
International Journal of Mathematics Trends and Technology – Volume 8  Number 1 – April  2014 

ISSN: 2231-5373                   http://www.ijmttjournal.org                              Page 68 
 

Reflection and Transmission of Elastic Waves at 
the Loosely Bonded Solid-Solid Interface  

 Neelam Kumari                                                                                                                          
Assistant Professor, Department of Mathematics,                                                                                                      

Ch. Devi Lal University, Sirsa, 125055, India.                                                                                                                                  

Abstract 

 Reflection and transmission phenomenon of plane waves 
at a loosely bonded interface between linear isotropic elastic solid 
half space and fluid saturated incompressible porous solid half 
space is studied in the present study. Plane wave P or SV- wave 
incidents on the interface through linear isotropic elastic solid half 
space. The amplitude ratios of various reflected and transmitted 
waves to that of incident wave are obtained. These amplitude ratios 
have been computed numerically for a particular model for 
different values of bonding parameter. It is observed that these 
amplitude ratios depend on angle of incidence of the incident wave 
and material properties of medium and these are affected by the 
bonding parameter and fluid filled in the pores of fluid saturated 
incompressible porous half space. A special case is also obtained 
and discussed from the present study.   

Keywords: Porous solid, reflection, transmission, longitudinal wave, 
transverse wave, amplitude ratios, empty porous solid.  

1. Introduction 

Elastic waves propagation in fluid saturated porous medium is 
of great interest due to its importance in various fields  such as 
soil dynamics, hydrology, seismology, earthquake engineering 
and geophysics. Layers of porous solids, such as sandstone or 
limestone, saturated with oil or groundwater are often present in 
the earth’s crust. They are of great interest in geophysical 
exploration. Therefore, it is a matter of interest to study the 
incompressible fluid saturated poroelastic solid in contact with 
another incompressible fluid saturated poroelastic solid. To 
study the mechanical behaviour of a fluid saturated porous 
medium due to the different motions of the solid and liquid 
phases and different material properties and the complicated 
structures of pores, is very complex. So many researchers tried 
to overcome this difficulty from time to time.  

Bowen[1] and de Boer and Ehlers[2-3]developed a theory for 
incompressible fluid saturated porous medium based on the 
work of Fillunger model[4]. Based on this theory, many 
researchers like de Boer and Liu[5-6], Kumar and Hundal [7],de 
Boer and Didwania [8],  Tajuddin and Hussaini [9],Kumar 
et.al.[10] etc. studied some problems of wave propagation in 
fluid saturated porous media. In the problems of wave 
propagation at the interface between two elastic half spaces, the 
contact between them is normally assumed to be welded. 

However, in certain situations, there are reasons for expecting 
that bonding is not complete. Murty [11] discussed a theoretical 
model for reflection, transmission, and attenuation of elastic 
waves through a loosely bonded interface between two elastic 
solid half spaces by assuming that the interface behaves like a 
dislocation which preserves the continuity of stresses allowing a 
finite amount of slip. A similar situation occurs at the two 
different poroelastic solids, as the liquid present in the porous 
skeleton may cause the two media to be loosely bonded. 
Vashisth and Gogna [12], Kumar and Singh [13] etc. discussed 
the problems of reflection and transmission at the loosely 
bonded interface between two half spaces.  

Using de Boer and Ehlers [3] theory for fluid saturated 
porous medium, the reflection and transmission of longitudinal 
wave (P-wave) or transverse wave (SV-wave) at a loosely 
bonded interface between linear isotropic elastic solid half space 
and fluid saturated porous half space is investigated. A special 
case when fluid saturated porous half spaces reduce to empty 
porous solid half spaces has been deduced and discussed 
accordingly. Amplitudes ratios for various reflected and 
transmitted waves are computed for a particular model and 
depicted graphically.  

