On Hilbert-Schmidt Tuples of Commutative Bounded Linear Operators on Separable Banach Spaces

Mezban Habibi
Department of Mathematics, Dehdasht Branch, Islamic Azad University, Dehdasht, Iran
Iran's Ministry of Education, Fars Province education organization, Shiraz, Iran
P. O. Box 7164754818, Shiraz, Iran

Abstract

In this paper, we will study some properties of Tuples that there components are commutative bounded linear operators on a separable Hilbert space H, then we will develop those properties for infinity-Tuples and find some conditions for them to be Hilbert-Schmidt infinity tuple. The infinity-Tuples $T=\left(T_{1}, T_{2}, T_{3}, \ldots\right)$ is called Hilbert-Schmidt infinity tuple if for every orthonormal basis $\left\{\mu_{\mathrm{i}}\right\}$ and $\left\{\lambda_{\mathrm{i}}\right\}$ in H we have had

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left|\left(T_{1} T_{2} T_{3} \ldots \lambda_{i}, \mu_{j}\right)\right|^{2}<\infty
$$

Calculation of $T_{1} T_{2} T_{3} \ldots \lambda_{i}$ doing by supreme over i for $\mathrm{i}=1,2,3 \ldots$

Keywords: Hypercyclic vector, Hypercyclicity Criterion, Hilbert-Schmidt, Infinity -tuple, Periodic point.

I. INTRODUCTION

$$
\operatorname{Orb}(T, x)=\{S x: S \in \Omega\}=
$$

Let B be a Banach space and $T_{1}, T_{2}, T_{3}, \ldots$ are

$$
\left\{T_{1}^{k_{1, j}} T_{2}^{k_{2, j}} T_{3}^{k_{3, j}} \ldots(x): k_{i, j} \geq 0, i=1,2,3, \ldots, j=1,2,3, \ldots\right\}
$$ commutative bounded linear mapping on B, the infinity-tuple T is an infinity components $T=\left(T_{1}, T_{2}, T_{3}, \ldots\right)$ for each $x \in B$ defined

$$
\begin{aligned}
& T=T_{1} T_{2} T_{3} \ldots(x)= \\
& \operatorname{Sup}_{n}\left\{T_{1} T_{2} T_{3} \ldots T_{n}(x) \mid n \in N, n=1,2,3, \ldots\right\}
\end{aligned}
$$

The set

$$
\Omega=\left\{T_{1}^{k_{1}} T_{2}^{k_{2}} T_{3}^{k_{3}} \ldots \mid k_{i} \geq 0, i=1,2,3, \ldots\right\}
$$

The set $\operatorname{Orb}(T, x)$ is called orbit of vector x under infinity tuple $T=\left(T_{1}, T_{2}, T_{3}, \ldots\right)$.

Definition 1.1

Infinity-Tuple $T=\left(T_{1}, T_{2}, T_{3}, \ldots\right)$ is said to be hypercyclic infinity-tuple if $\operatorname{Orb}(T, x)$ is dense in B, that is
is the semi group generated by components of T, for $x \in B$ take

$$
\begin{aligned}
& \overline{\operatorname{Orb(T,x)}} \\
& =\overline{\{S x: S \in \Omega\}} \\
& =\overline{\left\{T_{1}^{k_{1, j}} T_{2}^{k_{2, j}} T_{3}^{k_{3, j}} \ldots(x): k_{i, j} \geq 0, i=1,2,3, \ldots, j=1,2,3, \ldots\right\}} \\
& =B
\end{aligned}
$$

The first example of a hypercyclic operator on a Hilbert space was constructed by Rolewicz in 1969 ([11]). He showed that if B is the backward shift on $\ell^{2}(N)$, then λB is hypercyclic if and only if $|\lambda|>1$. Let H be a Hilbert space of functions analytic on a plane domain G such that for each $\lambda \in G$ the linear functional of evaluation at λ given by

$$
f \rightarrow f(\lambda)
$$

is a bounded linear functional on H. By the Riesz representation theorem there is a vector $K_{\lambda} \in H$ such that

$$
f(\lambda)=\left\langle f, K_{\lambda}\right\rangle .
$$

The vector $K_{\lambda} \in H$ is called the reproducing kernel at $\lambda \in G$.

