Independent Domination of Splitted Graphs

A. Nellai Murugan^{*A} And A. Esakkimuthu^{*} *PG and Research Department of Mathematics V O Chidambaram College, Tuticorin-628008, TN, INDIA

Abstract -- A dominating set D of a splitted graph S(G) = (V, E) is an independent dominating set if the induced subgraph $\langle D \rangle$ has no edges. The independent domination number i[S(G)] of a graph S(G) is the minimum cardinality of an independent dominating set.

Keywords: independent Domination, Splitted graph. *Subject classification*: AMS 05C69, 05C70.

I. INTRODUCTION

By a graph, we mean a finite simple , undirected graph and connected graph with neither loops nor multiple edge. The vertex set and edge set of a graph G denoted are by V (G) and E(G) respectively. Let p = |V(G)|, q = |E(G)|. The degree of any vertex u in G is the number of edges incident with u and d is denoted by d(u), The minimum and maximum degree of a graph G is denoted by $\delta(G)$ and $\Delta(G)$ respectively. For graph theoretic terminology we follow [4]. For each vertex v of a graph G, take a new vertex u. Join u to those vertices of G adjacent to v. The graph thus obtained is called the splitting graph of G. It is denoted by S(G). For a graph G, the splitting graph S of G is obtained by adding a new vertex v corresponding to each vertex u of G such that N(u) = N(v) and it is denoted by S(G).

II. PRELIMINARIES

A set D of vertices in a splitted graph S(G)=(V,E) is called a dominating set if every vertex in V-D is adjacent to some vertex in D. The domination number γ [S(G)] of S(G) is minimum cardinality of a domination set of S(G)

A dominating set D of a splitted graph S(G) = (V, E) is an independent dominating set if the induced subgraph $\langle D \rangle$ has no edges. The independent domination number i[S(G)] of a graph S(G) is the minimum cardinality of an independent dominating set.

III. RESULTS

Theorem 3.1. Independent domination number of the splitted graphs $S(P_n)$, then

 $i[S(P_n)] = 2[n/3]$

proof Let $S(P_n)$ be splitted graph of P_n . Let $V[S(P_n)] = \{u_i, v_i: 1 \le i \le n\}$, vertex u_i is adjacent to u_{i-1} , u_{i+1} , v_{i-1} , v_{i+1} where as v_i is adjacent to u_{i-1} and u_{i+1} for all $2 \le i \le n-1$. By definition, u_i and v_i are not adjacent and in every triplet of u_i and v_i the middle vertices satisfy the independent dominating set condition.

Hence, i $[S(P_n)] = 2 [n/3]$.

For example, i $[S(P_7)] = \{u_2, v_2, u_5, v_5, u_7, v_7\}$ as shown in the figure 3.2

Theorem 3.3. Independent domination number of the splitted graphs $S(H_n)$ if n is odd, then

(1) i $[S(H_n)] = \frac{4}{3}(n+1)$ if $n \cong 2 \pmod{3}$

(2) $i[S(H_n)] = \frac{4}{3}(n+2)$ if $n \cong 1 \pmod{3}$

(3) i $[S(H_n)] = \frac{4n}{3} + 2$ if $n \cong 0 \pmod{3}$

proof let $S(H_n)$ be splitted graph of H_n if n is odd

 $case(1) \quad n \cong 2 \pmod{3}$

Let $V[S(H_n)] = \{u_i, v_i, u_i^1, v_i^1: 1 \le i \le n\}$, vertex u_i is adjacent to $u_{i-1}, u_{i+1}, v_{i-1}, v_{i+1}$ where as v_i is adjacent to u_{i-1} and u_{i+1} for all $2 \le i \le n-1$. By definition, u_i and v_i are not adjacent and in every triplet of u_i and v_i the middle vertices satisfy the independent dominating set condition. The same process is application for the set of vertices u_i^1 and v_i^1 .

Hence, i
$$[S(H_n)] = \frac{4}{2}(n + 1)$$
.

For example, i $[S(H_5)] = \{u_2, v_2, u_5, v_5, u_2^1, v_2^1, u_5^1, v_5^1\}$ as shown in the figure 3.4. **case (2)** $n \cong 1 \pmod{3}$

Let $V[S(H_n)] = \{u_i, v_i, u_i^1, v_i^1: 1 \le i \le n\}$, considering a triplet in the case to choose a pair of vertices from u_i 's, (n+2) is alone a multiple of 3. In the same process. It is required pair of vertices from u_i^1 's to the dominating set.

