝑖, 𝑎2 = 2, 𝑏2 = 1 − 𝑖, 𝜂01 =
0, 𝜂02 = 0, 𝛼1 = −0.1, 𝛼2 = 3, 𝛼3 = 5,

 , 
the solutions u and w with (x, y)-periodic soliton structures 𝑡 = 0are shown in 

Figure 4.  

 

When b1 and b2 take complex values, the periodic solitons are no longer oriented perpendicularly to the x-axis, with their 

movement shifting toward the y-direction. In the course of a collision, the solution retains its shape with merely a phase 

offset generated, a key property inherent to soliton solutions. 

 

2.2.4. One Lump Soliton Solutions 

The lump solitons are remarkable due to their unique stability and localization. Under the condition of some small 
parameters, their energy distribution and density profiles exhibit sharp, well-defined boundaries and concentrated amplitude 
regions.  

 

We set𝑎1 = 𝑙1 ⋅ 𝜀, 𝑎2 = 𝑙2 ⋅ 𝜀, 𝑏1 = 𝑛1 ⋅ 𝜀, 𝑏2 = 𝑛2 ⋅ 𝜀, 𝜂01 = 𝑖 ⋅ 𝜋, 𝜂02 = −𝑖 ⋅ 𝜋, into Equation (13). By taking𝜀 → 0and 
following the long-wave limit method [29], the function f can be expanded into 

 

𝑓 = 𝜃1𝜃2𝜀2 + 𝑜(𝜀2)                             (16) 

where 

  

𝜃1 = 𝑙1𝑥 + 𝑛1𝑦 − (𝛼2𝑙1 +
𝛼3𝑛1

2

𝑙1
)𝑡 

 

𝜃2 = 𝑙2𝑥 + 𝑛2𝑦 − (𝛼2𝑙2 +
𝛼3𝑛2

2

𝑙2
)𝑡

                            

 (17)  

 

The lump soliton solutions associated with u and w can be calculated by substituting Equations (16) and (17) into 

Equation (3), and their specific forms are illustrated as 

𝑢 = −2(
𝑙1

𝜃1
+

𝑙2

𝜃2
)  

 

𝑤 = −2(
𝑛1

𝜃1
+

𝑛2

𝜃2
)                             (18) 

Specifically, taking the parameter𝑎1 = 0.01, 𝑏1 = 0.01 + 0.01𝑖, 𝑎2 = 0.01, 𝑏2 = 0.01 − 0.01𝑖, 𝜂01 = 𝑖𝜋, 𝜂02 =
−𝑖𝜋, 𝛼1 = −0.1, 𝛼2 = 3, 𝛼3 = 5,

 , 
we can analyze the lump soliton behavior (as shown in Fig.5). The observed differences 

in extrema between u and w may arise from distinct nonlinear dynamics or coupling effects in the underlying Equation, 

highlighting the richness of soliton behavior in multidimensional systems. Such localized structures have profound 

implications in various fields such as optical fiber communication, condensed matter physics, quantum technology, and even 

biological systems. 

Table 1 records the classification of different wave types in the soliton solutions of Equation (1) and presents the results 

of different parameter selections for the two-soliton solution.  
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Table 1. Types of Two-Soliton Localized Waves for Equation  (1) Under Different Parameter Selections 
 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

     

                                                                             (a1)                                                                          (a2) 

 

     
                                                                                         (b1)                                                                 (b2) 

Fig. 4 The (x,y)-Periodic Soliton Solution of the Equation (1) at t = 0; (a1) 3D Structure of u; (a2) 3D Structure of w; (b1) 2D Density Plot of u; 

(b2) 2D Density Plot of w. 

 

       
(a1)                                                           (a2) 

N-soliton solutions Wave structures Parameter selections 

 

 

 

 

 

 

 
N=2 

 
Two kink-type solitons 

 
 

 
One y-periodic soliton 

 

 
One (x,  y)-periodic soliton 

 

 
One lump soliton 

𝑎1 = 3, 𝑏1 = 2, 𝑎2 = 5, 𝑏2 = 7, 𝜂01 = 0,
 

𝜂02 = 0, 𝛼1 = 4, 𝛼2 = 2, 𝛼3 = 1
 

 

𝑎1 = 1, 𝑏1 = 𝑖, 𝑎2 = 2, 𝑏2 = −𝑖, 𝜂01

= 0,
 

𝜂02 = 0, 𝛼1 = −0.1, 𝛼2 = 3, 𝛼3 = 5
 

 

,0,1,2,1,1 012211 =−==+== ibaiba

𝜂02 = 0, 𝛼1 = −0.1, 𝛼2 = 3, 𝛼3 = 5, 
 

𝑎1 = 0.01, 𝑏1 = 0.01 + 0.01𝑖, 𝑎2 = 0.01, 

,,,01.001.0 02012  iiib −==−=

𝛼1 = −0.1, 𝛼2 = 3, 𝛼3 = 5, 
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(b1)                                                              (b2) 

Fig. 5 The Lump Soliton Solution of the Equation (1) at t = 0; (a1) 3D Structure of u; (a2) 3D Structure of w; (b1) 2D Density Plot of u; (b2) 2D 

Density Plot of w. 