Definition 1.2

Strictly increasing sequence of positive integers $\left\{m_{k}\right\}_{k=1}^{\infty}$ is said to be Syndetic sequence, if

$$
\operatorname{Sup}_{n}\left(m_{n+1}-m_{n}\right)<\infty .
$$

An infinity tuple $T=\left(T_{1}, T_{2}, T_{3}, \ldots\right)$ of operators

$$
T_{1}, T_{2}, T_{3}, \ldots
$$

on Banach space B is called weakly mixing if for any pair of non-empty open subsets U and V of B and any Syndetic sequences

$$
\left\{m_{k, 1}\right\}_{k=1}^{\infty},\left\{m_{k, 2}\right\}_{k=1}^{\infty},\left\{m_{k, 3}\right\}_{k=1}^{\infty}, \ldots
$$

With

$$
\operatorname{Sup}_{n}\left(m_{n+1, j}-m_{n, j}\right)<\infty, j=1,2,3, \ldots
$$

there exist

$$
m_{k, 1}, m_{k, 2}, m_{k, 3}, \ldots
$$

such that

$$
T_{1}^{k_{1, j}} T_{2}^{k_{2, j}} T_{3}^{k_{3, j}} \ldots(U) \cap V \neq \phi
$$

An infinity-tuple $T=\left(T_{1} T_{2} T_{3} \ldots\right)$ is called topologically mixing if for any given open subsets U and V subsets of B, there exist positive numbers $K_{i}, i=1,2,3, \ldots$, such that

$$
T_{1}^{k_{1, j}} T_{2}^{k_{2, j}} T_{3}^{k_{3, j}} \ldots(U) \cap V \neq \phi
$$

for all $k_{i, j} \geq K_{i}$ where $j=1,2,3, \ldots$.

A sequence of operators $\left\{T_{n}\right\}_{n=1}^{\infty}$ is said to be a hypercyclic sequence on B, if there exists $x \in B$ such that its orbit under this sequence is dense in B , that is

$$
\overline{\operatorname{Orb}\left(\left\{T_{n}\right\}_{n=1}^{\infty}, x\right)}=\overline{\operatorname{Orb}\left(x, T_{1} x, T_{2} x, T_{3} x, \ldots\right)}=B
$$

In this case the vector $x \in B$ is called hypercyclic vector for the sequence $\left\{T_{n}\right\}_{n=1}^{\infty}$.

Definition 1.3

Let $T=\left(T_{1} T_{2} T_{3} \ldots\right)$ be an infinity tuple of commutative bounded linear mapping c on a separable Hilbert space H, also let $\left\{\alpha_{k}\right\}_{k=1}^{\infty}$ and $\left\{\beta_{j}\right\}_{j=1}^{\infty}$ be orthonormal basis for H, the infinitytuple $T=\left(T_{1} T_{2} T_{3} \ldots\right)$ is said to be Hilbert-Schmidt infinity Tuple, if we have

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left|\left(T_{1} T_{2} T_{3} \ldots \alpha_{i}, \beta_{j}\right)\right|^{2}<\infty
$$

Note that all operators in this paper are commutative operator defined on a separable Hilbert space, reader can see [1]-[15] for more information.

I. Main Result

Theorem 2.1

[The Hypercyclicity Criterion for n-Tuples]

Let B be a separable Banach space and $T=\left(T_{1}, T_{2}, T_{3}, \ldots, T_{n}\right)$ is a tuple of commutative continuous linear mappings on B. If there exist two dense subsets Y and Z in B and strictly increasing sequences

$$
\left\{m_{k, 1}\right\}_{k=1}^{\infty},\left\{m_{k, 2}\right\}_{k=1}^{\infty},\left\{m_{k, 3}\right\}_{k=1}^{\infty}, \ldots,\left\{m_{k, n}\right\}_{k=1}^{\infty}
$$

such that

$$
\text { 1. } T_{1}^{k_{1, j}} T_{2}^{k_{2, j}} T_{3}^{k_{3, j}} \ldots T_{n}^{k_{n, j}} \rightarrow 0 \text { on } Y \text { as } m_{i, j} \rightarrow \infty
$$

2. There exist function $\left\{S_{k} \mid S_{k}: Z \rightarrow B\right\}$ such that for every $z \in Z, \quad S_{k} z \rightarrow 0$ and $T_{1}^{k_{1, j}} T_{2}^{k_{2, j}} T_{3}^{k_{3, j}} \ldots T_{n}^{k_{n, j}} S_{k} z \rightarrow z$

Then $T=\left(T_{1}, T_{2}, T_{3}, \ldots, T_{n}\right)$ is a hypercyclic tuple.