Hence, i
$$[S(H_n)] = \frac{4}{3}(n+2)$$

For example, i $[S(H_7)] = \{u_2, v_2, u_5, v_5, u_7, v_7, u_2^1, v_2^1, u_5^1, v_5^1, u_7^1, v_7^1\}$ as shown in the figure 3.5. **case (3)** $n \cong 0 \pmod{3}$

In addition to the above process. It is not possible to consider both $u_{\frac{n+1}{2}}$ and $v_{\frac{n+1}{2}}$. simultaneously in the dominating set. It is in need to consider the adjacent vertices of either $u_{\frac{n+1}{2}}$ or $v_{\frac{n+1}{2}}$ in the dominating set which result is addition of two more vertices

dominating set which result is addition of two more vertices,

Hence, i $[S(H_n)] = \frac{4n}{3} + 2$. For example, i $[S(H_9)] = \{u_2, v_2, u_5, v_5, u_8, v_8, u_2^1, v_2^1, u_5^1, v_5^1, u_8^1, v_8^1\}$ as shown in the figure 3.6.

Figure 3.4 $S(H_5)$

Figure 3.5 $S(H_7)$

Theorem 3.7. Independent domination number of the splitted graphs $S(H_n)$ if n is even, then

(1) $i [S(H_n)] = \frac{4n}{3}$ if $n \cong 0 \pmod{12}$ (2) $i [S(H_n)] = \frac{4}{3}(n+1)$ if $n \cong 2 \pmod{12}$ (3) $i [S(H_n)] = \frac{4}{3}(n+2)$ if $n \cong 4 \pmod{12}$ (4) $i [S(H_n)] = \frac{4n}{3}$ if $n \cong 6 \pmod{12}$ (5) $i [S(H_n)] = \frac{4}{3}(n+1)$ if $n \cong 8 \pmod{12}$ (6) $i [S(H_n)] = \frac{4}{3}(n+2)$ if $n \cong 10 \pmod{12}$.

Proof let $S(H_n)$ be splitted graph of H_n if n is even.

case (1) $n \cong 0 \pmod{12}$

Let $V[S(H_n)] = \{u_i, v_i, u_i^1, v_i^1: 1 \le i \le n\}$, vertex u_i is adjacent to $u_{i-1}, u_{i+1}, v_{i-1}, v_{i+1}$ where as v_i is adjacent to u_{i-1} and u_{i+1} for all $2 \le i \le n-1$. By definition, u_i and v_i are not adjacent and in every triplet of u_i and v_i the middle vertices satisfy the independent dominating set condition. The same process is application for the set of vertices u_i^1 and v_i^1 .

Hence, $i[S(H_n)] = \frac{4n}{3}$.

For example, i $[S(H_{12})] = \{u_2, v_2, u_5, v_5, u_8, v_8, u_{11}, v_{11}, u_2^1, v_2^1, u_5^1, v_5^1, u_8^1, v_8^1, u_{11}^1, v_{11}^1\}$ as shown in the figure 3.8.

case (2) $n \cong 2 \pmod{12}$

Let $V[S(H_n)] = \{u_i, v_i, u_i^1, v_i^1: 1 \le i \le n\}$, considering a triplet in the case to choose a pair of vertices from u_i 's, (n+1) is alone a multiple of 3. In the same process. It is required pair of vertices from u_i^1 's to the dominating set.

Hence, i
$$[S(H_n)] = \frac{4}{2}(n + 1)$$

For example,

 $i[S(H_{14})] = \{u_2, v_2, u_5, v_5, u_8, v_8, u_{11}, v_{11}, u_{14}, v_{14}, u_2^1, v_2^1, u_5^1, v_5^1, u_8^1, v_8^1, u_{11}^1, v_{11}^1, u_{14}^1, v_{14}^1\} \text{ as shown in the figure 3.9.}$

case (3) $n \cong 4 \pmod{3}$

Let $V[S(H_n)] = \{u_i, v_i, u_i^1, v_i^1: 1 \le i \le n\}$, considering a triplet in the case to choose a pair of vertices from u_i 's, (n+2) is alone a multiple of 3. In the same process. It is required pair of vertices from u_i^1 's to the dominating set.

