International Journal of Mathematics Trends and Technology- Volume X Issue Y- Month 2014

Numerical Solution of Fuzzy Differential Equations by
Adams fifth order predictor-corrector method

T. Jayakumar, C.Raja, T.Muthukumar

Department of Mathematics
Sri Ramakrishna Mission Vidyalaya College of Arts and Science
Coimbatore-641 020, Tamilnadu, India
jayakumar.thippan68@gmail.com, vtmuthukumar@gmail.com

Abstract

In this paper, an Adams fifth order predictor-corrector (AFPC) method is developed to
solve the fuzzy initial value problems(IVPs). The AFPC method is generated by compining an
explicit five step method and implicit four step method. The convergence and stability of the
proposed methods are also presented in detail. These methods are illustrated by solving some
examples.
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1. Introduction

The concept of fuzzy derivative was first introduced by Chang, Zadeh in [6] it was followed
up by Dubois, Prede in [7], who defined and used the extension principle. The fuzzy differential
equation and the intial value problem where regularly treated by Kaleva in [18, 19] and by
Seikkal in [20]. The numerical method for solving fuzzy differential equations is introduced by
Ma, Friedmen and Kandedl in [22] by the standard Eular method and [1, 2] by Taylor method.
In the last few years many works have been performed by several authours in numerical solutions
of fuzzy differential equations [1, 2, 3, 4, 5, 11, 12, 20]. Recently, the nemerical solution by
predictor-corrector method has been stiuded in[5]. In this work we replace the fuzzy differential
equation by its parametric form and then solve numerically the new system. Which consider
the two classic ordinarry differintial equations with initial condition.

In this paper we develop numerical solution of fuzzy differential equation by an application
of the fifth order predictor-corrector method. In Section 2, some basic definitions and results
are brought. In Section 3 we define the problem, this is a fuzzy Cauchy problem. In Section
4 Adams-Bashforth five step method for solving fuzzy differential equations are introduced. In
Section 5, Adams-Moulton four step methods for solving fuzzy differential equations are pro-
posed. Adams fifth order predictor-corrector algorithm is discussed in Section 6 convergence
and stability of the mentioned methods are proved in Section 7. Two examples are presented in
Section 8.

2. Preliminaries
2.1 Multistep methods

Definition 2.1.

An m-step method for solving the initial-value problem is one whose difference equation for
finding the approximation y(t;4+1) at the mesh point ;41 can be represented by the following
equation:



Y(tit1) = m-1Y(t:i) + @m—2y(tic1) + ... + aoy(tivi—m)
Fh{bm f(tig1 Yit1) + b1 f(Lisyi) + oo + Do f (tit1—m> Yit1—m) }s

fori=m—1,m,....N —1, such that a =ty <t; < .. <ty =0,
h = (b;Na) =t;41 — t;, and ag, aq, ..., Gm—1, bo, b1, ..., by, are constants with the starting values

Yo = CQop, Y1 =001, Y2 =0Q2,...;Yn—-1 = Qm—1

when b,, = 0, the method is known as explicit, since (1) gives y;1+1 explicit in terms of
previously determined values. When b,, # 0, the method is know as implicit , since y;4+1 occurs
on both sides of (1) and is specified only implicitly.

With consideration Definition 2.1, several multi step methods are as follows:

Adams-Bashforth five-Step method:

Yo = Qp, Y1 = aq, Y2 = Qa, Yz = Q3 Yg = Qy,

h
Yitl = Yi + %[190”(% Yi) — 2774 f (ti—1,yi—1) + 2664 f(ti—2, yi—2) — 1274 f(ti—3,yi—3)

+251f(ti—47yi—4]5
where 1 =4,...,N — 1.

Adams-Moulton four-Step method:

Yo = Qo, Y1 = aq, Y2 = (g, Y2 = O3,

h
Yirl = Yi + %[251f(ti+17 Yiy1) +646f(t;,ys) —264f(ti—1,yi—1) + 106 f(ti—2, yi—2)

—19f(ti—3,vi-3)],
where 1=4,...,N — 1.

Definition 2.2.
Associated with the difference equation

Yitl = Am—1Yi + Gm—2Yi—1 + -« + @Yir1-m + L (s B Yir1, Yis - -+, Yit1-m)s

Yo=0&, Y1 =01, . ;Ym—-1 = Om-—1,
is a polynomiyal, called the characteristic polynomial of the method given by

p(A) = A" — A1 AN — oA — L —a X — ag.

