On Isomorphism in C^{*}-Ternary Algebras for a Cauchy-Jensen Functional Equations

R.Murali ${ }^{1}$, K.Ravi ${ }^{2}$ and N.Anbumani ${ }^{3}$
${ }^{1,2,3}$ Department of Mathematics
Sacred Heart College

Tirupattur-635 601, Tamilnadu, India.
Abstract: In this paper, we investigate isomorphisms between C^{*}-ternary algebras by proving the Hyers-Ulam-Rassias stability of homomorphisms in C^{*}-ternary algebras and of derivations on C^{*}-ternary algebras for the following Cauchy-Jensen additive mapping:

$$
\begin{aligned}
& f\left(\frac{x+y}{2}+z\right)-f\left(\frac{x-y}{2}+z\right)=f(y) \\
& f\left(\frac{x+y}{2}+z\right)+f\left(\frac{x-y}{2}+z\right)=f(x)+2 f(z) \\
& 2 f\left(\frac{x+y}{2}+z\right)=f(x)+f(y)+2 f(z)
\end{aligned}
$$

Key words: Cauchy-Jensen functional equation, C^{*}-ternary algebra isomorphism, Hyers- Ulam-Rassias stability, C^{*}-ternary derivation.

1.INTRODUCTION AND PRELIMINARIES

A C^{*}-ternary algebra is a complex Banach space A, equipped with a ternary product $(x, y, z) \rightarrow[x, y, z]$ of A^{3} to A, which is C-linear in the outer variables, conjugate C-linear in the middle variable. Also it is associative in the sense that
$[x, y,[z, w, v]]=[x,[w, z, y], v]=[[x, y, z], w, v]$
and satisfies $\mathrm{P}[\mathrm{x}, \mathrm{y}, \mathrm{z}] \mathrm{P} \leq \mathrm{P}_{\mathrm{x}} \mathrm{P} . \mathrm{P}_{\mathrm{y}} \mathrm{P} . \mathrm{P}_{\mathrm{z}} \mathrm{P}$ and $\mathrm{P}[\mathrm{x}, \mathrm{x}, \mathrm{x}] \mathrm{P}=\mathrm{PxP}^{3}$. If a C^{*}-ternary algebra ($A,[\ldots,, .$,$]) has an$ identity, i.e., an element $e \in A$ such that $x=[x, e, e]=[e, e, x]$ for all $x \in A$, then it is routine to verify that A, endowed with $x \circ y=[x, e, y]$ and $x^{*}=[e, x, e]$, is a unital C^{*}-algebra. Conversely, if (A, \circ) is a C^{*} - algebra, then $[x, y, z]=x \circ y^{*} \circ z$ makes A into C^{*}-ternary algebra.

A C-linear mapping $H: A \rightarrow B$ is called a C^{*}-ternary algebra homomorphisms if $H([x, y, z])=[H(x), H(y), H(z)]$ for all $x, y, z \in A$. If, in addition, the mapping H is bijective, then
the mapping $H: A \rightarrow B$ is called a C^{*}-ternary algebra isomorphisms. A C-linear mapping $\delta: A \rightarrow A$ is called a C^{*}-ternary derivation if
$\delta([x, y, z])=[\delta(x), y, z]+[x, \delta(y), z]+[x, y, \delta(z)]$ for all $x, y, z \in A$.
The study of stability problems for functional equations is related to a question of Ulam [13] concerning the stability of group homomorphisms and affirmatively answered for Banach spaces by Hyers [5]. It was further generalized and excellent results obtained by number of authors [3,4,10]. During the past two decades, a number of papers and research monographs have been published on various generalization and applications of the generalized Hyers-Ulam stability to a number of functional equations and mappings, for example, Cauchy-Jensen mappings, K-additive mappings, invariant means, multiplicative mappings, bounded n-th differences, convex functions, generalized orthogonality mappings, Euler-lagrange functional equations, different equations, and Navier-Stokes equation. Also, the stability problem of ternary homomorphisms and ternary derivations was es- tablished by Park [9] and J.M.Rassias, Kim [12].