2.3. The Three-Soliton Solutions 
In this subsection, four kinds of three-soliton wave solutions are considered. When𝑁 = 3it follows from Equation (7) 

that we can obtain 

 

𝑓 = 1 + 𝑒𝜂1 + 𝑒𝜂2 + 𝑒𝜂3 + 𝐴12𝑒𝜂1+𝜂2 + 𝐴13𝑒𝜂1+𝜂3 + 𝐴23𝑒𝜂2+𝜂3 + 𝐴123𝑒𝜂1+𝜂2+𝜂3

  
(19) 

 

where 𝐴123 = 𝐴12𝐴13𝐴23. The three-soliton solution of Equation (1) is obtained by substituting Equation (19) into 

Equation (2). Due to the extremely complex forms of the expressions, they are omitted here. 

2.3.1. The Three Kink Soliton Solutions 
When N = 3 and all parameter values are real numbers, Equation (1) yields two kink-type three-soliton solutions u and 

w. Specifically, taking the parameters𝑎1 = 1, 𝑏1 = 1, 𝑎2 = 1, 𝑏2 = 2, 𝑎3 = 1, 𝑏3 = 3, 𝜂01 = 0, 𝜂02 = 0, 𝜂03 = 0, 𝛼1 =
−0.1, 𝛼2 = 0.1, 𝛼3 = 0.1,

 , 
the three-soliton structures 𝑡 = 0are presented in Figure 6. We observe that both u and w are 

composed of three kink-shaped solitons. 

 

 

        (a1)                                            (a2) 

 
     (b1)                                            (b2) 

Fig. 6 The three soliton solution of the Eq.(1) at t = 0; (a1) 3D structure of u; (a2) 3D structure of w; (b1) 2D density plot of u; (b2) 2D density 

plot of w 

2.3.2. One y-Periodic Soliton and One Kink Soliton Solution 

When the parameters b1 and b2 take purely imaginary values, the three-soliton solution is composed of one y-periodic 
soliton solution and one kink soliton solution. Specifically, the parameters are taken as𝑎1 = 1, 𝑏1 = 2𝑖, 𝑎2 = 1, 𝑏2 =
−2𝑖, 𝑎3 = 1, 𝑏3 = 0, 𝜂01 = 0, 𝜂02 = 0, 𝜂03 = 0, 𝛼1 = 4, 𝛼2 = 2, 𝛼3 = 1.

. 
Through the utilization of Maple software, we 

obtain the 3D structures and 2D density plots, which are illustrated in Figures 7 and 8. The parallel interaction between one 
kink soliton and one y-periodic soliton for you is depicted in Figure 7. As observed, the kink soliton propagates along the 
positive x-axis, while the y-periodic soliton propagates along the negative x-axis. Before the collision, they propagate at 
almost the same speed. After interaction, the two parallel solitons move away from each other while retaining their original 
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shapes and speeds, indicating that their interaction is elastic. Figure 8 shows the parallel movement of the y-periodic solitons 
of w over time, with their directions also oriented perpendicularly to the x-axis. Furthermore, it is noted that w exhibits only 
a y-periodic soliton, propagating along the negative x-axis. 

 

2.3.3. One y-Periodic Soliton and One Inclined Kink Soliton Solution 

In this subsection, the parameter b3 is assigned a non-zero value, and the three-soliton solution morphology of Equation 

(1) manifests a distinct structural shift. Specifically, the parameters ,0,5.0,1,2,1,2,1 01332211 ===−==== baibaiba

𝜂02 = 0, 𝜂03 = 0, 𝛼1 = 4, 𝛼2 = 2, 𝛼3 = 1, are adopted, and the structure of u and w is derived. The visualization in Figure 9 
reveals the interaction between one inclined kink soliton solution and one y-periodic soliton solution of you, and the y-
periodic soliton is oriented perpendicular to the x-axis. Figure 10 depicts the interaction between one inclined kink soliton 
and one y-periodic soliton of w. As observed in Figure 10, the kink soliton propagates along the positive x-axis while the y-
periodic soliton propagates along the negative x-axis over time. After the interaction, they move away from each other while 
retaining their original shapes and speeds, indicating that their interaction is elastic. 