Note that, if the tuple $T=\left(T_{1}, T_{2}, T_{3}, \ldots, T_{n}\right)$ satisfying the hypothesis of previous theorem, then we say that T satisfying the hypothesis of Hypercyclicity Criterion.

Theorem 2.2

[The Hypercyclicity Criterion for infinityTuples]

Let B be a separable Banach space and $T=\left(T_{1}, T_{2}, T_{3}, \ldots\right) \quad$ is \quad an infinity tuple of commutative continuous linear mappings on B. If there exist two dense subsets Y and Z in B and strictly increasing sequences

$$
\left\{m_{k, 1}\right\}_{k=1}^{\infty},\left\{m_{k, 2}\right\}_{k=1}^{\infty},\left\{m_{k, 3}\right\}_{k=1}^{\infty}, \ldots
$$

Such that:

1. $T_{1}^{k_{1, j}} T_{2}^{k_{2, j}} T_{3}^{k_{3, j}} \ldots \rightarrow 0$ on Y as $m_{i, j} \rightarrow \infty$ for $i=1,2,3, \ldots$,
2. There exist function $\left\{S_{k} \mid S_{k}: Z \rightarrow B\right\}$ such that for every $z \in Z, \quad S_{k} z \rightarrow 0$ and $T_{1}^{k_{1, j}} T_{2}^{k_{2, j}} T_{3}^{k_{3, j}} \ldots S_{k} z \rightarrow z$

Then $T=\left(T_{1}, T_{2}, T_{3}, \ldots, T_{n}\right)$ is a hypercyclic tuple.

Theorem 2.3

Suppose X be an F-sequence space with the unconditional basis $\left\{e_{k}\right\}_{k=1}^{\infty}$ and $T_{1}, T_{2}, T_{3}, \ldots$ are unilateral weighted backward shifts with weight sequences

$$
\left\{a_{k, 1}\right\}_{k=1}^{\infty},\left\{a_{k, 2}\right\}_{k=1}^{\infty},\left\{a_{k, 3}\right\}_{k=1}^{\infty}, \ldots
$$

also $T=\left(T_{1}, T_{2}, T_{3}, \ldots\right)$ be an infinity tuple of those operators, then the following assertions are equivalent:

1. Infinity tuple T is chaotic.
2. Infinity tuple T is Hypercyclic and has a nontrivial periodic point.
3. Infinity tuple T has a non-trivial periodic point.
4. The series $\sum_{m=1}^{\infty}\left(\prod_{k=1}^{m}\left(\frac{e_{m}}{a_{k, i}}\right)\right)$ convergence in X for $i=1,2,3, \ldots$.
be a non-trivial periodic point for T, that is there are

$$
\mu_{1}, \mu_{2}, \mu_{3}, \ldots \in N
$$

such that

$$
T_{1}^{\mu_{1}} T_{2}^{\mu_{2}} T_{3}^{\mu_{3}} \ldots(x)=x
$$

Comparing the entries at positions $i+k M_{\lambda}$ for

$$
\lambda=1,2,3, \ldots, n, k \in N \bigcup\{0\}
$$

of x and

$$
T_{1}^{\mu_{1}} T_{2}^{\mu_{2}} T_{3}^{\mu_{3}} \ldots T_{n}^{\mu_{n}}(x)=x
$$

we find that

$$
\begin{aligned}
& x_{j+k M_{\lambda}}=\left(\prod_{t=1}^{M_{\lambda}}\left(a_{j+k N+t}\right)\right) x_{j+(k+1)} \\
& \lambda=1,2,3, \ldots
\end{aligned}
$$

so that we have,

Proof of the cases $(1) \rightarrow(2)$ and $(2) \rightarrow(3)$ are trivial. For $(3) \rightarrow(4)$, suppose that T has a nontrivial periodic point, and

$$
x=\left\{x_{n}\right\} \in X
$$

$$
\begin{aligned}
& x_{j+k M_{\lambda}}=\left(\prod_{t=j+1}^{j+k M_{\lambda}}\left(a_{t}\right)\right)^{-1} x_{j}=c_{\lambda}\left(\prod_{t=1}^{j+k M_{\lambda}}\left(a_{t}\right)\right)^{-1} \\
& k \in N \bigcup\{0\}, \lambda=1,2,3, \ldots
\end{aligned}
$$

with

$$
c_{\lambda}=\left(\prod_{t=1}^{j}\left(m_{j, \lambda}\right)\right) x_{j}, j=1,2,3, \ldots
$$