2. STABILITY OF HOMOM ORPHISMS IN C^{*}-TERNARY ALGEBRAS

Throughout this section, assume that A is a C^{*}-ternary algebra with norm P. P_{A} and that B is a C^{*}-ternary algebra with norm $\mathrm{P} . \mathrm{P}_{\mathrm{B}}$. For a given mapping $f: A \rightarrow B$, we define $P_{\mu} f(x, y, z)=f\left(\frac{\mu x+\mu y}{2}+\mu z\right)-\mu f\left(\frac{x-y}{2}+2\right)-\mu f(y)$ $Q_{\mu} f(x, y, z)=f\left(\frac{\mu x+\mu y}{2}+\mu z\right)+\mu f\left(\frac{x-y}{2}+2\right)-\mu f(x)-2 \mu f(z)$ $R_{\mu} f(x, y, z)=2 f\left(\frac{\mu x+\mu y}{2}+\mu z\right)-\mu f(x)-\mu f(y)-2 \mu f(z)$

For all $\mu \in T^{1}=\{\lambda \in C:|\lambda|=1\}$ and all $x, y, z \in A$.
We prove the Hyers-Ulam-Rassias stability of homomorphism in C^{*}-ternary algebras for the functional equation $P_{\mu} f(x, y, z)=0$.

Theorem 1 . Let $r>1$ and θ be positive real numbers, and let $f: A \rightarrow B$ be a mapping such that

$$
\begin{gather*}
\left\|P_{\mu} f(x, y, z)\right\|_{B} \leq \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right), \tag{1}\\
\|f([x, y, z])-[f(x), f(y), f(z)]\|_{B} \leq \theta\left(\|x\|_{A}^{r}+\left\|y_{A}^{r}\right\|+\|z\|_{A}^{r}\right) \tag{2}
\end{gather*}
$$

For all $\mu \in T^{1}$ and all $x, y, z \in A$. Then there exists a unique C^{*}-ternary algebra homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\|_{B} \leq \frac{3 \theta}{2^{r}-2}\|x\|_{A}^{r}, \text { for all } x \in A \tag{3}
\end{equation*}
$$

Proof: Let $\mu=1$ and $y=z=x$ in (1), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\|_{B} \leq 3 \theta\|x\|_{A}^{r} \tag{4}
\end{equation*}
$$

For all $x \in A$. So

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\|_{B} \leq \frac{3 \theta}{2^{r}}\|x\|_{A}^{r}
$$

For all $x \in A$. Hence

$$
\begin{align*}
\left\|2^{k} f\left(\frac{x}{2^{k}}\right)-2^{l} f\left(\frac{x}{2^{l}}\right)\right\|_{B} & \leq \sum_{j=k}^{l-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|_{B} \\
& \leq \frac{3 \theta}{2^{r}} \sum_{j=k}^{l-1} \frac{2^{j}}{2^{j r}}\|x\|_{A}^{r} \tag{5}
\end{align*}
$$

for all non-negative integers l and k with $l>k$ and all $x \in A$. It follows from (5) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $\mathrm{x} \in \mathrm{A}$. Since B is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $H: A \rightarrow B$ by

$$
H(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

For all $x \in A$. Moreover, letting $k=0$ and passing the limit $l \rightarrow \infty$ in (5), we get (3).

It follows from (1) that

$$
\begin{aligned}
\left\|H\left(\frac{x+y}{2}+z\right)-H\left(\frac{x-y}{2}+z\right)-H(y)\right\|_{B} & =\lim _{n \rightarrow \infty} 2^{n}\left\|f\left(\frac{x+y}{2^{n+1}}+\frac{z}{2^{n}}\right)-f\left(\frac{x-y}{2^{n+1}}+\frac{z}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)\right\|_{B} \\
& \leq \lim _{n \rightarrow \infty} \frac{2^{n} \theta}{2^{n r}}\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)=0
\end{aligned}
$$