If |\;| <1 foreachi=1,2,...,m, and all roots with absolute value 1 are simple roots, then the
difference method is said to satisfy the root condition.

Theorem 2.1

A multistep method of the form (2) is stable if and only if it satisfies the root condition.
Proof. See [10].
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Notations used in this chapter is as follows: _
A tilde is placed over a symbol to denote a fuzzy set so ag, f(t),...
An arbitrary fuzzy number with an ordered pair of functions (u(«),u(a)), 0 < « < 1, which
satisfy the following requirements is represented.
1. u(e) is a bounded left continuous nondecreasing function over [0,1],
2. u(w) is a bounded left continuous nonincreasing function over [0,1],
3. u(a) <u(a),0 <a<1.
Let E be the set of all upper semicontinuous normal convex fuzzy numbers with bounded a-level
intervals. It means if v € E then the a-level set

[v]* = {s]v(s) > a}, O0<a<l,

is a closed bounded intervel which is denoted by

Let I be a real interval. A mapping y : [ — E is called a fuzzy process and its a-leval set is
denoted by

@] =[y*(©),5*(@)], tel, aec(0,1].

Triangular fuzzy numbers are those fuzzy sets in E' which are characterized by an ordered
triple (2!, 2% 2") € R® with 2! < 2° < 2" such that [U]° = [z!,2"] and [U]' = {2¢} then

U] = [2° — (1 - a)(a® — 2'),2° + (1 — a)(a" — a°)), )
for any o € I.

Definition 2.3.

The supremum metric do, on F is defined by
doo (U, V) = sup{du ([U]*,[V]*) : a € T},
and (F,ds) is a complete metric space.

Definition 2.4.

A mapping F' : I — E is Hukuhara differentiable at ty € T' C R if for some hy > 0 the
Hukuhara difference
F(to+ At) ~p, F(to), F(to) ~n F(to — At),

exist in E for all 0 < At < hg and if there exists an F'(tg) € F such that

(F(to + At) ~p, F(to))

. _ 12 —
A}I—IE(IH- oo At Fi(t) =0

and F(t F(t At
lim doo( (o) ~n Flto = A1) — F'(t)) =0,

At—0+ At

the fuzzy set F'(to) is called the Hukuhara derivative of F at tg.

Recall that U ~, V = W € E are defined on level sets, where [U]* ~p, [V]* = [W]* for
all & € I. By consideration of definition of the metric d, all the level set mappings [F'(to)]*
are Hukuhara differentiable at ty with Hukuhara derivatives [F’(to)]* for each o € I when
F : I — FE is Hukuhara differentiable at to with Hukuhara derivative F’(tg).



Definition 2.5.

The fuzzy integral
b
/ y(t)dt, 0<a<b<l,

[szﬁr_[ﬂz”W%LU%mﬁ,

provided the Lebesgue integrals on the right exist.

is defined by

Remark 2.1.

If F: I — E is Hukuhara differentiable and its Hukuhara derivative F’ is integrable over
[0,1], then

F(t) = F(to) +/ F'(s)ds.

to

for all values of tg,t where 0 < tg <t < 1.
Definiton 2.6.

A mapping y : I — F is called a fuzzy process. We denote
®]* =" @), 7)), tel, 0<a<l

The Seikkala derivative y'(t) of a fuzzy process y is defined by
1" =[E")'®),F)®], 0<a<l

provided that this equation defines a fuzzy number y'(t) € E.

Remark 2.2.

If y : I — E is Seikkala differentiable and its Seikkala derivative ' is integrable over [0,1],
then

y@:mm+/y®@

to

for all values of tg,t where tg,t € I.
3. A fuzzy Cauchy problem

Consider the first-order fuzzy differential equation y' = f(¢,y) where y is a fuzzy function
of t, f(t,y) is a fuzzy function of crisp variable ¢ and fuzzy variable y, and 3’ is Hukuhara or
Seikkala fuzzy derivative of y. If an initial value y(tg) = vy is given, a fuzzy Cauchy problem of
first order will be obtained as follows:

y'(t) = fty(t), to<t<T, } (4)

y(to) = o,

Sufficient conditions for the existence of a unique solution to equation (2.4)are
(i) Continuity of f,
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(ii) Lipschitz condition deo (f (¢, ), (f(¢,v)) < Ldeo(z,y), L > 0.