2. Basic equations and constitutive relations 

For ࡹ૚	(Fluid Saturated Incompressible Porous Medium) 

Following de Boer and Ehlers [3] the equations 
governing the deformation of an incompressible porous medium 
saturated with non-viscous fluid in the absence of body forces 
are 

										∇. (ηୗu̇ୗ + η୊u̇୊) = 0,																																																												(1)   

											൫λୗ + µୗ൯∇(∇. uୗ) + µୗ∇ଶ − ηୗ∇p− ρୗüୱ + S୴(u̇୊ − u̇ୗ)
= 0,																																																																						(2) 

										η୊∇p + ρ୊ü୊ + S୴(u̇୊ − u̇ୗ) = 0,																																								(3) 

										T୉ୗ = 2µୗEୗ + λୗ(Eୗ. I)I,																																																							(4) 

										Eୗ =
1
2

(grad	uୗ + grad୘uୗ),																																															(5) 
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ere  u୧, u̇୧, ü୧,				i = F, S		  denote the displacement, velocities 
and acceleration of fluid and solid phases respectively and p is 
the effective pore pressure of the incompressible pore fluid. ρୗ 
and ρ୊are the densities of the solid and fluid respectively. T୉ୗ is 
the stress in the solid phase and Eୗ is the linearized langrangian 
strain tensor. λୗ  and µୗ are the macroscopic Lame’s parameters 
of the porous solid and ηୗ  and η୊  are the volume fractions 
satisfying 

 											ηୗ + η୊ = 1.																																																																											(6) 

The case of isotropic permeability, the tensor ݏ௩ describing the 
coupled interaction between the solid and fluid is given by de 
Boer and Ehlers (1990) as 

										S୴ =
(η୊)ଶγ୊ୖ

K୊ ۷,																																																																							(ૠ) 

where  γ୊ୖ  is the specific weight of the fluid  and K୊  is the 
Darcy’s permeability coefficient of the porous medium. 

We assume the displacement vector u୧		(i = F, S) as  

										u୧ = (u୧, 0, w୧)  where    	i = F, S.																																								(8)  

Using eq. (8) in eqs. (1)-(3), the following equations for fluid 
saturated incompressible porous medium are obtained as: 

										(λୗ + µୗ)
∂θୗ

∂x + µୗ∇ଶuୗ − ηୗ
∂p
∂x − ρୗ

∂ଶuୗ

∂tଶ

+ S୴ ቈ
∂u୊

∂t −
∂uୗ

∂t
቉ = 0,																																					(9) 

										(λୗ + µୗ)
∂θୗ

∂z + µୗ∇ଶwୗ − ηୗ
∂p
∂z − ρୗ

∂ଶwୗ

∂tଶ

+ S୴ ቈ
∂w୊

∂t −
∂wୗ

∂t
቉ = 0,																																(10) 

										η୊
∂p
∂x + ρ୊

∂ଶu୊

∂tଶ + S୴ ቈ
∂u୊

∂t −
∂uୗ

∂t
቉ = 0,																										(11) 

										η୊
∂p
∂z + ρ୊

∂ଶw୊

∂tଶ + S୴ ቈ
∂w୊

∂t −
∂wୗ

∂t
቉ = 0,																						(12) 

										ηୗ ቈ
∂ଶuୗ

∂x∂t +
∂ଶwୗ

∂z∂t
቉+ η୊ ቈ

∂ଶu୊

∂x∂t +
∂ଶw୊

∂z ∂t
቉ = 0,															(13) 

  

Also,	t୸୸ୗ  and t୸୶ୗ  are the normal and tangential stresses in the 
solid phase and are 

										t୸୸ୗ = λୗ ቆ
∂uୗ

∂x +
∂wୗ

∂z
ቇ+ 2µୗ

∂wୗ

∂z ,																																(14) 

										t୸୶ୗ = µୗ ቆ
∂uୗ

∂z +
∂wୗ

∂x
ቇ,																																																					(15) 

where  

										θୗ =
∂(uୗ)
∂x +

∂(wୗ)
∂x .																																																										(16) 

and 

										∇ଶ=
∂ଶ

∂xଶ +
∂ଶ

∂zଶ .																																																																				(17) 

The displacement components u୨	 and w୨  are related to the 
dimensional potential ϕ୨ and ψ୨ as  

										u୨ =
∂ϕ୨

∂x +
∂ψ୨

∂z ,			w୨ =
∂ϕ୨

∂z −
∂ψ୨

∂x ,							j = F, S.													(18) 