For all $x, y, z \in A$. So

$$
H\left(\frac{x+y}{2}+z\right)-H\left(\frac{x-y}{2}+z\right)=H(y)
$$

For all $x, y, z \in A$. By the same way of [1, Lemma 2.1], the mapping $H: A \rightarrow B$ is Cauchy additive.
Letting $y=z=x$ in (1), we get

$$
\|f(2 \mu x)-2 \mu f(x)\|_{B} \leq 3 \theta\|x\|_{A}^{r}
$$

For all $\mu \in T^{1}$ and all $x \in A$. So

$$
H(\mu x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{\mu x}{2^{n}}\right)=\lim _{n \rightarrow \infty} \mu 2^{n} f\left(\frac{x}{2^{n}}\right)=\mu H(x)
$$

For all $\mu \in T^{1}$ and all $x \in A$. So the mapping $H: A \rightarrow B$ is C-linear by the same reasoning as in the proof of [8, Theorem 2.1]. It follows from (2) that

$$
\begin{aligned}
\|H([x, y, z])-[H(x), H(y), H(z)]\|_{B} & =\lim _{n \rightarrow \infty} 8^{n}\left\|f\left(\left[\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right]\right)-\left[f\left(\frac{x}{2^{n}}\right), f\left(\frac{y}{2^{n}}\right), f\left(\frac{z}{2^{n}}\right)\right]\right\|_{B} \\
& \leq \lim _{n \rightarrow \infty} \frac{8^{n} \theta}{2^{n r}}\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)=0
\end{aligned}
$$

For all $x, y, z \in A$. So

$$
H([x, y, z])=[H(x), H(y), H(z)]
$$

For all $x, y, z \in A$. Now let $S: A \rightarrow B$ be another Cauchy-Jensen additive mapping satisfying (3). Then we have

$$
\begin{aligned}
\|H(x)-S(x)\|_{B} & =2^{n}\left\|H\left(\frac{x}{2^{n}}\right)-S\left(\frac{x}{2^{n}}\right)\right\|_{B} \\
& \leq 2^{n}\left(\left\|H\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|_{B}+\left\|S\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|_{B}\right) \\
& \leq \frac{6 \cdot 2^{n} \cdot \theta}{2^{n r}\left(2^{r}-2\right)}\|x\|_{A}^{r}
\end{aligned}
$$

Which tends to zero as $n \rightarrow \infty$ for all $x \in A$. So we can conclude that $H(x)=S(x)$ for all $x \in A$.
This proves the uniqueness of H.
Thus the mapping $H: A \rightarrow B$ is a unique C^{*}-ternary algebra homomorphism satisfying (3).

Theorem 2. Let $r<1$ and θ be positive real numbers, and let $f: A \rightarrow B$ be a mapping satisfying (1) and (2). Then there exists a unique C^{*}-ternary algebra homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\|_{B} \leq \frac{3 \theta}{2-2^{r}}\|x\|_{A}^{r} \text { for all } x \in A . \tag{6}
\end{equation*}
$$

Proof: It follows from (4) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\|_{B} \leq \frac{3 \theta}{2}\|x\|_{A}^{r}
$$

For all $x \in A$. Hence

$$
\begin{aligned}
\left\|\frac{1}{2^{k}} f\left(2^{k} x\right)-\frac{1}{2^{l}} f\left(2^{l} x\right)\right\|_{B} & \leq \sum_{j=k}^{l-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\|_{B} \\
& \leq \frac{3 \theta}{2} \sum_{j=k}^{l-1} \frac{2^{j r}}{2^{r}}\|x\|_{A}^{r}
\end{aligned}
$$

for all non-negative integers l and k with $l>k$ and all $x \in A$. It follows from (7) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $\mathrm{x} \in \mathrm{A}$. Since B is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $H: A \rightarrow B$ by

$$
H(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

For all $x \in A$. Moreover, letting $k=0$ and passing the limit $l \rightarrow \infty$ in (7), we get (6).
The rest of the proof is similar to the proof of Theorem (1).
Similarly we can obtain the results for the functional equations $Q_{\mu} f(x, y, z)=0$ and $R_{\mu} f(x, y, z)=0$.

3. ISOMORPHISMS BETWEEN C^{*}-TERNARY ALGEBRAS

Throughtout this section, assume that A is a C^{*}-ternary algebra with norm P. P_{A} and unit e, and that B is a C^{*}-ternary algebra with norm P. P_{B} and unit e.