3.1. Interpolation of fuzzy number

The problem of interpolation for fuzzy sets is as follows:
Suppose that at various time instant ¢ information f(t) is presented as fuzzy set. The aim is to
approximate the function f(t), for all ¢ in the domine of f.
Let tg <t; <...<t, be n+ 1 distinct points in R and let ug, u7,...,u, be n+ 1 fuzzy sets in
E.
A fuzzy polynomial interpolation of the data is a fuzzy value continuous function f : R — FE
satisfying:
(ii) If the data is cricp, then the interpolation f is a crisp polynomial.
A function f which fulfilling these condition may be constructed as follows.
Let C! = [4;]™ for any « € [0,1], i=0,1,2,...,n. For each x = (zq,x1,...,2,) € R""!, the
unique polynomial of degree < n denoted by Px such that

PX(ti):xi, 7;:0,1,2,...,71,

Px(t) :Zl‘i H i

i=0 iy U
Finally, for each t € R and all £ € R is defined by f(t) € E by
(F()(€) = sup{a €[0,1]: X € C? x ... x C" such that Px(t) = ¢}.
The interpolation polynomial can be written level set wise as
[f®)*={yeR:y=Px(t), z€w]* i=1,2,..,n}, for 0<a<l.

When the data u; presents as triangular fuzzy numbers, values of the interpolation polynomial
are also triangular fuzzy numbers. Then f(¢) has a particular simple form that is well situated
to computation.

Theorem 3.1.

Let (t;, ul) 1=0,1,2,...,n be the observed data and suppose that each of the
; = (ug, uf,ul) is an element of E. Then for each t € [to, tn],

<> ({0, fe), f7 (1) € B
ey = > u+Zz uf,

1:(£)>0 1;(t)<0

o) = Zl
) = Z Lul + Y Lt

n
such that 1;(t) = tt:ttj_.
it

i
Proof. See[13].




4. Adams-Bashforth methods

Now we are going to solve fuzzy initial value problem y/(t) = f(¢,y(t)) by Adams-Bashforth
five-step method.
Let the fuzzy initial values be y(ti—1), y(t:), y(ti+1), Y(tit2), Y(tiv2), Y(tits)

Qe flticn,y(tion)), Fltony(t), Fltien,y(tisn)) o Fltive,y(tive)), Fltivs y(tics)),

which are triangular fuzzy numbers and are shown by

{fl(tiflv ti— 1) (l LY ( )) f (% LY tl 1))}’
{1t y(t)), (i y (), [T (8 u(E:) }
{F(tir, y(tirn), f(tipr, y(tinn)), f7 (z+17 tiv1))}s
{f l+27 z+2)) ( i+2,Y ( 1+2)) fr( i+2,Y 2))}»
{f i+3,Y 1+3))> ( i+3,Y ( z+3)) fr( i+3,Y H—S))}:
also
) =) + [ Tty )

By fuzzy interpolation of f(t;—1, (ti—1)), f(ti, (t)), f(tir, (tiv1)), F(tiva, (tis2)), f(tiss, (tirs)),
we have:

i+3 i+3
fltyt) = S L) + L) f" (5, y(t5)),
G=i—1,0;(£)>0 j=i—1,1;(£)<0
i+3
Fety®) = . L),
j=i—1
’ i+3 i+3
frity@) = oo LWy + Y L (),
G=i—1,1;(£)>0 j=i—1,1;(t)<0
for ti+3 S t S ti+4 :
, _ (t —ti )(t —tip1)(t — tz+2)(t —tiys)
ialt) = (ticy —ti)(tim1 — tigr)(tim1 — tigo)(tic1 — tiya) 20,

(t— ti,l)(t —tip)(t — t2+2)(t — tits)

MO = )6 ) — )

) = e 2
bl = G e s e S <©
el = G (tti t;(li(:zigth Mfil)(tii)—tiw) ="

therefore the following results will be obtained:
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Pt y(0) = L (0 (timrs y(tim1)) + LSty y(t) + Liga (0 f (Bi1, y(tign))
Hliga (D) f7 (tiv2, y(tiva)) + Liva(t) [ (tivs, y(tits)),

@ yt) = Lioa () f(tima, y(tio1)) + L(6) f (i, y (i) + Lia () (tivr, y(tita))
i (t) fO(2 Z+2 Y(tiv2)) + lipaf(tivs, y(tirs)),

Pt y(0) = Lioa (0" (bim1, y(bim1)) + L) F (tis y(t)) + Liga (0 F (bi1, y(tign))

Hliv2(t) f ( i+2,Y(tiv2)) + livaf" (tigs, y(tits)).