 

2.3.4. One Inclined Kink Soliton and One Lump Soliton Solutions 
With a2 and a3 taking extremely small real values and b2 and b3 adopting small conjugate imaginary numbers 

simultaneously, the solution of Equation (1) exhibits the interaction of one inclined kink soliton and one lump soliton. This 

interaction not only enriches the soliton solution spectrum of Equation (1) but also provides a new perspective for exploring 

multidimensional nonlinear dynamics. Specifically, taking the parameters𝑎1 = 1, 𝑏1 = 1, 𝑎2 = 0.01, 𝑏2 = 0.01 +
0.01𝑖, 𝑎3 = 0.01, 𝑏3 = 0.01 − 0.01𝑖, 𝜂01 = 0, 𝜂02 = 0, 𝜂03 = 0, 𝛼1 = −1, 𝛼2 = 2, 𝛼3 = 1,

 , 
we can observe the elastic 

interaction between different types of solitons. The time evolution process of the elastic interaction between the soliton 

structures of you is presented in Figure 11. Notably, w demonstrates structural similarity to you, with its interaction dynamics 

aligning well with those observed for you, as depicted in Figure 12. 

 

Table 2 systematically documents the classification of distinct wave types in the soliton solutions of Equation (1), along 

with the corresponding parameter tuning strategies for the three-soliton solution used to achieve such classification. 

Table 2. Types of Three-Soliton Localized Waves for Equation (1) Under Different Parameter Selections 

 

     

                       (a1)                                         (a2)                                  (a3)                                          (a4)                                         (a5) 

 

N-soliton solutions Wave structures Parameter selections 

  

 

 

 

 

 

N=3  

Three kink solitons 
 

 

 

One y-periodic soliton and one kink soliton 
 

 

 

One y-periodic soliton and one inclined 
kink soliton 

 

 

 

One lump soliton and one kink soliton 

𝑎1 = 1, 𝑏1 = 1, 𝑎2 = 1, 𝑏2 = 2, 𝑎3 = 1, 𝑏3 = 3, 

,1.0,1.0,0,0,0 21030201 =−==== 

𝛼3 = 0.1. 

,0,1,2,1,2,1 332211 ==−==== baibaiba

𝜂01 = 0, 𝜂02 = 0, 𝜂03 = 0, 𝛼1 = 4, ,22 =

𝛼3 = 1. 

𝑎1 = 1, 𝑏1 = 2𝑖, 𝑎2 = 1, 𝑏2 = −2𝑖, 𝑎3 = 1,
 

,0,5.0 013 == b 𝜂02 = 0, 𝜂03 = 0, 𝛼1 = 4, 

,22 = 𝛼3 = 1.
 

𝑎1 = 1, 𝑏1 = 1, 𝑎2 = 0.01, 𝑏2 = 0.01 + 0.01𝑖,
 

,0,0,01.001.0,01.0 020133 ==−== iba

𝜂03 = 0, 𝛼1 = −1, 𝛼2 = 2, 𝛼3 = 1.
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                           (b1)                                       (b2)                                       (b3)                                        (b4)                                    (b5) 

Fig. 7 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the component u. (a1) 3D Structure at t = -5; (a2) 3D Structure at t 

= -1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t = 5; (b1) 2D Density Plot at t = -5; (b2) 2D Density Plot at t = -1; 

(b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at t = 5 

     

 (a1)                                       (a2)                                            (a3)                                    (a4)                                      (a5) 

 

     

      (b1)                                      (b2)                                      (b3)                                     (b4)                                      (b5) 

Fig. 8 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the component w. (a1) 3D Structure at t = -5; (a2) 3D Structure at t 

= -1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t = 5; (b1) 2D Density Plot at t = -5; (b2) 2D Density Plot at t = -1; 

(b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at t = 5. 

     

                         (a1)                                    (a2)                                       (a3)                                      (a4)                                          (a5) 

     

                              (b1)                                   (b2)                                      (b3)                                      (b4)                                        (b5) 
Fig. 9 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the component u. (a1) 3D Structure at t = -3; (a2) 3D Structure at t 

= -1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t = 3; (b1) 2D Density Plot at t = -3; (b2) 2D Density Plot at t = -1; 

(b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at t = 3. 
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                (a1)                                    (a2)                                       (a3)                                      (a4)                                          (a5) 

     

                     (b1)                                         (b2)                                    (b3)                                      (b4)                                      (b5) 

 Fig. 10 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the component w. (a1) 3D Structure at t = -3; (a2) 3D Structure at 

t = -1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t = 3; (b1) 2D Density Plot at t = -3; (b2) 2D Density Plot at t = -1; 

(b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at t = 3. 

     

                (a1)                                     (a2)                                       (a3)                                      (a4)                                          (a5) 

 

                     (b1)                                         (b2)                                    (b3)                                      (b4)                                      (b5) 

Fig. 11 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the component u. (a1) 3D Structure at t = -3; (a2) 3D Structure at t 

= -1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t = 3; (b1) 2D Density Plot at t = -3; (b2) 2D Density Plot at t = -1; 

(b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at t = 3. 