We investigate isomorphism between C^{*}-ternary algebras, associated to the functional equation $Q_{\mu} f(x, y, z)=0$.

Theorem 3. Let $r>1$ and θ be positive real numbers, and let $f: A \rightarrow B$ be a mapping such that

$$
\begin{gather*}
\left\|Q_{\mu} f(x, y, z)\right\|_{B} \leq \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right), \tag{8}\\
f([x, y, z])=[f(x), f(y), f(z)] \tag{9}
\end{gather*}
$$

For all $\mu \in T^{1}$ and all $x, y, z \in A$. If $\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{e}{2^{n}}\right)=e^{\prime}$, then the mapping $f: A \rightarrow B$ is a C^{*}-ternary algebra isomorphism.

Proof: Let $\mu=1$ and $y=z=x$ in (8), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\|_{B} \leq 3 \theta\|x\|_{A}^{r} \tag{10}
\end{equation*}
$$

For all $x \in A$. So

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\|_{B} \leq \frac{3 \theta}{2^{r}}\|x\|_{A}^{r}
$$

For all $x \in A$. Hence

$$
\begin{align*}
\left\|2^{k} f\left(\frac{x}{2^{k}}\right)-2^{l} f\left(\frac{x}{2^{l}}\right)\right\|_{B} & \leq \sum_{j=k}^{l-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|_{B} \\
& \leq \frac{3 \theta}{2^{r}} \sum_{j=k}^{l-1} \frac{2^{j}}{2^{j r}}\|x\|_{A}^{r} \tag{11}
\end{align*}
$$

for all non-negative integers l and k with $l>k$ and all $x \in A$. It follows from (11) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $\mathrm{x} \in \mathrm{A}$. Since B is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $H: A \rightarrow B$ by

$$
H(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

For all $x \in A$. Moreover, letting $k=0$ and passing the limit $l \rightarrow \infty$ in (11), we get

$$
\|f(x)-H(x)\|_{B} \leq \frac{3 \theta}{2^{r}-2}\|x\|_{A}^{r}, \text { for all } x \in A .
$$

It follows from (8) that

$$
\begin{aligned}
& \left\|H\left(\frac{x+y}{2}+z\right)+H\left(\frac{x-y}{2}+z\right)-H(x)-2 H(z)\right\|_{B} \\
& \quad=\lim _{n \rightarrow \infty} 2^{n}\left\|f\left(\frac{x+y}{2^{n+1}}+\frac{z}{2^{n}}\right)+f\left(\frac{x-y}{2^{n+1}}+\frac{z}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)-2 f\left(\frac{z}{2^{n}}\right)\right\|_{B} \\
& \quad \leq \lim _{n \rightarrow \infty} \frac{2^{n} \theta}{2^{n r}}\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)=0
\end{aligned}
$$

For all $x, y, z \in A$. So

$$
H\left(\frac{x+y}{2}+z\right)-H\left(\frac{x-y}{2}+z\right)=H(x)+2 H(z)
$$

For all $x, y, z \in A$. By the same way of [1, Lemma 2.1], the mapping $H: A \rightarrow B$ is Cauchy additive. Letting $y=z=x$ in (8), we get

$$
\|f(2 \mu x)-2 \mu f(x)\|_{B} \leq 3 \theta\|x\|_{A}^{r}
$$

For all $\mu \in T^{1}$ and all $x \in A$. So

$$
H(\mu x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{\mu x}{2^{n}}\right)=\lim _{n \rightarrow \infty} \mu 2^{n} f\left(\frac{x}{2^{n}}\right)=\mu H(x)
$$

For all $\mu \in T^{1}$ and all $x \in A$. So the mapping $H: A \rightarrow B$ is C-linear by the same reasoning as in the proof of [8, Theorem 2.1].