Hence, i $[S(H_n)] = \frac{4}{3}(n+2)$ For example, i $[S(H_4)] = \{u_2, v_2, u_4, v_4, u_2^1, v_2^1, u_4^1, v_4^1\}$ as shown in the figure 3.10

case (4) $n \cong 6 \pmod{12}$

Let $V[S(H_n)] = \{u_i, v_i, u_i^1, v_i^1: 1 \le i \le n\}$, vertex u_i is adjacent to $u_{i-1}, u_{i+1}, v_{i-1}, v_{i+1}$ where as v_i is adjacent to u_{i-1} and u_{i+1} for all $2 \le i \le n-1$. By definition, u_i and v_i are not adjacent and in every triplet of u_i and v_i the middle vertices satisfy the independent dominating set condition. The same process is application for the set of vertices u_i^1 and v_i^1 .

Hence, $i[S(H_n)] = \frac{4n}{3}$. For example, $i[S(H_6)] = \{u_2, v_2, u_5, v_5, u_2^1, v_2^1, u_5^1, v_5^1\}$ as shown in the figure 3.11.

case (5) $n \cong 8 \pmod{12}$ Let $V[S(H_n)] = \{u_i, v_i, u_i^1, v_i^1: 1 \le i \le n\}$, considering a triplet in the case to choose a pair of vertices from u_i 's, (n+1) is alone a multiple of 3. In the same process. It is required pair of vertices from u_i^1 's to the dominating set.

Hence, $i[S(H_n)] = \frac{4}{3}(n+1)$ For example, $i[S(H_8)] = \{u_2, v_2, u_5, v_5, u_8, v_8, u_2^1, v_2^1, u_5^1, v_5^1, u_8^1, v_8^1\}$ as shown in the figure 3.12.

case (6) $n \cong 10 \pmod{3}$

Let V $[S(H_n)] = \{u_i, v_i, u_i^1, v_i^1: 1 \le i \le n\}$, considering a triplet in the case to choose a pair of vertices from u_i 's, (n+2) is alone a multiple of 3. In the same process. It is required pair of vertices from u_i^1 's to the dominating set.

Hence, i $[S(H_n)] = \frac{4}{3}(n+2)$

For example, i $[S(H_{10})] = \{ u_2, v_2, u_5, v_5, u_8, v_8, u_{10}, u_2^1, v_2^1, u_5^1, v_5^1, u_8^1, v_8^1, u_{10}^1, v_{10}^1 \}$ as shown in the figure 3.13.

Figure 3.9 *S*(*H*₁₄)

Theorem 3.14. Independent domination number of the splitted graphs $S(P_n^+)$.then

 $i \left[S(P_n^+) \right] = 2n.$

Proof. Let V $[S(P_n^+)] = \{u_i, v_i, u_i^1, v_i^1: 1 \le i \le n\}$, vertex v_i is adjacent to u_{i-1}, u_{i+1}, u_i^1 where as v_i^1 is adjacent to u_i for all $2 \le i \le n-1$. By definition, v_i and v_i^1 are not adjacent and every v_i and v_i^1 ; $1 \le i \le n$, vertices are satisfy the independent dominating set condition.

Hence, $i [S(P_n^+)] = 2n$.

For example, i $[S(P_5^+)] = \{v_1, v_2, v_3, v_1^1, v_2^1, v_3^1\}$ as shown in the figure 3.15

Theorem 3.16. Independent domination number of the splitted graphs $S(P_n \circ NK_1)$.then i $[S(P_n \circ NK_1)] = n (1+N)$.

Proof. Let $S(P_n \circ NK_1) = \{ u_i, v_i, u_{ij}, v_{ij} : 1 \le i \le n, 1 \le j \le N \}$. vertex v_i is adjacent to u_{i-1}, u_{i+1} and adjacent to $u_{ij}; 1 \le i \le n, 1 \le j \le N$ where as v_{ij} is adjacent to u_i for all $1 \le i \le n, 1 \le j \le N$. By definition, v_i and v_{ij} are not adjacent and every v_i and $v_{ij}; 1 \le i \le n, 1 \le j \le N$, vertices are satisfy the independent dominating set condition.