From (3) and (5) it follows that:

Y (tiva) = [y (tiva), T (tiva)l,

where

Y (i) = 4 (tigs) + / T aro (ty®) + (1 - a) St ()} dt

i+3

and
Pt =0 (sn) + [ a0 + 0= )0
If (6) and (7) are in (9) and (7),(8) n (10):
Y (tia) = ¥* (tigs) + [ Hallioa (0 F(tion, y(tion) + L F (L y(t))
Heaa (O o))+ Lo s Ult2) + s (OF s 9lt1s)
L a0 (i, Y(E) + LS (i 9(8)) + e () B plts1)
HeaalO)F sz, 012) + Do) s, ) e
P (tiea) = T (isa) + [ {0l (075 pltim2)) + LS (1, 3(02)
Heaa (O v is)) + Lo F s ulE2) + s (OF i 9lt1s)
L laF (e, u)) LS 0 9(8)) + e (), y(E)

Hlipo (t) f (tiva, y(tit2)) + Livs () 7 (tigs, y(tivs) b
The following results will be obtained by integration:

Y (ti58) = 9" (1is3) + g T byt 1)) + (1= ) by, pti4))]

- 2;;?)}1 [af (tiva, y(tive)) + (1 — @) f" (tive, y(tit2))]
2(;;?)]1 [f(tivr, y(tirn)) + (1= @) [ (tig1, y(tign))]

I 6 + (1 ) )]

+%[Oéfc( ti,y(tic)) + (1 — ) f (tie1, y(tiz1))], and

(10)



T (tiva) = J*(tivs) + %[afc(ti+37 Y(tivs) + (1 — ) f" (tivs, y(tiss))]
_ QZzéh [0 f (b, y(tiea)) + (1 — @) f(tisa y(tir2))]
Q%gh [af(tiv1,y(tiv1)) + (1 — a) 7 (tir1, y(ti1))]
fgéh[ Feltiy(t) + (1 — ) f1(ts y(t:)]
| 251h

720 o laf iz, y(ti-1) + (L — ) [ (tim1, y(ti-1))]s
Thus

Y (tiga) = y*(tivs) + 720 (1901 (tiy3, y(tivs)) — 2T7AF " (tiray(tiva))

2616 £ (i1, Y(tir1)) — 1274F (ti, y(t:)) + 251 (tim1, y(ti—1))],

h
T (tiva) =Y (tigs) + 20 ——[1901F" (tits, y(tirs)) — 2TT4f* (tiya, Y(tis2))

+2616F " (tig1,y(ti1)) — 1274F 45, y(t;) + 251F (ti1, y(tio1)))-

Therefore Adams-Basforth five-step method is obtained as follows:
h —a
Yy (tiva) = y*(tivs) + %[1901fx(t¢+3, Y(tizz)) — 2774f (tiv2, y(tiy2))
+2616f (tiv1, y(ti1)) — 1274F " (ti,y(t:) + 251 (ti-1, y (i),
Fyies Fyied h (o3
Y (tiva) =y (tixs) + 720[1901f (tivs, y(tizs)) — 27741 (tire, y(tiz2)) (11)

2616 (ti1, y(ti1)) — 1274f (ti, y(t:) + 251 F" (tio1, y(tim1)],

Yy (tic1) = o, y*(ts) = a1, y*(tiy1) = ag, y*(tiz2) = as, y*(tiys) = o

J*(tio1) = a5, §*(t:) = ag, Y*(tig1) = a7 , ¥ (tig2) = as, §*(tirs) = ao.

5. Adams-Moulton methods
Fix k € Z*. The fuzzy initial value problem (4) can be solved by Adams-Moulton five-step
method. The Adams-Moulton five step method is obtained as follows:

Yy (tivs) = y*(tive) + 7};0 (251 f*(tits, y(tirs)) + 646 f“(tira, y(tira))

=264 (tip1, y(tir1)) + 106 £ (t1, y(t:)) — 19F° (i1, y(ti-1))],

h —a
7 (tirs) = 7% (tiv2) + 5o 0 2517 (tigs, y(tivs)) + 646" (tia, y(tiva))

*264ia(ti+lay< H—l)) + 106f ( uy(ti)) - 19ia(ti—1’y(ti—1))]a
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Yy (tio1) = a0, y*(ti) = a1,y (tiv1) = o, y*(tiy2) = a3,y (tirs) = au,
gr(tic1) = a5, 7% (t;) = a6, ¥ (tiy1) = a7, ¥ (tir2) = as, Y (tiy3) = ao.