     

                           (a1)                                     (a2)                                       (a3)                                      (a4)                                          (a5) 

     

                           (b1)                                         (b2)                                    (b3)                                      (b4)                                      (b5) 

Fig. 12 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component w. (a1) 3D Structure at t = -3; (a2) 3D 
Structure at t = -1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t = 3; (b1) 2D Density Plot  at t = -3; (b2) 2D 

Density Plot at t = -1; (b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at t = 3.  
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2.4. The Four-Soliton Solutions 

Subsequently, we discuss the different cases of the parameter values of Equation (1) from four aspects. When𝑁 =
4it follows from Equation (7) that we can obtain 

 
𝑓 = 1 + 𝑒𝜂1 + 𝑒𝜂2 + 𝑒𝜂3 + 𝑒𝜂4 

+𝐴12𝑒𝜂1+𝜂2 + 𝐴13𝑒𝜂1+𝜂3 + 𝐴14𝑒𝜂1+𝜂4 + 𝐴23𝑒𝜂2+𝜂3 + 𝐴24𝑒𝜂2+𝜂4 + 𝐴34𝑒𝜂3+𝜂4  
+𝐴123𝑒𝜂1+𝜂2+𝜂3 + 𝐴124𝑒𝜂1+𝜂2+𝜂4 + 𝐴134𝑒𝜂1+𝜂3+𝜂4 + 𝐴234𝑒𝜂2+𝜂3+𝜂4 + 𝐴1234𝑒𝜂1+𝜂2+𝜂3+𝜂4

        
(20) 

 
Where 𝐴1234 = 𝐴12𝐴13𝐴14𝐴23𝐴24𝐴34. The four-soliton solution of Equation (1) is derived by substituting Equation (20) 

into Equation (2), and its explicit form is omitted here. 

2.4.1. The Four Kink Soliton Solutions 

 When all parameters take real values, the four-kink soliton morphology of Equation (1) is obtained. Specifically, the 
parameters are taken as 𝑎1 = 1, 𝑏1 = 1, 𝑎2 = 1, 𝑏2 = 2, 𝑎3 = 1, 𝑏3 = 3, 𝑎4 = 1, 𝑏4 = 4, 𝜂01 = 0, 𝜂02 = 0, 𝜂03 = 0, 𝜂04 =
0, 𝛼1 = −0.1, 𝛼2 = −1, 𝛼3 = −1, and the four-soliton solutions u and w of Equation (1) are depicted in Figure 13 at 𝑡 = 0. 
It is evident that the four-soliton solutions for you and w each correspond to a specific morphology consisting of four kink 
solitons. 

 

2.4.2. One y-Periodic Soliton and Two Kink Solitons 

 When b1 and b2 take purely imaginary values with b4 = 0, the periodic breather solution and the kink solutions emerge. 

Specifically, ,0,0,0,0,1,1,1,2,1,2,1 03020144332211 =======−==== babaibaiba 𝜂04 = 0, 𝛼1 = 4, 𝛼2 =

3, 𝛼3 = 2, Figures  14 
 
and 15 present the structural distributions of you and w at various times, respectively. Figure 14 

demonstrates the time evolution of the interaction between one y-periodic soliton and two kink solitons for you, which 
exhibits elastic behavior. Figure 15 shows a similar behavior for w, except that the y-periodic soliton differs in shape. 
 

  
                                                                                       (a1)                                            (a2)              

                

  
                                                                                           (b1)                                                 (b2)          

Fig. 13 The Four-Soliton Solution of Equation (1) at t = 0; (a1) 3D Structure of u; (a2) 3D Structure of w; (b1) 2D Density Plot of u; (b2) 2D  

Density Plot of w 
 

         

                           (a1)                                     (a2)                                       (a3)                                      (a4)                                          (a5) 
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(b1)                                         (b2)                                    (b3)                                      (b4)                                      (b5) 
Fig. 14 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component u. (a1) 3D Structure at t = -2; (a2) 3D Structure at 

t = -1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t = 2; (b1) 2D Density Plot at t = -2; (b2) 2D Density Plot at t = -1; 

(b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at t = 2.    

 

         

                    (a1)                                        (a2)                                       (a3)                                        (a4)                                          (a5) 

 

         

(b1)                                         (b2)                                    (b3)                                      (b4)                                      (b5) 

 
Fig. 15 The Evolution Behavior Of The Mixed-Type Soliton of Equation (1) for the Component w. (a1) 3D Structure at t = -2; (a2) 3D Structure 

at t = -1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t = 2; (b1) 2D Density Plot at t = -2; (b2) 2D Density Plot at t = 

-1; (b3)2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at 𝒕 =  𝟐. 