Since $f([x, y, z])=[f(x), f(y), f(z)] \quad$ for all $x, y, z \in A$.

$$
\begin{aligned}
H([x, y, z]) & =\lim _{n \rightarrow \infty} 8^{n} f\left(\left[\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right]\right) \\
& =\lim _{n \rightarrow \infty}\left[2^{n} f\left(\frac{x}{2^{n}}\right), 2^{n} f\left(\frac{y}{2^{n}}\right), 2^{n} f\left(\frac{z}{2^{n}}\right)\right] \\
& =[H(x), H(y), H(z)]
\end{aligned}
$$

For all $x, y, z \in A$. So the mapping $H: A \rightarrow B$ is a C^{*}-ternary homomorphism. It follows from (9) that

$$
H(x)=H([e, e, x])
$$

$$
\begin{aligned}
& =\frac{2^{n}}{2^{n}} \lim _{n \rightarrow \infty} 2^{n} f\left(\frac{1}{2^{n}}[e, e, x]\right) \\
& =\lim _{n \rightarrow \infty} 4^{n} f\left(\left[\frac{1}{2^{n}} e, \frac{1}{2^{n}} e, x\right]\right) \\
& =\lim _{n \rightarrow \infty}\left(\left[2^{n} f\left(\frac{1}{2^{n}} e\right), 2^{n} f\left(\frac{1}{2^{n}} e\right), f(x)\right]\right) \\
& =\left[e^{\prime}, e^{\prime}, f(x)\right]=f(x) \text { for all } x \in A
\end{aligned}
$$

Hence the bijective mapping $f: A \rightarrow B$ is a C^{*}-ternary algebra isomorphism.
Theorem 4. Let $r<1$ and θ be positive real numbers, and let $f: A \rightarrow B$ be a mapping satisfying (8) and (9). If $\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} e\right)=e^{\prime}$, then the mapping $f: A \rightarrow B$ is a C^{*}-ternary algebra isomorphisms. Proof: It follows from (10) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\|_{B} \leq \frac{3 \theta}{2}\|x\|_{A}^{r}
$$

For all $x \in A$. Hence

$$
\begin{align*}
\left\|\frac{1}{2^{k}} f\left(2^{k} x\right)-\frac{1}{2^{l}} f\left(2^{l} x\right)\right\|_{B} & \leq \sum_{j=k}^{l-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\|_{B} \\
& \leq \frac{3 \theta}{2} \sum_{j=k}^{l-1} \frac{2^{j r}}{2^{r}}\|x\|_{A}^{r} \tag{12}
\end{align*}
$$

for all non-negative integers l and k with $l>k$ and all $x \in A$. It follows from (12) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $\mathrm{x} \in \mathrm{A}$. Since B is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $H: A \rightarrow B$ by

$$
H(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

For all $x \in A$. Moreover, letting $k=0$ and passing the limit $l \rightarrow \infty$ in (12), we get

$$
\|f(x)-H(x)\|_{B} \leq \frac{3 \theta}{2-2^{r}}\|x\|_{A}^{r} \quad \text { for all } x \in A
$$

The rest of the proof is similar to the proof of Theorem (3).
Similarly we can obtain the results for the functional equations $P_{\mu} f(x, y, z)=0$ and $R_{\mu} f(x, y, z)=0$.

4. STABILITY OF DERIVATIONS ON C^{*}-TERNARY ALGEBRAS

Throughtout this section, assume that A is a C^{*}-ternary algebra with norm P. P_{A}.
We prove the Hyers-Ulam-Rassias stability of derivations in C^{*}-ternary algebras for the functional equation $R_{\mu} f(x, y, z)=0$.

Theorem 5. Let $r>1$ and θ be positive real numbers, and let $f: A \rightarrow A$ be a mapping such that

$$
\begin{gather*}
\left\|R_{\mu} f(x, y, z)\right\|_{A} \leq \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right) \tag{13}\\
\|f([x, y, z])-[f(x), y, z]-[x, f(y), z]-[x, y, f(z)]\|_{A} \leq \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right) \tag{14}
\end{gather*}
$$

For all $\mu \in T^{1}$ and all $x, y, z \in A$. Then there exists a unique C^{*}-ternary derivation $\delta: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\|_{A} \leq \frac{3 \theta}{2\left(2^{r}-2\right)}\|x\|_{A}^{r} \quad \text { for all } x \in A \tag{15}
\end{equation*}
$$