Since $\left\{e_{k}\right\}_{k=1}^{\infty}$ is an unconditional basis and $x=\left\{x_{n}\right\} \in X$ it follows that

$$
\begin{aligned}
& \sum_{k=0}^{\infty}\left(\frac{1}{\prod_{t=1}^{j+k M_{\lambda}}\left(a_{j, \lambda}\right)} \cdot e_{j+k M_{\lambda}}\right)= \\
& \frac{1}{c_{\lambda}}\left(\sum_{k=0}^{\infty}\left(x_{j+k M \lambda} \cdot e_{j+k M_{\lambda} \lambda}\right)\right) \\
& \lambda=1,2,3, \ldots
\end{aligned}
$$

convergence in X. Without loss of generality, assume that $j \geq N$, applying the operators

$$
T_{1}^{k_{1, j}} T_{2}^{k_{2, j}} \int_{3}^{k_{3, j}} \ldots(x)
$$

for $j=1,2,3, \ldots Q-1$, with

$$
Q=\operatorname{Min}\left\{M_{\lambda}: \lambda=1,2,3, \ldots\right\}
$$

to this series and note that

$$
T_{1}^{k_{1, j}} T_{2}^{k_{2, j}} T_{3}^{k_{3, j}} \ldots\left(e_{n}\right)=a_{j} e_{n-1}
$$

For $n \geq 2$ and $j=1,2,3, \ldots$, we deduce that

$$
\begin{aligned}
& \sum_{k=0}^{\infty}\left(\frac{1}{\prod_{t=1}^{j+k M_{\lambda}-v_{\lambda}}\left(m_{j, \lambda}\right)} \cdot e_{j+k M_{\lambda}-v_{\lambda}}\right) \\
& \lambda=1,2,3, \ldots
\end{aligned}
$$

convergence in X. By adding these series, we see that condition (4) holds.

Proof of $(4) \rightarrow(1)$. It follows from theorem 2.1 that under condition (4) the operator T is Hypercyclic. Hence it remains to show that T has a dense set of periodic points. Since $\left\{e_{k}\right\}_{k=1}^{\infty}$ is an unconditional
basis, condition (4) implies that for each $j \in N$ and $M, N \in N$ the series

$$
\psi\left(j, M_{\lambda}\right)=\sum_{k=0}^{\infty}\left(\frac{1}{\prod_{k=1}^{j+k M_{\lambda}}\left(m_{j, \lambda}\right)} \cdot e_{j+k M_{\lambda}}\right)=
$$

$$
\left(\prod_{k=1}^{j}\left(m_{k, \lambda}\right)\right) \cdot \sum_{k=0}^{\infty}\left(\frac{1}{\prod_{k=1}^{j+k M_{\lambda}}\left(m_{k, \lambda}\right)} \cdot e_{j+k M_{\lambda}}\right)
$$

converges for $\lambda=1,2,3, \ldots$ and define infinity elements in X. Moreover, if $M \geq i$ then

$$
T_{1}^{k_{j \lambda, 1}} T_{2}^{k_{j \lambda, 2}} T_{3}^{k_{j \lambda, 3}} \ldots=\psi_{\lambda}\left(j_{\lambda}, M_{\lambda}\right)
$$

for $\lambda=1,2,3, \ldots$, and

$$
\begin{aligned}
& T_{1}^{k_{j \lambda, 1}} T_{2}^{k_{j, 2}} T_{3}^{k_{j \lambda, 3}} \ldots= \\
& \psi_{\lambda}\left(j_{\lambda}, M_{\lambda}\right) T_{1}^{M_{1}} T_{2}^{M_{2}} T_{3}^{M_{3}} \ldots \psi_{\lambda}\left(j_{\lambda}, M_{\lambda}\right)
\end{aligned}
$$

so

$$
T_{1}^{m_{j, 1}} T_{2}^{m_{j, 2,2}} T_{3}^{m_{j,, 3}} \ldots \omega((i, j), N)=\omega((i, j), N)
$$

Also, if $N \geq j_{i}$ then

$$
T_{1}^{m_{j, .}} T_{2}^{m_{j, 2}} T_{3}^{m_{j, 3}} \ldots \omega((i, j), N)=\omega((i, j), N)
$$

for $m_{j, i} \geq N$ and $i=1,2,3, \ldots$.