With the help of (18) we obtain the following equations 
determining ϕୱ,ϕ୊,ψୱ	,ψ୊	as: 

										∇ଶϕୗ −
1

Cଶ
∂ଶϕୗ

∂tଶ −
S୴

(λୗ + 2µୗ)(η୊)ଶ
∂ϕୗ

∂t = 0	,													(19) 

											ϕ୊ = −
ηୗ

η୊ϕ
ୗ	,																																																																						(20) 

										µୗ∇ଶψୗ − ρୗ
∂ଶψୗ

∂tଶ + S୴ ቈ
∂ψ୊

∂t −
∂ψୗ

∂t
቉ = 0	,																				(21) 

										ρ୊
∂ଶψ୊

∂tଶ + S୴ ቈ
∂ψ୊

∂t −
∂ψୗ

∂t
቉ = 0	,																																								(22) 

										(η୊)ଶp− ηୗρ୊
∂ଶϕୱ

∂tଶ − S୴
∂ϕୱ

∂t = 0,																																		(23) 

where  

											C = ඨ
(η୊)ଶ(λୗ + 2µୗ)

(η୊)ଶρୗ + (ηୗ)ଶρ୊ .																																																	(24) 

For ܯଶ (Homogeneous Isotropic Elastic Solid Medium) 

The equation governing the small motions in a homogeneous 
isotropic elastic are    

										µᇱ∇ଶܝᇱ + (λᇱ + µᇱ)		∇(∇.ܝᇱ) = ρᇱ̈ܝᇱ,																																(25) 

where symbols λᇱ, µᇱ  are Lame’s constants, ρᇱ		is the density and 
ᇱܝ  is the displacement vector. Superposed dots on right hand 
side of eq. (25) stand for second partial derivative with respect 
to time. 

The stress strain relation in the isotropic elastic medium is given 
by   

												σ୧୨ᇱ = λᇱe୩୩ᇱ	δ୧୨ + 2µᇱ	e୧୨
ᇱ,																																																	(26) 

where 
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											e୧୨ ᇱ =
1
2
ቆ
∂u୧ᇱ

∂x୨
+
∂u୨ᇱ

∂x୧
ቇ ,																																																							(27) 

are the components  of the strain tensor,  e୩୩ᇱ is the dilatation  
and σ୧୨ᇱ  are the components of stress tensor in the isotropic 
elastic medium. 

For the two dimensional problem, the displacement vector ܝᇱ  is 
taken as  

ᇱܝ										 = (uᇱ, 0, wᇱ),																																																																					(28) 

 The displacement components uᇱ and wᇱ are related to potential 
functions ϕᇱ  and ψᇱ as  

										uᇱ =
∂ϕ′

∂x +
∂ψ′

∂z 	,			w
′ =

∂ϕ′

∂z −
∂ψ′

∂x 	,																																		(29) 

Using equations (28) and (29) in equation (26), we obtain as 

												∇ଶϕᇱ =
1

vଵᇱ
ଶ
∂ଶϕ′

∂tଶ ,																																																																(30) 

												∇ଶψᇱ =
1

vଶᇱ
ଶ
∂ଶψ′

∂tଶ ,																																																																	(31) 

where vଵᇱ = ට஛ᇲାଶஜᇲ

஡ᇲ
   and vଶᇱ = ටஜᇲ

஡ᇲ
   are the velocities of 

longitudinal wave (P-wave) and transverse wave (SV-wave)  in 
isotropic elastic medium respectively.  

3. Formulation of the problem and its solution. Consider a 
model consisting of   linear isotropic elastic solid half space 
Mଶ	[z < 0]  and fluid saturated porous medium Mଵ	[z > 0] (see 
figure1). We take the z-axis pointing into lower half-space and 
z=0 is loosely bonded interface. A longitudinal wave (P-wave) 
or transverse wave (SV-wave) propagating through the fluid 
saturated porous half space medium Mଵ	  and incident at the 
plane z=0 and making an angle θ଴ with normal to the surface. 
Corresponding to each incident wave (P-wave or SV-wave), we 
get two reflected waves P-wave and SV-wave in the medium Mଵ 
and two transmitted waves P-wave and SV-wave in medium Mଶ. 