6. Algorithm

The following algorithm is based on Adams-Bashforth five step method as a predictor and
also an iteration of Adams-Moulton four-step method as a corrector.
To approximate the solution of following fuzzy initial value problem.

y'(t) = f(t,y(t), to<t<T,
y*(to) = ag, y*(t1) = a;, y*(t2) = ay, y*(t3) = a3, y*(t1) = oy,

7% (to) = a5, J*(t1) = @, Y*(t2) = ar, y*(t3) = as, §*(ta) = Q.

positive integer N is chosen.

Step 1.
T—t
Let h = 0,
w*(tg) = o, w*(t1) = g, w*(t2) = aq, w*(t3) = az, w*(t4) = ay,
W (tg) = a5, W™ (t1) = @, W (t2) = a7, W (t3) = ag, W (t4) = Qg
Step 2.
Let i = 1.
Step 3. Let

+ i[1901f)‘(15i+37 w(tivs)) — 2TTAF (tiya, w(tita))

w0t ) = w* (tiss) 20

+2616 £ (i1, w(tip1)) — 1274F (ti, w(ts)) + 251 f*(t; 1, w(ti—1))],

WO (i) =W (tiys) + 19017 (tigs, w(tivs)) — 277Af* (tisa, w(tit2))

L
720

+26167a(ti+1,w(ti+1)) — 1274i (tl,w( )) + 251f ( i 1,w(ti_1))].

Step 4. Let t;14 =tg+ (Z + 4)h
Step 5. Let

h
w(tiys) = y*(tiv2) + o5 720 [251f(tiys, w(tits)) + 646 (tir2, w(tit2))

=264 (tip1, w(tiv1)) + 106 (ti, w(t:)) — 19F (tim1, w(ti—1))],

h
720 [251f ( i+3, W ( z+3)) + 646f ( z+2>w(ti+2))

=264 (tiy1,y(ti1)) + 106" (t, w(t;)) — 19 (ti1, w(ti—1))].

W (tirz) = W (tig2) +

Step 6. 1 =i+ 1.
Step 7. If i < N — 3 go to step 3.
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(0%

Step 8. Algorithm will be completed and (w®(7T'), w*(T') approximates real value of (Y*(T),Y " (T).

7. Convergence and Stability

To integrate the system given in equation (12) from ty a prefixed T' > ¢t the interval [to, T
will be replaced by a set of discrete equally spaced grid point {9 < t; <tz < ... <ty =T which

the exact solution (Y (t,«),Y (t,«)) is approximated by some (y(t,«),7(t,«)). The exact and

approximate solutions at t,, 0 < n < N are denoded by Y, (t,a) = (Y, (t,a),Y,(t,a)), and
yn(t, @) = (y_(t,a),7,(t,)), respectively. The grid points which the solution is calculated are

—n

tn =t +nh,h =T 1 <p < N.

From (11), the polygon curves
y(tv hv a) = {[t07@(a)}7 [tlayil(a)]a ceey [tN»yN(a)}}
g(tv ha a) = {[t()v%(a)}’ [tlam(a)]a ey [tN»yN(a)}}

are the Adams-Moulton approximates to Y (t,a) and Y (¢, ), respectively, over the interval
to <t < ty. The following lemmas will be applied to show convergence of these apptoximates,
ie.

lim y(t, h, OC) = X(L Oé),
h—0—

Aig}) y(t,h,a) =Y (¢, ).
Lemma 7.1.
Let a sequence of numbers {W,,}N_ satisfy
|wnt1| < Alwy| + Blwp—1| + Clwp—2| + D|wp—3|+ E, 0<n<N-1
for some given positive constants A,B,C D and E. Then

wWis1] < (A2 + @1 A" 4B + s A" 5C + .. + a ADUF ) s

n—>5

+H(AT3B + BLA B2 + .+ BB DIy |

+(A"3C + y AVSCB? + ... + ’th[?]D[nT_s )|ws]