So that each $\psi(j, N)$ and $j \leq N$ is a periodic point for T. We shall show that T has a dense set of periodic points. Since $\left\{e_{k}\right\}$ is a basis, it suffices to show that for every element

$$
x \in \operatorname{Span}\left\{e_{k}: k \in \mathbb{N}\right\}
$$

there is a periodic point y arbitrarily close to it. For this, let

$$
x=\sum_{j=1}^{m} e_{j} x_{j}, \varepsilon>0
$$

Without lost of generality, for $\lambda=1,2,3, \ldots$ we can assume that

$$
\left|x_{j} \cdot \prod_{t=1}^{i} a_{t, \lambda}\right| \leq 1, i=1,2,3, \ldots, m_{\lambda}
$$

Since $\left\{e_{k}\right\}_{n=1}^{\infty}$ is an unconditional basis, then condition (4) implies that there are $M, N \geq m_{\lambda}$ such that

$$
\begin{aligned}
& \left\|\sum_{k=M_{\lambda}+1}^{\infty}\left(\varepsilon_{k, i} \frac{1}{\prod_{k=1}^{k}\left(a_{j, \lambda}\right)} \cdot e_{k}\right)\right\|<\frac{\varepsilon}{m_{\lambda}} \\
& \lambda=1,2,3, \ldots
\end{aligned}
$$

for every sequence $\left\{\varepsilon_{k, i}\right\}, i=1,2,3, \ldots$ taking values 0 or 1. By (1) and (2) the infinity elements

$$
\begin{aligned}
& y_{t}=\sum_{i=1}^{m_{t}} x_{i} \cdot \psi\left(i, M_{\varphi}\right) \\
& \varphi=1,2,3, \ldots
\end{aligned}
$$

of X is a periodic point for T and we have

$$
\left\|y_{\lambda}-x\right\|=\left\|\sum_{i=1}^{m_{\lambda}}\left(x_{i} \cdot \psi\left(i, M_{\varphi}\right)-e_{i}\right){ }_{i}\right\|
$$

$$
\begin{aligned}
&= \| \sum_{i=1}^{m_{i}}\left(x_{i} \cdot \prod_{t=1}^{i} d_{t}, M_{\lambda}\right) . \\
& \sum_{k=1}^{\infty}\left(\frac{1}{\prod_{t=1}^{i+k M_{\lambda}} a_{t}, M_{\lambda}}+e_{i}+M_{\lambda}\right) \| \\
& \leq \sum_{i=1}^{m_{2}} \|\left(x_{i} \cdot \prod_{t=1}^{i} d_{t}, M_{\lambda}\right) \\
&\left(\sum_{k=1}^{\infty}\left(\frac{1}{\prod_{t=1}^{i+k M_{\lambda}} a_{t}, M_{\lambda}}+e_{i}+M_{\lambda}\right)\right) \| \\
& \leq \sum_{i=1}^{m_{2}}\left\|\left(\sum_{k=1}^{\infty}\left(\frac{1}{\prod_{t=1}^{i+k M_{\lambda}} a_{t}, M_{\lambda}}+e_{i}+M_{\lambda}\right)\right)\right\| \\
& \leq \varepsilon
\end{aligned}
$$

As $\lambda=1,2,3, \ldots$, so by this, the proof is complete.