Hence, $i [S(P_n \circ NK_1)] = n (1+N).$

For example, i $[S(P_4 \circ 2K_1)] = \{v_1, v_2, v_3, v_4, v_{11}, v_{12}, v_{21}, v_{22}, v_{31}, v_{32}, v_{33}, v_{23}, v_{13}\}$ as shown in the figure 3.17

Theorem 3.18 For any connected Graph S(G), i $[S(G)] \le q - \Delta[S(G)]$. **Proof.** Let S(G) be a splitted graph. Let $D \subseteq S(G)$ such that the subgraph < D > is independent. Clearly, D is an i-set of S(G). It follows that $|D| \le q - \Delta[S(G)]$. Hence i $[S(G)] \le q - \Delta[S(G)]$.

Observation 3.19. Any splitted graph $p \le q$.

Observation 3.20. For any splitted graph S(G), (i) $\Delta[S(G)] \le i [S(G)]$ (ii) $\Delta[S(G)] > i [S(G)]$ for $S(P_2)$ and $S(P_3)$.

Theorem 3.21. For any splitted graph S(G),

 $\gamma \left[S(G) \right] \le i \left[S(G) \right]$

and this bound is sharp.

Proof. clearly, every independent dominating set is a dominating set of G. Thus $\gamma[S(G)] \le i[S(G)]$. For the splitted graph $S(P_2)$ and $S(P_3)$ the bound is sharp $\gamma[S(P_2)] = i[S(P_2)] = 2$ and $\gamma[S(P_3)] = i[S(P_3)] = 2$.

Theorem 3.22. For any splitted graph S(G),

 $\gamma \left[S(G) \right] + i \left[S(G) \right] \le p$

and this bound is sharp.

Proof. Form the definition, the proof follow and bound is sharp for $S(P_2)$.

Theorem 3.23. For any splitted graph S(G),

$$i[S(G)] \leq \left\lfloor \frac{P\Delta[S(G)]}{(\Delta[S(G)]+1)} \right\rfloor$$

and this bund is sharp.

Proof. By theorem 3.22, $i[S(G)] \le p - \gamma[S(G)]$.

since $\left[\frac{p}{(\Delta[S(G)]+1)}\right] \le \gamma [S(G)]$. $i [S(G)] \le p - \left[\frac{p}{(\Delta[S(G)]+1)}\right]$. Hence, $i [S(G)] \le \left\lfloor\frac{P\Delta[S(G)]}{(\Delta[S(G)]+1)}\right\rfloor$.

For the splitted graph $S(P_2)$, the bound is sharp.

REFERENCES

- [1] Allan.R.B. and Laskar.R.C, On domination and independent dommination numbers of a graphs, Discrete math, 23 (1978) 73-76.
- [2] Cockayane.C.J, Dawes.R.B. and Hedetniemi, *Total domination in graphs*, Networks, 10 (1980) pp. 211-219.
- [3] Flach.P. and Volkmann.L, Estimations for the domination number of a graph, Discrete math., 80 (1990) 145-151.
- [4] Harrary.F, Graph Theory, Adadison-Wesley Publishing Company Inc, USA, 1969.
- [5] Hedetniemi.S.T. and Laskar.R.C, *Connected domination in graphs*, In B. Bollobas, editor, Graph Theory and Combinatorics, Acadamic Press, London(1984) 209-218.
- [6] Kulli.V.R., Theory of domination in graphs, vishwa itrnatiional publications Gulbarga India.
- [7] Nellai Murugan.A. and EsakkiMuthu.A., *Domination of Complement of a Splitted Graphs*, Indian Journal of Applied Research, Vol.4, issue 4, April 2014, pp. 392-394.
- [8] Nellai Murugan.A. and EsakkiMuthu.A., *Domination and Total Domination of Splitted Graphs*, International Journal of Mathematical Archive, April 2014, (accepted).
- [9] Sampathkumar.E. and Walikar.H.B, The Connected dominaiton number of a graph, J.Math.Phys.Sci., 13 (1979) 607-613.
- [10] Walikar.H.B, Acharya.B.D. and Sampathkumar.E, *Recent development in the theory of domination graphs*, In MRI Lecture Notes in Math. Mahta Research Instit., Allahabad No.1, (1979).