Fact Type Results in Half Domination in Graphs

S. Balamurugan ${ }^{1}$ and P. Sixthus Renita ${ }^{2}$
${ }^{1} P . G \&$ Research Department of Mathematics, Raja Doraisingam Govt. Arts College, Sivaganga,Tamil Nadu, India
${ }^{2}$ M.Phil., Scholar, Department of Mathematics, Raja Doraisingam Govt. Arts College, Sivaganga, Tamil Nadu, India

Abstract - Let $\mathbf{G}=(\mathbf{V}, \mathrm{E})$ be a finite graph with n vertices and m edges. A subset $\mathbf{D} \subseteq \mathbf{V}$ of vertices in a graph G is called half dominating set if at least half of the vertices of $V(G)$ are either in D or adjacent to vertices of D. (i.e) $|N[D]| \geq$ $\left\lceil\left\lvert\, \frac{V(G)}{2}\right. \|\right.$. In this paper we deals with fact type results in half domination number of G.

Keywords: Half Dominating Set, Half Domination Number

AMS Subject Classification (2010): 05C69

$$
=3\left(\frac{n+5}{6}\right)=\frac{n+5}{2}>\left\lceil\frac{n}{2}\right\rceil
$$

I. INTRODUCTION

By a graph we mean a finite undirected graph without loops or multiple edges. Let $G=(V, E)$ be a finite graph and v be a vertex in V. The closed neighborhood of v is defined by $N[v]=N(v) \cup\{v\}$.The closed neighbourhood of a set of vertices D is denoted as $\mathrm{N}[\mathrm{D}]=U_{v \in D} N[v]$. A set D subset of $\mathrm{V}(\mathrm{G})$ is said to be a half dominating set if atleast half of the vertices of $\mathrm{V}(\mathrm{G})$ are either in D or adjacent to vertices of D . (i.e) $|N[D]| \geq\left\lceil\frac{|V[G]|}{2}\right\rceil ;$ In other hand $|N[D]| \geq\left\lceil\frac{n}{2}\right\rceil$.

II. FACTS

Result 1: $3\left\lceil\frac{n}{6}\right\rceil \geq\left\lceil\frac{n}{2}\right\rceil$
Proof: Let $\mathrm{n} \equiv 0(\bmod 6) .(i . e) \mathrm{n}=6 \mathrm{r}$.
Then $3\left\lceil\frac{n}{6}\right\rceil=3\left\lceil\frac{6 r}{6}\right\rceil=3(\mathrm{r})=3\left(\frac{n}{6}\right)=\frac{n}{2}$
(i.e) $3\left\lceil\frac{n}{6}\right\rceil=\left\lceil\frac{n}{2}\right\rceil$

Let $\mathrm{n} \equiv 1(\bmod 6) \quad(i . e) \mathrm{n}=6 \mathrm{r}+1$.
Then $3\left\lceil\frac{n}{6}\right\rceil=3\left\lceil\frac{6 r+1}{6}\right\rceil$

$$
=3(r+1)=3\left(\frac{n-1}{6}+1\right)
$$

$$
\text { Let } \mathrm{n} \equiv 2(\bmod 6) \quad(\text { i.e }) n=6 r+2
$$

$$
\text { Then } 3\left\lceil\frac{n}{6}\right\rceil=3\left\lceil\frac{6 r+2}{6}\right\rceil=3(r+1)
$$

$$
=3\left(\frac{n-2}{6}+1\right)=3\left(\frac{n+4}{6}\right)
$$

$$
=\frac{n+4}{2}>\frac{n}{2}
$$

$$
\text { Let } \mathrm{n} \equiv 3(\bmod 6) \quad(\text { i.e }) n=6 r+3
$$

$$
\text { Then } 3\left\lceil\frac{n}{6}\right\rceil=3\left\lceil\frac{6 r+3}{6}\right\rceil=3(r+1)
$$

$$
=3\left(\frac{n-3}{6}+1\right)=3\left(\frac{n+3}{6}\right)
$$

$$
=\frac{n+3}{2}>\frac{n}{2}
$$

Let $\mathrm{n} \equiv 4(\bmod 6) \quad(i . e) n=6 r+4$.
Then $3\left\lceil\frac{n}{6}\right\rceil=3\left\lceil\frac{6 r+4}{6}\right\rceil=3(\mathrm{r}+1)=3\left(\frac{n-4}{6}+1\right)$