2.4.3. Two y-Periodic Solitons 
When b1, b2, b3, and b4 all take purely imaginary values, the patterns have changed significantly. Specifically, taking 

𝑎1 = 1, 𝑏1 = 𝑖,
  

𝑎2 = 1, 𝑏2 = −𝑖, 𝑎3 = 1, 𝑏3 = 2𝑖, 𝑎4 = 1, 𝑏4 = −2𝑖, 𝜂01 = 0, 𝜂02 = 0, 𝜂03 = 0, 𝜂04 = 0, 𝛼1 = 4, 𝛼2 =
3, 𝛼3 = 2, the structural plots pertaining to u and w, which 𝑡 = −2, −1,0,1,2are illustrated in Figures  16 and 17, respectively. 

Figure 16 reveals that you exhibits interactions between two periodic solitons, and its temporal evolution confirms elastic 

behavior—after collision, the solitons still keep their original form unchanged. Figure 17 shows a similar elastic collision 

behavior for solution w, albeit with distinct periodic soliton morphologies. Remarkably, a distinct fusion and fission process 

is evident in Figure 17. 

2.4.4.  One y-Periodic Soliton and One (x, y)-Periodic Soliton 
When b1 and b2 take purely imaginary values, while b3 and b4 take complex values, the soliton structures change 

noticeably. Specifically, taking the parameters𝑎1 = 1, 𝑏1 = 𝑖, 𝑎2 = 1, 𝑏2 = −𝑖, 𝑎3 = 1, 𝑏3 = 2 + 2𝑖, 𝑎4 = 1, 𝑏4 = 2 −
2𝑖, 𝜂01 = 0, 𝜂02 = 0, 𝜂03 = 0, 𝜂04 = 0, 𝛼1 = −0.01,

  
𝛼2 = 4, 𝛼3 = 1,

 , 
he structural plots of you and w 𝑡 = −2, −1,0,1,2are 

depicted in Figures 18 and 19, respectively. Figure 18 shows that the structure of solution u consists of one y-periodic soliton 

and one (x, y)-periodic soliton. It is noted that as time increases, both solitons propagate toward the positive x-axis with 

continuous interaction, while maintaining their original shapes. Figure 19 shows similar behavior for w, albeit with the y-

periodic soliton propagating toward the positive x-axis and the (x, y)-periodic soliton toward the positive y-axis, while their 

shapes remain unchanged. 

Table 3 summarizes the characteristic types of distinct waves, which are obtained by selecting appropriate parameters 

for the four-soliton solution of Equation (1). 
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Table 3 Types of Three-Soliton Localized Waves for Equation (1) Under Different Parameter Selections 

 

         

                    (a1)                                        (a2)                                       (a3)                                        (a4)                                          (a5) 

 

         

(b1)                                         (b2)                                    (b3)                                      (b4)                                      (b5) 

Fig. 16 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component u. (a1) 3D Structure at t = -2; (a2) 3D Structure at 
t = -1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t = 2; (b1) 2D Density Plot at t = -2; (b2) 2D Density Plot at t = -1; 

(b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at t = 2. 

 

     

                    (a1)                                        (a2)                                       (a3)                                        (a4)                                          (a5) 

N-soliton solutions Wave structures Parameter selections 

 

 

 

 

 

 

 

 

N  =  4  

 

Four kink solitons 

 

 

 

 

One y-periodic soliton and two kink solitons 

 

 

 

Two y-periodic solitons 

 

 

 

 

 

One y-periodic soliton and one (x ,  y)-periodic soliton 

 

𝑎1 = 1, 𝑏1 = 1, 𝑎2 = 1, 𝑏2 = 2, 𝑎3 =
1, 𝑏3 = 3, 

,0,0,0,4,1 03020144 ===== ba

𝜂04 = 0, 𝛼1 = −0.1, 𝛼2 = −1, 𝛼3 = −1. 

 

 𝑎1 = 1, 𝑏1 = 2𝑖, 𝑎2 = 1, 𝑏2 = −2𝑖, 𝑎3

= 1, 

,0,0,0,1,1 0201443 ===== bab

𝜂04 = 0, 𝛼1 = 4, 𝛼2 = 3, 𝛼3 = 2.
 

 

,,1 11 iba == 𝑎2 = 1, 𝑏2 = −𝑖, 𝑎3 = 1, 

,0,0,2,1,2 0201443 ==−=== ibaib

𝜂03 = 0, 𝜂04 = 0, 𝛼1 = 4, 𝛼2 = 3, 𝛼3 =
2.