 

Fig.1 Geometry of the problem 

In Medium ࡹ૚  

The potential function satisfying the equations (19)-(23) can be 
						{ϕୗ,ϕ୊, p} = {1, mଵ, mଶ}ൣA଴ଵ	exp൛ikଵ൫x	sinθ଴– z	cosθ଴൯+
iωଵtൟ		+ Aଵexp{ikଵ(x	sinθଵ + z	cosθଵ) + iωଵt}൧,																		(32) 

									{ψୗ	,ψ୊} = {1, mଷ}[B଴ଵ	exp{ikଶ(x	sinθ଴– z	cosθ଴) + iωଶt}
+ Bଵexp{ikଶ(x	sinθଶ + z	cosθଶ) + iωଶt}],		 

                                                                                                 (33) 

 

where 

										mଵ = −
ηୗ

η୊ ,						mଶ = −ቈ
ηୗωଵ

ଶρ୊ − iωଵS୴
(η୊)ଶ ቉ ,				mଷ

=
iωଶS୴

iωଶS୴ −ωଶ
ଶρ୊

,																																							(34) 

and  A଴ଵ and B଴ଵ are amplitudes of the incident P-wave and SV-
wave, respectively. Aଵ  ,	Bଵ  are amplitudes of the reflected P-
wave and SV-wave respectively.  

In Medium ࡹ૛ 

Take the potential function satisfying the equations (30) and 
(31) as  

										ϕᇱ = Aഥଵexp൛ikതଵ(x	sinθതଵ − z	cosθതଵ) + iωഥଵtൟ,																(35) 

										ψᇱ = Bഥଵexp൛ikതଶ(x	sinθതଶ − z	cosθതଶ) + iωഥଶtൟ,																(36) 

where		kതଵ and  kതଶ are wave numbers of transmitted  P-wave and 
SV-wave, respectively. Aഥଵ	  and Bഥଵ  are  amplitudes  of 
transmitted P-wave and SV-wave.	 

4. Boundary conditions. For propagation of plane waves at the 
loosely bonded interface of an isotropic elastic solid half space 
and fluid saturated incompressible porous half space, the 
boundary conditions are   

										t୸୸ୗ − p = 	σ୸୸ᇱ,					t୸୶ୗ = 	σ୸୶ᇱ,						σ୸୶ᇱ = K୲(uୱ − uᇱ),
wୱ

= wᇱ		,																																																									(37) 

where K୲ = ikμτ and		τ = ஓ
(ଵିஓ)ୱ୧୬஘బ

,																																						(37ܽ)	                                                                                                                

γ  is bonding constant. 		0 ≤ γ ≤ 1.			γ = 0  corresponds to 
smooth surface and γ = 1 corresponds to a welded interface  

In order to satisfy the boundary conditions, the extension of the 
Snell’s law gives  

										
sinθ଴

V଴
=

sinθଵ
Vଵ

=
sinθଶ

Vଶ
=

sinθതଵ
vଵᇱ

=
sinθതଶ

vଶᇱ
,																						(38) 
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Also 

											kଵVଵ = kଶVଶ = kതଵvଵᇱ = kതଶvଶᇱ = ω,    at ݖ = 0,														(39) 

For P-wave, 

										V଴ = Vଵ,				θ଴ = θଵ,																																																															(40) 

For SV-wave, 

										V଴ = Vଶ,				θ଴ = θଶ,																																																															(41) 

For incident longitudinal wave (P-wave), putting   B଴ଵ = 0 in 
equation (33) and for incident transverse wave putting			A଴ଵ = 0  
in equation (32). Substituting the expressions of potentials given 
by (32)-(33) and(35)-(36) in equations (14)-(15),(18) and (26) 
and (29) and using equations (37)-(41), we get a system of four 
non homogeneous which can be written as  