+(A"=3D 4 1 A"5CD? + ... + 1y BDI"= )y |

+(AM B A L D)E A4 (5,475 4 8,470 . 4+ 6,,A+1)BE

+(QAT O+ AT+ QAT B+ L+ A+ 1) CE+ (MAYTT+ A" + .+ N\, A+ 1)DE

+( A8 + e A% + L+, A+ 1)B?2E + ...,n odd  and
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wni1] < (A"2 4 a1 A" 4B 4 ap A" 5C + ... + ay, BDI"5 1) |wy|
H(A" 3B 4 BLAMOB2 4 B AT TOB? + .+ B ADUT )y
+H(AM3C + 1 ASCB 4 ...+ 7, BUT DIy

n—4

H(AM3D 4 AP5CD? + ... + 1, Ol 1= D g |

+ATB + A 4+ DE + (51475 4+ 64" + . +6,,A+ 1)BE
+( A"+ AT + QAT B+ L+ A+ 1)CE + (MAYT + XA 8 + .+ N\, A+ 1)DE
+(pr A8 4+ o A" + .+ A+ 1)B2E + .....,n even

where oy, Bs, V¢, Om, <1, Ap, g are constants for all w, s, t,m,l,q and 7.
The proof, by using mathematical induction is straightforward.

Theorem 7.1

For arbitrary fixed @ : 0 < o < 1, the Adams Moultan four-step approximates of (12)

converges to the exact solution X(t,_oz),?(t, ) for y,y € Plto, T
Proof.
It is sufficient to show

]_ILE%QN(OZ) = X(Ta 04)7 %:InOyN(a) = Y(Tv Oé).

By using exact value the following results will be obtained:

Y1 (6:0) = Y (£0) + (251 f (b1, Yo a1 (£ @) + 646 £ (tn, Y o (1)

720
— 3h5 (//////)
=264 (tn-1, Ve 1(650))F106 (-3, Y (1500) =19 (13, Yy (t50)] = 35V (),
— _ h _ _
Y1) =Y, (6 ) + %[251f(tn+1,Yn+1(t; )+ 646 f(t,, Y (¢ @))
J— J— 3h5 (///II/) —
7264f(tn—1a Xn_l (ta Oé)) + 106f(tn—27 Yn—Q(t; Ol)) - 19f(tn—37 Yn—S(t; a))] - ﬁy (fn)a

where t,, < gn,En < tn+1, Consequently

h
Yo (t0) =y, (6:0) =Y, (50) =, (6:0) + o 251t Vs (60) = fltnsny, ) (60))

+646(f (tn, Y, (8 @) = f(tn, y,, (5 ) = 264(f (tn—1, Y1 (£ @)

Flbe1, T (60)) + 1060 (ta2, Y (t:0)) — F(tn-2,y,_,(t:0)))
. : 3R )
19 ltn,Yalts0)) = Flta-s3, ()] - 1oV ),
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Yor(t;a) =G (o) =Y (ta) =7, a) + 77%[251(1"(%“, Yogi(ti o) = f(tng1, Upyr (B ))))

+646(]0(tm?n(t5 @) = f(tn, Un(t; ))) — 264(f (tn—1,Y,,_1(t; )

(t;))) + 106(f (tn—2, Y n—a(t; @) = f(tn—2,Yp—o(t; @)))

_ B 3h° (" g
—19(f(tn-3,Yn-3(t;0)) = f(tn—3,Un_3(t; )] = 7o5Y ).

Denote w, =Y, (t; o) — gn(t; a),v, =Y, —7,(ta).

Then
ol < (14 66011\ | . ALy | (L)
n = n Up— T man n
+1 720 720 ! 720 ) Int
106hL, 19hLs 646 -
n n—2 oo h M?
( 720 )'“’ 2|+( 720 )'” 3l + 7 M
ol < (14 BGRLY L (BARLEY o (ORL
V. U Wiy —
n+1| > 720 n 720 n—1 720 Un+1
106h.Lo 19h Lo 646 .
n— n— o h M7
( 720 )'” 2|+< 720 )'w 3l 730
where M = max [Y(")(t,r)land M = max [V '(t,r)] and is put
0O>t> 0oxt>
720
L =max{Ly,Ly,Ls, L4Ls, L¢, L7, Ls, Lg, L1} < 51
Then
sl < (143N 2O4RL N G06RD
an  erq1 7T Wy, San ard1l T n— an  erq1 7T n—
ntil = 720 — 2510L ) " T\ 720 —2510L ) M T\ 720 — 2510 ) 12

19hL 27 s
* (720 - 251hL> [vn—a] + (1440 —502hL " M) ’

ool < (14 395hL a4 264hL s+ 106A.L 00s
ntil = 720 — 251hL ) " 720 — 251hL ) O 720 — 251hL ) "2

19hL 27
N n— M ’
+<720251hL> [w 3|+(1440502h >
are resulted,where |u, | = |wy|+|v,|,then by Lemma 7.1 and wg = vo = 0(also with w; = v1 = 0):