 
 
𝑎1 = 1, 𝑏1 = 𝑖, 𝑎2 = 1, 𝑏2 =
−𝑖, 𝑎3 = 1, 

,22,1,22 443 ibaib −==+=
𝜂01 = 0, 𝜂02 = 0, 𝜂03 =
0, 𝜂04 = 0, ,01.01 −= 𝛼2 =
4, 𝛼3 = 1. 
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(b1)                                         (b2)                                    (b3)                                      (b4)                                      (b5) 

Fig. 17 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component w. (a1) 3D Structure at t = -2; (a2) 3D Structure at 
t = -1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t = 2; (b1) 2D Density Plot at t = -2; (b2) 2D Density Plot at t = -

1; (b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at t = 2. 
 

 

     

                       (a1)                                        (a2)                                       (a3)                                        (a4)                                          (a5) 

     

(b1)                                         (b2)                                    (b3)                                      (b4)                                      (b5) 
Fig. 18 The Evolution Behavior of the Mixed-Type Soliton of Equation(1) for the Component u. (a1) 3D Structure at t = -2; (a2) 3D Structure at t 
= -1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t = 2; (b1) 2D Density Plot at t = -2; (b2) 2D Density Plot at t = -1; 

(b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at t = 2. 
 

     

                       (a1)                                        (a2)                                       (a3)                                        (a4)                                          (a5) 

     

(b1)                                         (b2)                                    (b3)                                      (b4)                                      (b5) 

Fig. 19 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component w. (a1) 3D Structure at t = -2; (a2) 3D Structure at 

t = -1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t = 2; (b1) 2D Density Plot at t = -2; (b2) 2D Density Plot at t = -

1; (b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at t = 2. 

 

3. The Inelastic Interactions Between Different Types of Solitons 
We have examined in detail the various solutions describing elastic interactions for Equation (1) in Section 2. By 

contrast, within this section, some novel inelastic interaction solutions are derived by using the ansatz method.  
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The Eq.(1) is equivalent to 

            𝐷𝑥𝐷𝑡(𝑓, 𝑓) + 𝛼1(𝐷𝑥𝐷𝑦
3(𝑓, 𝑓) + 𝛼2(𝐷𝑥

2(𝑓, 𝑓)) + 𝛼3(𝐷𝑦
2(𝑓, 𝑓))) 

= 2(
𝜕2

𝜕𝑡𝜕𝑥
𝑓)𝑓 − 2(

𝜕

𝜕𝑥
𝑓)(

𝜕

𝜕𝑡
𝑓) + 𝛼1(2(

𝜕4

𝜕𝑥𝜕𝑦3
𝑓)𝑓 − 6(

𝜕3

𝜕𝑥𝜕𝑦2
𝑓)(

𝜕

𝜕𝑦
𝑓) + 6(

𝜕2

𝜕𝑥𝜕𝑦
𝑓)(

𝜕2

𝜕𝑦2
𝑓) 

−2(
𝜕

𝜕𝑥
𝑓)(

𝜕3

𝜕𝑦3 𝑓)) + 𝛼2(2(
𝜕2

𝜕𝑥2 𝑓)𝑓 − 2(
𝜕

𝜕𝑥
𝑓)2) + 𝛼3(2(

𝜕2

𝜕𝑦2 𝑓)𝑓 − 2(
𝜕

𝜕𝑦
𝑓)2)            (21)    

To achieve this end, it is set that 

  
𝑓 = 𝑔2 + ℎ

2 + 𝑘𝑒𝑙                                                   (22) 

with 

𝑔 = 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑡 + 𝑎4 
ℎ = 𝑎5𝑥 + 𝑎6𝑦 + 𝑎7𝑡 + 𝑎8 

𝑙 = 𝑘1𝑥 + 𝑘2𝑦 + 𝑘3𝑡 + 𝑘4                                            (23)                                         where𝑎𝑖(1 ≤ 𝑖 ≤ 8), k and𝑘𝑗(1 ≤ 𝑗 ≤

4) are undetermined parameters. After substituting Equations (22) and (23) into Equation (6), all terms are collected with 

the same power of𝑥𝑖𝑦𝑗𝑡𝑘 𝑒𝑥𝑝( 𝑙)𝑚, where𝑖, 𝑗, 𝑘, 𝑚 ∈ 𝑍, and set their coefficients to zero to solve the Equation, thereby 

deriving an overdetermined system of nonlinear algebraic equations for the unknown𝑎𝑖and𝑘𝑗(𝑖 = 1,2, ⋯ ,8; 𝑗 = 1,2, ⋯ ,4).
 