										෍ a୧୨

ସ

୨ୀ଴

Z୨ = Y୧,								(i = 1,2,3,4)																																									(42) 

where 

										Zଵ =
Aଵ

A∗ ,					Zଶ =
Aଶ

A∗ ,				Zଷ =
Aଵ

A∗ , Zସ =
Bഥଵ
A∗ 														(43) 

The components		a୧୨ in non dimensional form can be written as 

										aଵଵ =
λୗ

µୗ + 2cosଶθଵ +
mଶ

µୗkଵ
ଶ			,				 

													aଵଶ = −2sinθଶcosθଶ
kଶ

ଶ

kଵ
ଶ 		 , 					aଵଷୀ −

λᇱ	kഥ ଵ
ଶ

kଵ
ଶµୗ

		, 

												aଵସ = −
µ′kതଶ

ଶsin2θതଶ
kଵ

ଶµୗ
	 , 										aଶଵ = 2sinθଵcosθଵ		,				 

											aଶଶ 	=
kଶ

ଶ(cosଶθଶ − sinଶθଶ)
kଵ

ଶ ,							aଶଷ =
µ′		kഥ ଵ

ଶsin2θതଵ
kଵ

ଶµୗ
	,		 

												aଶସ = −
µ′	kതଶ

ଶcos2θതଶ
kଵ

ଶµୗ
	 , 										aଷଵ = K୲	i	sinθଵ	,												 

											aଷଶ =
K୲	i	kଶcosθଶ

kଵ
, 

											aଷଷ = −
K୲	i	kതଵ

kଵ
sinθതଵ −

µ′		kഥ ଵ
ଶsin2θതଵ	
	kଵ

 

											aଷସ =
K୲	i	kതଶcosθതଶ

kଵ
+

µ′	kതଶ
ଶcos2θതଶ	
	kଵ

	,				 

										aସଵ = i	cosθଵ	, 																aସଶ = −
i	kଶsinθଶ

kଵ
, 

										aସଷ =
i	kഥ ଵcosθതଵ

kଵ
	,												aସସ =

i	kതଶsinθതଶ
kଵ

	,																						(44) 

For incident longitudinal wave: 

												A∗ = A଴ଵ	, Yଵ = −aଵଵ	, 	Yଶ = aଶଵ, 	Yଷ = −aଷଵ,	Yସ = aସଵ,	 

                                                                                                 (45) 

For incident transverse wave: 

												A∗ = B଴ଵ, Yଵ = aଵଶ, 	Yଶ = −aଶଶ, 	Yଷ = aଷଶ,		Yସ = −aସଶ,		 

                                                                                                 (46) 

Special case:- 

If pores are absent or gas is filled in the pores then  ρ୊ is very 
small as compared to ρୗ  and hence can be neglected, so the 
equation (24) gives us  

										C = ඨ
λୗ + 2µୗ

ρୗ .																																																																				(47) 

and the coefficients aଵଵ in (44) changes to  

										aଵଵ =
λୗ

µୗ + 2cosଶθଵ	,																																																											(48) 

and all the remaining coefficients in (44) remain same. For this 
case the problem reduces to the problem of linear isotropic 
elastic solid half space over empty porous solid half space. 

5. Numerical results and discussion 

After obtaining the theoretical results in above sections, we have 
computed them numerically by taking the following values of 
relevant elastic parameters to study in more detail the behaviour 
of various amplitude ratios. 

In medium 		Mଵ , the physical parameters for fluid saturated 
incompressible porous medium are taken from de Boer, Ehlers 
and Liu [14] as 

										ηୱ = 0.67,						η୊ = 0.33,					ρୱ = 1.34	Mg/mଷ,					 

										ρ୊ = 0.33	Mg/mଷ,				λୱ = 5.5833	MN/mଶ 

												K୊ = 0.01m/s,				γ୊ୖ = 10.00KN/mଷ,			 

										µୱ = ଼.ଷ଻ହ଴୒
୫మ ,			ω∗ = ଵ଴

ୱ
,																																																							(49)                               

In medium 		Mଶ , the physical parameters for isotropic elastic 
solid are as follows 
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										ρ′ = 2.65
Mg
mଷ 	 , 				µ