$$
=3\left(\frac{n+2}{6}\right)=\frac{n+2}{2}>\frac{n}{2}
$$

Let $\mathrm{n} \equiv 5(\bmod 6) \quad($ i.e $) n=6 r+5$.
Then $3\left\lceil\frac{n}{6}\right\rceil=3\left\lceil\frac{6 r+5}{6}\right\rceil=3(r+1)=3\left(\frac{n-5}{6}+1\right)$

$$
=3\left(\frac{n+1}{6}\right)=\frac{n+1}{2}>\frac{n}{2}
$$

In all cases $3\left\lceil\frac{n}{6}\right\rceil \geq\left\lceil\frac{n}{2}\right\rceil$
Result 2: $2\left\lceil\frac{n}{4}\right\rceil \geq\left\lceil\frac{n}{2}\right\rceil$.

Proof: Let $\mathrm{n}=0(\bmod 4)$ (i.e) $\mathrm{n}=4 \mathrm{r}$.
Then $2\left\lceil\frac{n}{4}\right\rceil=2\left\lceil\frac{4 r}{4}\right\rceil=2(\mathrm{r})=2 \times \frac{n}{4}=\frac{n}{2}$

Let $\mathrm{n} \equiv 1(\bmod 4)$ (i.e) $\mathrm{n}=4 \mathrm{r}+1$.
Then, $2\left\lceil\frac{n}{4}\right\rceil=2\left\lceil\frac{4 r+1}{4}\right\rceil=2(\mathrm{r}+1)$

$$
=2\left(\frac{n-1}{4}+1\right)=2\left(\frac{n+3}{4}\right)=\frac{n+3}{2}>\frac{n}{2}
$$

Let $\mathrm{n} \equiv 2(\bmod 4) \quad(i . e) \mathrm{n}=4 \mathrm{r}+2$.
Then, $2\left\lceil\frac{n}{4}\right\rceil=2\left\lceil\frac{4 r+2}{4}\right\rceil=2(\mathrm{r}+1)$

$$
=2\left(\frac{n-2}{4}+1\right)=2\left(\frac{n+2}{4}\right)=\frac{n+2}{2}>\frac{n}{2}
$$

Let $\mathrm{n} \equiv 3(\bmod 4) \quad(i . e) \mathrm{n}=4 \mathrm{r}+3$.
Then, $2\left\lceil\frac{n}{4}\right\rceil=2\left\lceil\frac{4 r+3}{4}\right\rceil=2(r+1)$

$$
=2\left(\frac{n-3}{4}+1\right)=2\left(\frac{n+1}{4}\right)=\frac{n+1}{2}>\frac{n}{2}
$$

In all cases $2\left\lceil\frac{n}{4}\right\rceil \geq\left\lceil\frac{n}{2}\right\rceil$

Result 3: $\left\lceil\frac{n}{2(r+1)}\right\rceil(\mathrm{r}+1) \geq\left\lceil\frac{n}{2}\right\rceil$.

Proof: Let $\mathrm{n}=2 \mathrm{r}$. Then $\frac{2 r}{2(r+1)}(\mathrm{r}+1)=\mathrm{r}=\frac{n}{2}$.
Let $\mathrm{n}=2 \mathrm{r}+1$. Then $\frac{2 r+1}{2(r+1)}(\mathrm{r}+1)=\mathrm{r}+\frac{1}{2}$

$$
=\frac{n-1}{2}+\frac{1}{2}=\frac{n}{2}
$$

Therefore, $\left\lceil\frac{n}{2(r+1)}\right\rceil(r+1) \geq\left\lceil\frac{n}{2}\right\rceil$
Result 4: When n is even, then $\left\lceil\frac{n-1}{2}\right\rceil=\left\lceil\frac{n}{2}\right\rceil$ and

When n is odd, then $\left\lceil\frac{n-1}{2}\right\rceil<\left\lceil\frac{n}{2}\right\rceil$.
Result 5: $\mathrm{n}-\left\lceil\frac{n}{2}\right\rceil-\left\lceil\frac{n}{4}\right\rceil=\left\{\begin{array}{cl}\frac{n}{4} & \text { if } \mathrm{n} \equiv 0(\bmod 4) \\ \frac{n-5}{2} & \text { if } \mathrm{n} \equiv 1(\bmod 4) \\ \frac{n-2}{2} & \text { if } \mathrm{n} \equiv 2(\bmod 4) \\ \frac{n-3}{2} & \text { if } \mathrm{n} \equiv 3(\bmod 4)\end{array}\right.$
Proof: Let $\mathrm{n} \equiv 0(\bmod 4) \quad($ i.e $) \mathrm{n}=4 \mathrm{r} \quad \Longrightarrow \mathrm{r}=\frac{n}{4}$.
$\mathrm{n}-\left\lceil\frac{n}{2}\right\rceil-\left\lceil\frac{n}{4}\right\rceil=4 \mathrm{r}-2 \mathrm{r}-\mathrm{r} \quad=\mathrm{r} \quad=\frac{n}{4}$