395hL )"‘1 B

(1 TR

720 — 95111 97 _
W< ho(M
[unl < 30511 X 1110 _ 500" ML+ M)

720 — 251RL

395hL

1 720 — 251h L 2 720 — 251hL ) U m 720 — 251h L
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264hL 27 6 —
% (720 — 251hL> (1440 “s0onr” ML F M)>

+{ B95hL )"_6+<2 <1+395hL>n_7+ ....... +¢ <1+395hL)+1}
T TR0 - 2510L 720 — 25141 720 — 251hL

. (720126;5]1]@) <1440 —27502th .(M+M)>

o (Y (e Y e (e ) )

% (720 1—9};§th> <1440 —27502th (M+M)> *

+{£1 720395:5L1hL>n8+52 <1 + %)TLQJF ...... +& (1+ Mlghgf‘m> +1}

264hL  \* 27 —
RS(M + M) )+ ........
. (720 - 251hL> (1440 T A )> +

are obtained. If h — 0, then w,, — 0, v, — 0 which concludes the proof.

Remark 7.1.
Above theorem results that convergence order is O(h5)

Theorem 7.2.
For arbitrary fixed r : 0 <7 < 1 the Adams-Bashforth five-step approximates of Equation
(11) converge to the exact solutions Y (¢,«),Y (t,a) for Y, Y € C3[to, T).

Proof.
Similar to Theorem 7.1

Remark 7.2.
It is easy to show that convergence order of Adams-Bashforth five-step method is O(h®).

Theorem 7.3.

Adams-Bashforth four-step and five-step methods are stable.
Proof.

For Adams-Bashforth three-step method, exist only one characteristic polynomial p(A) =
A* — A3 and it is clear that satisfies the root condition by Theorem 2.1; then the method is
stable. Also, for Adams-Bashforth five-step method, there only one characteristic polynomial
p(A) = A* — A3 and it satisfies the root condition, therefore it is a stable .

Theorem 7.4.

Adams-Moulton four-step and five-step methods are stable.
Proof.

Similar to Theorem 7.3.
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8. Numerical Examples

Example 8.1
Consider the fuzzy initial value problem,

y(0) = [0.75 + 0.25cv, 1.125 — 0.1250/,

tel=10,1],

O0<a<l

y(0.1) = [(0.75 + 0.250)% 2, (1.125 — 0.1250)e% 1],

y(0.2) = [(0.75 + 0.25a)e"2, (1.125 — 0.125a)e"?]

y(0.3) = [(0.75 + 0.250)e%3, (1.125 — 0.125a)e0-3],

y(0.4) = [(0.75 + 0.25a)e%4, (1.125 — 0.125a)e%4],

The exact solution at t = 1 is given by

Y (1; ) = [(0.75 + 0.250) e,

(1.125 — 0.125a)e],

O<a<l.

By using the Adams-fifth order predictor-corrector method the following results are obtained:

Table 8.1

« RK-order 4 Adams-5 Exact Solution

y(ts; o) y(ts; a) y(ts; o) y(ts; o) Y (t;; ) Yo(ts; o)
0.1 | 2.106666802 | 3.024086215 | 2.106668505 | 3.024088534 || 2.106668417 || 3.024088534
0.2 | 2.174623755 | 2.990101718 | 2.174625553 | 2.990110011 || 2.174625463 || 2.990110011
0.3 | 2.242580782 | 2.956129222 | 2.242582602 | 2.956131488 || 2.242582508 || 2.956131488
0.4 | 2.310537782 | 2.922150725 | 2.310539650 | 2.922152966 || 2.310539554 || 2.922152965
0.5 | 2.378494776 | 2.888172228 | 2.378496699 | 2.888174443 || 2.378496599 || 2.888174443
0.6 | 2.446451770 | 2.854193731 | 2.446453748 | 2.854195919 || 2.446453645 || 2.854195920
0.7 | 2.514408763 | 2.820215234 | 2.514410796 | 2.820217397 || 2.514410691 || 2.820217398
0.8 | 2.582365757 | 2.786236738 | 2.582367845 | 2.786238990 || 2.582367737 || 2.786238874
0.9 | 2.650322750 | 2.752258241 | 2.650324893 | 2.752260466 || 2.650324783 || 2.752260351
1.0 | 2.718279744 | 2.718279744 | 2.718281942 | 2.718281942 || 2.718281828 || 2.718281828

Table 8.2.