′ = 2.238
MN
mଶ 	 , 							λ

′ = 2.238
MN
mଶ 	,		 

                                                                                                 (50) 

Using MATLAB, a computer programme has been 
developed and modulus of amplitude ratios |ܼ௜|, (݅ = 1,2,3,4, ) 
for various reflected and transmitted waves have been 
computed. |ܼଵ|  and |ܼଶ|  represent the modulus of amplitude 
ratios for reflected P and reflected SV-wave respectively. Also, 
|ܼଷ|  and |ܼସ|  represent the modulus of amplitude ratios for 
transmitted P and transmitted SV-wave respectively. Dashed 
dotted line represents the variations of the amplitude ratios for 
bonding constant γ = 0, dotted line correspond γ =0.25, dashed 
line for γ = 0.5 , solid line for γ =0.75  and bold dotted line for 
γ = 1 in all the figures (2)-(17)  w.r.t. angle of incidence of the 
incident P or SV-wave. The variations in all the figures are 
shown for the range	0଴ ≤ θ ≤ 90଴. 

Incident P-wave 

Figures (2)-(5) represent the variations of the amplitude 
ratios of reflected P-wave, reflected SV-wave, transmitted P-
wave and transmitted SV-wave with angle of incidence of 
incident P-wave. The behaviour of all these distribution curves 
for reflected P-wave and for transmitted P-wave is similar. For 
reflected SV–wave and transmitted SV-wave, the behaviour of 
all curves is also same i.e.  Increasing from normal incidence to 
maximum value and then decreasing from maximum value to 
grazing incidence. Figures (6)-(9) show the variations of the 
amplitude ratios of reflected P-wave, reflected SV-wave, 
transmitted P-wave and transmitted SV-wave with angle of 
incidence of incident P-wave in special case. The effect of fluid 
filled in the pores of fluid saturated porous medium is clear by 
comparing the maximum values of corresponding amplitude 
ratio in figures (2)-(5) and (6)-(9). Also in the figures (6)-(9), 
the values corresponding to bonding parameter  γ = 0, i.e., for 
smooth interface are large in comparison to other interface 
parameters. 

Incident SV-wave 

Figures (10)-(17) show the variations of the amplitude 
ratios for reflected P-wave, reflected SV-wave, transmitted P-
wave and transmitted SV-wave with angle of incidence of the 
incident SV-wave. The behaviour of all these curves in figures 
(10)-(17) is same i.e. they oscillates. In all the figures (10)-(17), 
the amplitude ratios for the bonding parameter γ = 0.25  are 
maximum except in figure (14). The effect of fluid filled in the 
pores of fluid saturated porous medium is clear by comparing 
the maximum values of corresponding amplitude ratio in figures 
(10)-(13) and (14)-(17). 

6. Conclusion 

Reflection and transmission phenomenon of incident 
elastic waves at a loosely interface between linear elastic solid 
half space and fluid saturated porous half space has been studied 

when P-wave or SV-wave is incident. It is observed that the 
amplitudes ratios of various reflected and transmitted waves 
depend on the angle of   incidence of the incident wave and 
material properties. The effect of fluid filled in the pores of 
incompressible fluid saturated porous medium is significant on 
amplitudes ratios. Effect of bonding parameter is observed on 
amplitude ratios.  

 

Figs. 2-5. Variation of the amplitude ratios of reflected P-wave, 
reflected SV-wave, transmitted P-wave and transmitted SV-

wave with angle of incidence of P-wave. 

 

Figs. 6-9. Variation of the amplitude ratios of reflected P-wave, 
reflected SV-wave,  transmitted P-wave and transmitted SV-

wave with angle of incidence of P-wave in case of empty porous 
solids. 
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Figs. 10-13. Variation of the amplitude ratios of reflected P-
wave, reflected SV-wave, transmitted P-wave and transmitted 

SV-wave with angle of incidence of SV-wave. 

 

Figs. 14-17. Variation of the amplitude ratios of reflected P-
wave, reflected SV-wave,  transmitted P-wave and transmitted 
SV-wave with angle of incidence of P-wave in case of empty 

porous solids. 
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