Let $\mathrm{n} \equiv 1(\bmod 4) \quad($ i.e $) \mathrm{n}=4 \mathrm{r}+1 \Longrightarrow \mathrm{r}=\frac{n-1}{4}$

$$
\begin{aligned}
\mathrm{n}-\left\lceil\frac{n}{2}\right\rceil-\left\lceil\frac{n}{4}\right\rceil & =4 \mathrm{r}+1-\left(\frac{4 r+1}{2}\right)-\left(\frac{4 r+1}{4}\right) \\
& =4 \mathrm{r}+1-(2 \mathrm{r}+1)-(\mathrm{r}+1)
\end{aligned}
$$

$$
=4 \mathrm{r}+1-2 \mathrm{r}-1-\mathrm{r}-1
$$

$$
=\mathrm{r}-1
$$

$$
=\frac{n-1}{4}-1
$$

$$
=\frac{n-5}{4} .
$$

Let $\mathrm{n} \equiv 2(\bmod 4) \quad($ i.e $) \mathrm{n}=4 \mathrm{r}+2 \Longrightarrow \mathrm{r}=\frac{n-2}{4}$

$$
\begin{aligned}
n-\left\lceil\frac{n}{2}\right\rceil-\left\lceil\frac{n}{4}\right\rceil & =4 r+2-\left(\frac{4 r+2}{2}\right)-\left(\frac{4 r+2}{4}\right) \\
& =4 r+2-(2 r+1)-(r+1)
\end{aligned}
$$

$$
=4 \mathrm{r}+2-2 \mathrm{r}-1-\mathrm{r}-1
$$

$$
=\mathrm{r} \quad=\frac{n-2}{4}
$$

Let $\mathrm{n} \equiv 3(\bmod 4)($ i.e $) \mathrm{n}=4 \mathrm{r}+3 \Longleftrightarrow \mathrm{r}=\frac{n-3}{4}$

$$
\begin{aligned}
n-\left\lceil\frac{n}{2}\right\rceil-\left\lceil\frac{n}{4}\right\rceil & =4 r+3-\left(\frac{4 r+3}{2}\right)-\left(\frac{4 r+3}{4}\right) \\
& =4 r+3-(2 r+2)-(r+1)
\end{aligned}
$$

$$
\begin{aligned}
& =4 r+3-2 r-2-r-1 \\
& =r \\
& =\frac{n-3}{4}
\end{aligned}
$$

Hence the result.
Result 6: $\left\lceil\frac{3 n}{4}\right\rceil-K+\left\lceil\frac{n}{4}\right\rceil=\mathrm{n}-\mathrm{k}$ or $\mathrm{n}+1-\mathrm{K}$
if $n \equiv 0(\bmod 4)$ or not.

Proof: Case (i): Let $\mathrm{n} \equiv 0(\bmod 4) \quad(i . e) \mathrm{n} \equiv 4 r$.
Then $\left\lceil\frac{3 n}{4}\right\rceil-K+\left\lceil\frac{n}{4}\right\rceil=\frac{4 r x 3}{4}-K+\frac{4 r}{4}$

$$
\begin{aligned}
& =3 r-K+r \\
& =4 r-k=n-K
\end{aligned}
$$

Case (ii): Let $\mathrm{n} \equiv 1(\bmod 4) \quad(i . e) \mathrm{n}=4 r+1$.
Then $\left\lceil\frac{3 n}{4}\right\rceil-K+\left\lceil\frac{n}{4}\right\rceil=\frac{3(4 r+1)}{4}-K+\frac{4 r+1}{4}$

$$
=\frac{12 r+3}{4}-K+r+1
$$

Let $\mathrm{n} \equiv 2(\bmod 4)(i . e) \mathrm{n}=4 r+2$.
Then $\left\lceil\frac{3 n}{4}\right\rceil-K+\left\lceil\frac{n}{4}\right\rceil=\frac{3(4 r+2)}{4}-K+\frac{4 r+2}{4}$

$$
\begin{aligned}
& =3 \mathrm{r}+2-K+r+1 \\
& =4 \mathrm{r}+3-\mathrm{K} \\
& =4\left(\frac{n-2}{4}\right)-\mathrm{K}+3 \\
& =\mathrm{n}-\mathrm{K}+1
\end{aligned}
$$