Error in RK-order 4

Error in Adams-5

y(ti; o)

y(ti; )

Y(t;; a)

Y (t;; )

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.615x107°
1.708 %106
1.726x10°6
1.772x10~6
1.824x10~6
1.876x1076
1.928x10~6
1.980x10~6
2.033x10¢
2.084x10¢

2.319%x10~6
2.193x106
2.266x10~6
2.241x10~6
2.215x10~6
2.189%x 106
2.163x106
2.136x 106
2.110x10~6
2.084x10~6

8.7741x10~8
9.0571x10~8
9.3401x10~8
9.6231x108
9.9062x108
1.0189x10~7
1.0472x10°7
1.0755x10~7
1.1038x10~7
1.1321x10~7

1.2595%x 10~ 7
1.2453%x10~7
1.2312x10°7
1.2171x10~7
1.2028x10~7
1.1887x10~7
1.1745%x10~7
1.1604x10~7
1.1462x10~7
1.1321x10°7
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Predictor-Corrector Method
o«

09F —exact

*predictor—corrector

0.6
0.5F
0.4
0.3F

0.2r

0.1%

L L L L L
22 24 2.6 2.8 3

Figure 1: h=0.1

Example 8.2.
Consider the fuzzy initial value problem,[14],

y'(t) =—yt), tel=][0,1],

y(0) = [0.75 + 0.250,,1.125 — 0.1250], O0<a <1
(0.01) = (0.9375 + 0.06250)e =0 — (1 — )(0.1875)e% 0%,
7(0.01) = (0.9375 + 0.06250)e 01 + (1 — «)(0.1875)e01,
(0.02) = (0.9375 4 0.06250)e =92 — (1 — )(0.1875)e%02,
7(0.02) = (0.9375 + 0.06250)e 92 + (1 — «)(0.1875)e-02,
(0.03) = (0.9375 + 0.06250)e =93 — (1 — )(0.1875)e%93,
7(0.03) = (0.9375 + 0.06250)e %03 + (1 — «)(0.1875)e0-03,
(0.04) = (0.9375 + 0.06250)e =% — (1 — )(0.1875)e%%4,

7(0.04) = (0.9375 + 0.06250)e %% + (1 — )(0.1875)e%-04.
The exact solution at ¢ = 0.1 is given by

Y (0.1; @) = [(0.9375 + 0.06250)e 1 — (1 — a)(0.1875)e",

(0.9375 + 0.0625)e 1 + (1 — a)(0.1875)e 1]

By using the Adams fifth order predictor-corrector method the following results are obtained.
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Predictor-Corrector Method
o«

* predictor-corrector

— exact

L L L
0.75 0.8 0.85
y

L L L
0.9 0.95 1

Figure 2: h=0.1

(07

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Table 8.3.
Adams-5 Exact Solution Error in Adams-5

y(ti; a) y(ti; ) y(ti; @) y(ts; o) Y(ti;a) Y (ti; o)
0.695972086 | 1.011908540 | 0.667442721 | 1.040437906 | 2.852x10 2 | 2.852x10 2
0.719179346 | 1.000011749 | 0.693819909 | 1.025371185 | 2.535x1072 | 2.535x10~2
0.742386605 | 0.988114957 | 0.720197098 | 1.010304464 | 2.219x10-2 | 2.219x10~2
0.765593864 | 0.976218166 | 0.746574287 | 0.995237743 | 1.902x1072 | 1.902x10~2
0.788801123 | 0.964321375 | 0.772951475 | 0.980171022 | 1.585x1072 | 1.585x10~2
0.812008382 | 0.952424583 | 0.799328664 | 0.965104301 | 1.268x1072 | 1.268x10~2
0.835215641 | 0.940527792 | 0.825705852 | 0.950037581 | 9.510x1073 | 9.510x10~3
0.858422900 | 0.928631007 | 0.852083041 | 0.934970860 | 6.340x10~3 | 6.340x10~3
0.881630159 | 0.916734209 | 0.878460229 | 0.919904139 | 3.170x10-3 | 3.170x10~3
0.904837418 | 0.904837418 | 0.904837418 | 0.904837418 | 1.092x10~13 | 1.092x10~13

9. Conclution

In this paper, we have applied itrative solution of Adam’s predictor-corrector fifth order
method for finding the numerical solution of fuzzy differential equations. Comparision of solution
of Example (8.1) and (8.2) shows that our proposed method gives better solution then Runge-
Kutta fourth order method.
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