Using the symbolic computation software Maple, we can solve for the values of 𝑎𝑖and𝑘𝑗 . Here, we present one set of 

results as follows 

                    

𝑘 = 𝑘, 𝑘1 = −
2𝛼3

3𝛼1𝑘2
, 𝑘2 = 𝑘2, 𝑘3 =

3𝛼1
2𝑘2

4+4𝛼2𝛼3

6𝛼1𝑘2
, 𝑘4 = 𝑘4, 

𝑎1 =
2𝛼3𝛼6

3𝛼1𝑘2
2 , 𝑎2 = −

3𝑎5𝑘2
2𝛼1

2𝛼3

, 𝑎3 =
（9𝛼1

2𝑘2
4 − 4𝛼2𝛼3)𝑎6

6𝛼1𝑘2
2 , 

𝑎4 = 𝑎4, 𝑎5 = 𝑎5, 𝑎6 = 𝑎6, 𝑎7 =
（9𝛼1

2𝑘2
4−4𝛼2𝛼3)𝑎5

4𝛼3
, 𝑎8 = 𝑎8

 

(24) 

Substituting Equation (24) into Equation (22) and (23) and setting 𝑘 > 0, the expression for f can be obtained, which is 

written as 

𝑓 = (𝑡 ⋅
（9𝛼1

2𝑘2
4 − 4𝛼2𝛼3)𝑎6

6𝛼1𝑘2
2 +

2𝑥𝛼3𝑎6

3𝛼1𝑘2
2 −

3𝑦𝑎5𝑘2
2𝛼1

2𝛼3

+ 𝑎4)2 

+(𝑡 ⋅
（9𝛼1

2𝑘2
4 − 4𝛼2𝛼3)𝑎5

4𝛼3

+ 𝑥𝑎5 + 𝑦𝑎6 + 𝑎8)2 

+𝑘 ⋅ 𝑒𝑥𝑝( −
2𝑥𝛼3

3𝛼1𝑘2
+ 𝑦𝑘2 +

（3𝛼1
2𝑘2

4+4𝛼2𝛼3)𝑡

6𝛼1𝑘2
+ 𝑘4)                       (25) 

where𝑎4, 𝑎5, 𝑎6, 𝑎8, 𝑘, 𝑘2, 𝑘4denote arbitrary real numbers. As the denominator cannot be zero, the condition𝛼1 ≠ 0, 𝑘2 ≠
0, 𝛼3 ≠ 0 must hold for Eq.(24). 

Substituting Equation (25) into Equation (2), the expressions for u and w are obtained 

     𝑢 =

−(2(
4(

𝑡𝑎6(9𝛼1
2𝑘2

4−4𝛼2𝛼3)

6𝛼1𝑘2
2 +

2𝑥𝛼3𝑎6

3𝛼1𝑘2
2 −

3𝑦𝑎5𝑘2
2𝛼1

2𝛼3
+𝑎4)𝛼3𝑎6

3𝛼1𝑘2
2 + 2(

𝑡(9𝛼1
2𝑘2

4−4𝛼2𝛼3)𝑎5

4𝛼3

+𝑥𝑎5 + 𝑦𝑎6 + 𝑎8)𝑎5 −
2𝑘𝛼3𝑒

−
2𝑥𝛼3

3𝛼1𝑘2
+𝑘2𝑦+

(3𝛼1
2𝑘2

4+4𝛼2𝛼3)
6𝛼1𝑘2

𝑡+𝑘4

3𝛼1𝑘2
))

((
𝑡𝑎6(9𝛼1

2𝑘2
4−4𝛼2𝛼3)

6𝛼1𝑘2
2 +

2𝑥𝛼3𝑎6

3𝛼1𝑘2
2 −

3𝑦𝑎5𝑘2
2𝛼1

2𝛼3
+ 𝑎4)2 + (

𝑡(9𝛼1
2𝑘2

4−4𝛼2𝛼3)𝑎5

4𝛼3

+𝑥𝑎5 + 𝑦𝑎6 + 𝑎8)2 + 𝑘𝑒
−

2𝑥𝛼3
3𝛼1𝑘2

+𝑘2𝑦+
(3𝛼1

2𝑘2
4+4𝛼2𝛼3)

6𝛼1𝑘2
𝑡+𝑘4

⁄      

(26) 

The expression for w is similar to that for you; thus, it is not presented here. To gain a deeper understanding of the 

propagation properties of the solutions to the Equation, appropriate parameters are selected for discussion. 

3.1. Inelastic Collision in the Form of Splitting 
When the parameters take real values, the solution to Equation (1) exhibits a fission interaction, and the structure of the 
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solitons changes, which is characteristic of an inelastic collision. Specifically, taking the parameter𝑘 = 1, 𝑘2 = 2, 𝑘4 =
2, 𝑎4 = 1, 𝑎5 = 2, 𝑎6 = 3, 𝑎8 = 4, 𝛼1 = −1,

 
𝛼2 = 4, 𝛼3 = 2.