Then $\left\lceil\frac{3 n}{4}\right\rceil-K+\left\lceil\frac{n}{4}\right\rceil=\frac{3(4 r+3)}{4}-K+\frac{4 r+3}{4}$
$=3 \mathrm{r}+3-K+r+1$
$=4 \mathrm{r}+4-\mathrm{K}$
$=4\left(\frac{n-3}{4}\right)-K+4$
$=\mathrm{n}-\mathrm{K}+1$

Hence the result.

Result 7:

i) $\mathrm{n}-\mathrm{k}+2\left\lceil\frac{\mathrm{k}}{2}\right\rceil=\mathrm{n} \quad$ if $\mathrm{n} \equiv 0(\bmod 4)$.
ii) $\mathrm{n}+1-\mathrm{K}+2\left\lceil\frac{k}{2}\right\rceil \geq \mathrm{n} \quad$ if $\mathrm{n} \equiv 1,2,3(\bmod 4)$.

Proof: Case (i):

Let $\mathrm{n}=4 \mathrm{r} \quad$ (i.e) $\quad \mathrm{r}=\frac{n}{4}=\frac{k}{2}$.
Then $\mathrm{n}-\mathrm{K}+2\left\lceil\frac{k}{2}\right\rceil=\mathrm{n}-\frac{n}{2}+\frac{n}{2}=\mathrm{n}$

$$
=3 r+1-K+r+1
$$

Case (ii):

$$
=4 \mathrm{r}+2-\mathrm{K}
$$

Let $\mathrm{n}=4 \mathrm{r}+1$ (i.e) $\mathrm{r}=\frac{n-1}{4}=\frac{k}{2} \quad \Longrightarrow \mathrm{~K}=\frac{n-1}{2}$

$$
=4\left(\frac{n-1}{4}\right)+2-\mathrm{K}
$$

$$
=\mathrm{n}-\mathrm{K}+1
$$

Then,
$\mathrm{n}+1-\mathrm{K}+2\left\lceil\frac{k}{2}\right\rceil=\mathrm{n}+1-\frac{n+1}{2}+\frac{n-1}{2}=\mathrm{n}+1>n$
Case (iii):
Let $\mathrm{n}=4 \mathrm{r}+2$ (i.e) $\mathrm{r}=\frac{n-2}{4}=\frac{k}{2}$.

Then,
$\mathrm{n}+1-\mathrm{K}+2\left\lceil\frac{k}{2}\right\rceil=\mathrm{n}+1-\frac{n+2}{2}+\frac{n-2}{2} \quad=\mathrm{n}+1>n$
Case (iv):
Let $\mathrm{n} \equiv 3(\bmod 4) \quad(i . e) \mathrm{n}=4 r+3$.

Let $\mathrm{n}=4 \mathrm{r}+3 \quad$ (i.e) $\quad \mathrm{r}=\frac{n-3}{4}=\frac{k}{2}$.
Then,
$\mathrm{n}+1-\mathrm{K}+2\left\lceil\frac{k}{2}\right\rceil=\mathrm{n}+1-\frac{n+3}{2}+\frac{n-3}{2}=\mathrm{n}+1>n$
Hence the result.

REFERENCES:

[1].E.J. Cockayne, S.J. Hedetniemi, Towards of Theory of Domination in Graphs, Networks - 7 (1977), 247-261.
[2]. T.W. Haynes, S.T. Hedetniemi, Peter J. Slater, Fundamentals of Domination in Graphs, 1998 by Marcel Dekker, Inc., New York.
[3]. J. Joseline Manora and V. Swaminathan, Majority Domatic Number of a Graph, Global Journal of Pure and Applied Mathematic,

Vol.6, No. 3 (2010), 275-283.
[4]. J. Joseline Manora and V. Swaminathan, Majority Neighbourhood Number of a Graph,Scienta Magna, Northwest University, P.R.China,

Vol.6, No.2(2010),20-25.
[5]. Frank Harary, Graph Theory, Addison Wesley Reading, MA (1969).
[6]. T.W. Haynes, S.T. Hedetniemi, Peter J. Slater, Domination in Graphs: Advancd Topics, Marcel dekker, Inc., (1998).