Proof: Let $\mu=1$ and $y=z=x$ in (13), we get

$$
\begin{equation*}
\|2 f(2 x)-4 f(x)\|_{A} \leq 3 \theta\|x\|_{A}^{r} \tag{16}
\end{equation*}
$$

For all $x \in A$. So

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\|_{A} \leq \frac{3 \theta}{2.2^{r}}\|x\|_{A}^{r}
$$

For all $x \in A$. Hence

$$
\begin{align*}
\left\|2^{k} f\left(\frac{x}{2^{k}}\right)-2^{l} f\left(\frac{x}{2^{l}}\right)\right\|_{A} & \leq \sum_{j=k}^{l-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|_{A} \\
& \leq \frac{3 \theta}{2.2^{r}} \sum_{j=k}^{l-1} \frac{2^{j}}{2^{j r}}\|x\|_{A}^{r} \tag{17}
\end{align*}
$$

for all non-negative integers l and k with $l>k$ and all $x \in A$. It follows from (11) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $\mathrm{x} \in \mathrm{A}$. Since B is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $H: A \rightarrow B$ by

$$
\delta(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

For all $x \in A$. Moreover, letting $k=0$ and passing the limit $l \rightarrow \infty$ in (17), we get (15).
It follows from (13) that

$$
\begin{aligned}
& \left\|2 \delta\left(\frac{x+y}{2}+z\right)-\delta(x)-\delta(y)-2 \delta(z)\right\|_{A} \\
& \quad=\lim _{n \rightarrow \infty} 2^{n}\left\|2 f\left(\frac{x+y}{2^{n+1}}+\frac{z}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)-2 f\left(\frac{z}{2^{n}}\right)\right\|_{A} \\
& \quad \leq \lim _{n \rightarrow \infty} \frac{2^{n} \theta}{2^{n r}}\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)=0 .
\end{aligned}
$$

For all $x, y, z \in A$. So

$$
2 \delta\left(\frac{x+y}{2}+z\right)=\delta(x)+\delta(y)+2 \delta(z)
$$

For all $x, y, z \in A$. By the same way of [1, Lemma 2.1], the mapping $\delta: A \rightarrow A$ is Cauchy additive. Letting $y=z=x$ in (13), we get

$$
\|2 f(2 \mu x)-4 \mu f(x)\|_{A} \leq 3 \theta\|x\|_{A}^{r}
$$

For all $\mu \in T^{1}$ and all $x \in A$. So

$$
\delta(\mu x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{\mu x}{2^{n}}\right)=\lim _{n \rightarrow \infty} \mu \cdot 2^{n} f\left(\frac{x}{2^{n}}\right)=\mu \delta(x)
$$

For all $\mu \in T^{1}$ and all $x \in A$. So the mapping $\delta: A \rightarrow A$ is C-linear by the same reasoning as in the proof of [8, Theorem 2.1]. It follows from (14) that

$$
\|\delta([x, y, z])-[\delta(x), y, z]-[x, \delta(y), z]-[x, y, \delta(z)]\|_{A}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} 8^{n}\left\|f\left(\frac{[x, y, z]}{8^{n}}\right)-\left[f\left(\frac{x}{2^{n}}\right), \frac{y}{2^{n}}, \frac{z}{2^{n}}\right]-\left[\frac{x}{2^{n}}, f\left(\frac{y}{2^{n}}\right), \frac{z}{2^{n}}\right]-\left[\frac{x}{2^{n}}, \frac{y}{2^{n}}, f\left(\frac{z}{2^{n}}\right)\right]\right\|_{A} \\
& \leq \lim _{n \rightarrow \infty} \frac{8^{n} \theta}{2^{n r}}\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)=0 .
\end{aligned}
$$

For all $x, y, z \in A$. So

$$
\delta([x, y, z])=[\delta(x), y, z]+[x, \delta(y), z]+[x, y, \delta(z)] \text { For all } x, y, z \in A
$$