, 
the relevant evolution diagrams are shown in Figures 20 and 

21, respectively. Figure 20 illustrates the soliton solution structure of u. From this figure, it is evident that as time evolves, 

the structure of you splits from one kink soliton into one lump soliton and one kink soliton. As shown in Figure 21, the 

solution morphology of w differs from that of you, while the splitting process is analogous. 

     

                       (a1)                                        (a2)                                       (a3)                                        (a4)                                          (a5) 

 

     

(b1)                                         (b2)                                    (b3)                                      (b4)                                      (b5) 

Fig. 20 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component u. (a1) 3D Structure at t = -2; (a2) 3D Structure 

at t = -1; (a3) 3D Structure at t = 0;  (a4) 3D Structure at t = 1; (a5) 3D Structure at t = 2; (b1) 2D Density Plot at t = -2; (b2) 2D Density Plot at t 

= -1; (b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at t = 2. 

 

         

                 (a1)                                        (a2)                                       (a3)                                        (a4)                                          (a5) 

 

     

(b1)                                         (b2)                                    (b3)                                      (b4)                                      (b5) 

Fig. 21 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component w. (a1) 3D Structure at t = -2; (a2) 3D Structure at 

t = -1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t = 2; (b1) 2D Density Plot at t = -2; (b2) 2D Density Plot at t = -

1; (b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at t = 2. 

 

 

3.2. Inelastic Collision in the Form of Fusion 

When some of these parameters take negative real values, the solution to Equation (1) exhibits a fusion interaction—a 

typical characteristic of inelastic collisions. Such phenomena differ from the elastic interactions discussed in Section 2. 

Specifically, taking the parameters𝑘 = 1,
 

𝑘2 = −1, 𝑘4 = −1, 𝑎4 = −1, 𝑎5 = 2, 𝑎6 = −3, 𝑎8 = −4, 𝛼1 = −1, 𝛼2 =
−4, 𝛼3 = −2, , the relevant evolution diagrams are shown in Figures 22 and 23. Figure 22 illustrates the energy distribution 

of u. It can be observed from the figure that as time evolves, one lump soliton and one kink soliton merge into one kink 

soliton. The situation of w is similar to that of you, as presented in Figure 23. 
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                        (a1)                                        (a2)                                       (a3)                                        (a4)                                          (a5) 

 

     

(b1)                                         (b2)                                    (b3)                                      (b4)                                      (b5) 

Fig. 22 The Evolution Behavior of the Mixed-Type Soliton of Equation  (1) for the Component u. (a1) 3D Structure at t = -5; (a2) 3D Structure 

at t = -1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t = 5; (b1) 2D Density Plot at t = -5; (b2) 2D Density Plot at t = 

-1; (b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at t = 5. 
 

 

     

                        (a1)                                        (a2)                                       (a3)                                        (a4)                                          (a5) 

 

     

(b1)                                         (b2)                                    (b3)                                      (b4)                                      (b5) 

Fig. 23 The Evolution Behavior of the Mixed-Type Soliton of Equation (1) for the Component w. (a1) 3D Structure at t = -5; (a2) 3D Structure at 

t = -1; (a3) 3D Structure at t = 0; (a4) 3D Structure at t = 1; (a5) 3D Structure at t = 5; (b1) 2D Density Plot at t = -5; (b2) 2D Density Plot at t = -

1; (b3) 2D Density Plot at t = 0; (b4) 2D Density Plot at t = 1; (b5) 2D Density Plot at t = 5. 
 

4. Conclusion 
In this paper, utilizing the Hirota bilinear approach, the N-soliton solutions and localized nonlinear interaction solutions 

are derived for the (2+1)-dimensional nonlinear wave equation. Through the ingenious selection of parameters, specific 

interaction solutions among distinct soliton types, including kink solitons, anti-kink solitons, lump solitons, and periodic 

solitons, are obtained. Compared with the limitation of existing studies that only focus on a single type of soliton solutions 

or simple interaction patterns, this paper, through the precise regulation and ingenious selection of parameters, provides a 

new idea for the research on solutions of integrable equations of the same type, with its parameter regulation and solution 

classification methods. To validate the dynamic behaviors of these solitons, a numerical simulation is conducted. Over time, 

graphical plots (generated via Maple) are used to exhibit various interaction phenomena between different solitons, and it is 

shown that there exist elastic and inelastic localized wave solitons for the studied Equation in this paper. The obtained results 

are novel, interesting, and also very helpful for better understanding the nonlinear phenomena of a number of wave equations 

in integrable systems. Future work will explore the complex interactions between nonlinear terms and higher-order dispersion 

terms in other nonlinear wave equations. Additionally, the applications of the obtained soliton solutions in specific physical 
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scenarios will be investigated, the connection between theoretical solutions and actual physical phenomena established, and 

new breakthroughs provided for solving practical engineering and physical problems. 
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