Theorem 2.4

Let X be a topological vector space and $T_{1}, T_{2}, T_{3}, \ldots$ are commutative bounded linear mapping on X, and $T=\left(T_{1}, T_{2}, T_{3}, \ldots\right)$ be an infinity tuple of those operators. The following conditions are equivalent:
I. Infinity tuple T is weakly mixing.
II. For any pair of non-empty open subsets U and V in X, and for any Syndetic sequences

$$
\left\{m_{k, 1}\right\}_{k=1}^{\infty},\left\{m_{k, 2}\right\}_{k=1}^{\infty},\left\{m_{k, 3}\right\}_{k=1}^{\infty}, \ldots
$$

there exist

$$
m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}, \ldots
$$

such that

$$
T_{1}^{m_{1}^{\prime}} T_{2}^{m_{2}^{\prime}} T_{3}^{m_{3}^{\prime}} \ldots(U) \cap V \neq \phi . \quad \text { for } m_{k^{\prime \prime}, i}=1,2,3, \ldots, i=1,2,3, \ldots \text { so }
$$

III. It suffices in $I I$ to consider only those sequences

$$
\left\{m_{k, 1}\right\}_{k=1}^{\infty},\left\{m_{k, 2}\right\}_{k=1}^{\infty},\left\{m_{k, 3}\right\}_{k=1}^{\infty}, \ldots
$$

for which there is some

$$
m_{1} \geq 1, m_{2} \geq 1, m_{3} \geq 1, \ldots
$$

with

$$
m_{k, j} \in\left\{m_{j}, 2 m_{j}\right\} \quad \text { for all } j \text { we have }
$$

for all $k, j \geq 1$.
$\operatorname{Proof}(I \rightarrow I I)$, Given

$$
\left\{m_{k, 1}\right\}_{k=1}^{\infty},\left\{m_{k, 2}\right\}_{k=1}^{\infty},\left\{m_{k, 3}\right\}_{k=1}^{\infty}, \ldots
$$

and U and V satisfying the hypothesis of condition II, take

$$
m_{j}=\operatorname{Sup}_{k}\left\{m_{k+1, j}-m_{k, j}: k=1,2,3, \ldots\right\}
$$

for all j and since infinity product map

$$
\begin{aligned}
& \overbrace{T \times T \times T \times \ldots \times T}^{n-\text {-times }}: \\
& \overbrace{X \times X \times X \times \ldots \times X}^{n \text {-times }} \rightarrow \overbrace{X \times X \times X \times \ldots \times X}^{n \text {-times }}
\end{aligned}
$$

as $n \rightarrow \infty$, is transitive, then there is

$$
m_{k^{\prime}, 1}, m_{k^{\prime}, 2}, m_{k^{\prime}, 3}, \ldots
$$

in N, such that

$$
\begin{aligned}
& \left(T_{1}^{m_{k^{\prime}, 1}} T_{2}^{m_{k^{\prime}, 2}} T_{3}^{m_{k^{\prime}, 3}} \ldots(U)\right) \cap \\
& \left(\left(T_{1}^{m_{k^{\prime}, 1}}\right)^{-1}\left(T_{2}^{m_{k^{\prime \prime}, 2}}\right)^{-1}\left(T_{3}^{m_{k^{\prime \prime}, 3}}\right)^{-1} \ldots(V)\right) \neq \phi
\end{aligned}
$$

$$
\begin{aligned}
& \left(T_{1}^{m_{k^{\prime}, 1}+m_{k^{\prime \prime}, 1}^{\prime}} T_{2}^{m_{k^{\prime}, 2}+m_{k^{\prime \prime}, 2}} T_{3}^{m_{k^{\prime}, 3}+m_{k^{\prime \prime}, 3} \ldots(U)}\right) \cap(V) \neq \phi \\
& m_{k^{\prime \prime}, i}=1,2,3, \ldots, i=1,2,3, \ldots
\end{aligned}
$$

By the assumption on

$$
\left\{m_{k, 1}\right\}_{k=1}^{\infty},\left\{m_{k, 2}\right\}_{k=1}^{\infty},\left\{m_{k, 3}\right\}_{k=1}^{\infty}, \ldots
$$

$$
\begin{aligned}
& \left\{m_{k, 1}: k=1,2,3, \ldots\right\} \cap \\
& \left\{n+m_{1}, n+m_{2}, n+m_{3}, \ldots\right\} \neq \phi
\end{aligned}
$$

If for all j we can select

$$
\begin{aligned}
& m_{k, j}^{\prime} \in\left\{m_{k, 1}: k=1,2,3, \ldots\right\} \cap \\
& \left\{n+m_{1}, n+m_{2}, n+m_{3}, \ldots\right\} \neq \phi
\end{aligned}
$$

then we have

$$
T_{1}^{m_{k, 1}^{\prime}} T_{2}^{m_{k, 2}^{\prime}} T_{3}^{m_{k, 3}^{\prime}} \ldots(U) \cap V \neq \phi
$$

By this the proof is completed.
The case $(I I \rightarrow I I I)$ is trivial.