Now we let $S: A \rightarrow A$ be another Cauchy-Jensen additive mapping satisfying (15). Then we have

$$
\begin{aligned}
\|\delta(x)-S(x)\|_{A} & =2^{n}\left\|\delta\left(\frac{x}{2^{n}}\right)-S\left(\frac{x}{2^{n}}\right)\right\|_{A} \\
& \leq 2^{n}\left(\left\|\delta\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|_{A}+\left\|S\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|_{A}\right) \\
& \leq \frac{3.2^{n} . \theta}{2^{n r}\left(2^{r}-2\right)}\|x\|_{A}^{r}
\end{aligned}
$$

Which tends to zero as $n \rightarrow \infty$ for all $x \in A$. So we can conclude that $\delta(x)=S(x)$ for all $x \in A$. This proves the uniqueness of δ. Thus the mapping $\delta: A \rightarrow A$ is a C^{*}-ternary derivation satisfying (15).

Theorem 6. Let $r<1$ and θ be positive real numbers, and let $f: A \rightarrow A$ be a mapping satisfying (13) and (14). Then there exists a unique C^{*}-ternary derivation $\delta: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\|_{A} \leq \frac{3 \theta}{2\left(2-2^{r}\right)}\|x\|_{A}^{r} \quad \text { for all } x \in A . \tag{18}
\end{equation*}
$$

Proof: It follows from (16) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\|_{A} \leq \frac{3 \theta}{4}\|x\|_{A}^{r}
$$

For all $x \in A$. Hence

$$
\left\|\frac{1}{2^{k}} f\left(2^{k} x\right)-\frac{1}{2^{l}} f\left(2^{l} x\right)\right\|_{A} \leq \sum_{j=k}^{l-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\|_{A}
$$

International Journal of M athematics Trends and Technology - Volume 8 Number 2 - April 2014

$$
\begin{equation*}
\leq \frac{3 \theta}{4} \sum_{j=k}^{l-1} \frac{2^{j r}}{2^{r}}\|x\|_{A}^{r} \tag{19}
\end{equation*}
$$

for all non-negative integers l and k with $l>k$ and all $x \in A$. It follows from (19) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $\delta: A \rightarrow A$ by

$$
\delta(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

For all $x \in A$. M oreover, letting $k=0$ and passing the limit $l \rightarrow \infty$ in (19), we get (18).
The rest of the proof is similar to the proof of Theorem (5).
Similarly we can obtain the results for the functional equations $P_{\mu} f(x, y, z)=0$ and $Q_{\mu} f(x, y, z)=0$.

REFERENCES

[1] C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Act M ath, Sinica, in Press.
[2] Choonkil, Abbas najati, Cauchy-Jensen additive mappings in quasi-banach algebras and its applica- tions, ISPACS (2013).
[3] Z. Gajda, On stability of additive mappings, Int. J.M ath. M ath. Sci. 14 (1991) 431-434.
[4] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. M ath. Anal. Appl. 184(1994) 431436.
[5] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941) 222-224.
[6] D.H. Hyers, G. Isac, Th.M . Rassias, Stability of Functional Equations in several variables, Birkhauser, Basel, 1998.
[7] M .S. M oslehian, Almost derivation on C*-ternary rings, Preprint.
[8] C. Park, Homomorphisms betw een Poisson JC*-algebras, Bull. Braz. M ath. Soc. 36 (2005) 79-97.
[9] C. Park, Isomorphisms between C*-ternary algebras, J. M ath Anal. Appl. 327 (2007) 101-115.
[10] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Amer. M ath. Soc. 72(1978) 297-300.
[11] Th.M. Rassias, P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, proc. Amer. M ath. Soc. 114 (1992) $989-$ 993.
[12]].M. Rassias, H.M. Kim, Approximate homomorphisms and derivations between C*-ternary algebras, J. M ath. Phys. 49 (2008), no.6, 10pp.
[13] S.M . Ulam, Problems in M odern M athematics, Science Editions, Wiley, New York, 1964 (2.Chapter VI, Some Questions in Analysis: 1, Stability).
[14] H. Zettl, A characterization of ternary rings of operators, Adv. M ath. 48 (1983) 117-143.