Case $(I I I \rightarrow I)$, Suppose that U, V_{1} and V_{2} are nonempty open subsets of X, then there are

$$
m_{k_{1}, 1}, m_{k_{1}, 2}, m_{k_{1}, 3}, \ldots, m_{k_{1}, n}, \ldots
$$

in N, such that

$$
T_{1}^{m_{k_{1}, 1}} T_{2}^{m_{k_{1}, 2}} T_{3}^{m_{k_{1}, 3}} \ldots T_{3}^{m_{k_{1}, n}} \ldots(U) \cap V_{1} \neq \phi
$$

and

$$
T_{1}^{m_{k_{1}, 1}} T_{2}^{m_{k_{1}, 2}} T_{3}^{m_{k_{1}, 3}} \ldots T_{3}^{m_{k 1, n}} \ldots(U) \cap V_{2} \neq \phi
$$

This will imply that T is weakly mixing. Since (III) is satisfied, then we can take

$$
m_{k_{2}, 1}, m_{k_{2}, 2}, m_{k_{2}, 3}, \ldots, m_{k_{2}, n}, \ldots
$$

in N, such that

$$
T_{1}^{m_{k_{2}, 1}} T_{2}^{m_{k_{2}, 2}} T_{3}^{m_{k_{2}, 3}} \ldots T_{3}^{m_{k_{2}, n}} \ldots(U) \bigcap V_{2} \neq \phi
$$

By continuity, we can find $\tilde{V}_{1} \subset V_{1}$ open and nonempty such that

$$
T_{1}^{m_{k, 1}^{\prime}} T_{2}^{m_{k, 2}^{\prime}} T_{3}^{m_{k, 3}^{\prime}} \ldots \tilde{V}_{1} \subset V_{2}
$$

Also there exist some

$$
m_{k, 1}^{\prime}, m_{k, 2}^{\prime}, m_{k, 3}^{\prime}, \ldots, m_{k, n}^{\prime}, \ldots
$$

in N, such that

$$
T_{1}^{m_{k, 1}^{\prime}+\eta_{1}} T_{2}^{m_{k, 2}^{\prime}+\eta_{2}} T_{3}^{m_{k, 3}^{\prime}+\eta_{3}} \ldots T_{3}^{m_{k, n}^{\prime}+\eta_{n}} \ldots U \subset \tilde{V}_{2}
$$

Now we take

$$
m_{k, j}=m_{k, j}^{\prime}+\eta_{j}
$$

for all j, indeed we find strictly increasing sequences of positive integer

$$
m_{k, 1}, m_{k, 2}, m_{k, 3}, \ldots, m_{k, n}, \ldots
$$

such that

$$
m_{k, j} \in\left\{m_{j}, 2 m_{j}\right\}
$$

$$
T_{1}^{m_{k, 1}} T_{2}^{m_{k, 2}} T_{3}^{m_{k, 3}} \ldots T_{3}^{m_{k, n}} \ldots(U) \cap \tilde{V}_{1} \neq \phi
$$

Now we have

$$
\left(T_{1}^{m_{k, 1}^{\prime}+\eta_{1}} T_{2}^{m_{k, 2}^{\prime}+\eta_{2}} T_{3}^{m_{k, 3}^{\prime}+\eta_{3}} \ldots T_{3}^{m_{k, n}^{\prime}+\eta_{n}} \ldots U\right) \cap \tilde{V}_{1} \neq \phi
$$

So the set

$$
\begin{aligned}
& \left(T_{1}^{m_{k, 1}+\eta_{1}} T_{2}^{m_{k, 2}+\eta_{2}} T_{3}^{m_{k, 3}+\eta_{3}} \ldots T_{3}^{m_{k, n}+\eta_{n}} \ldots\right) \cap \\
& \left(T_{1}^{m_{k, 1}^{\prime}} T_{2}^{m_{k, 2}^{\prime}} T_{3}^{m_{k, 3}^{\prime}} \ldots T_{3}^{m_{k, n}^{\prime}} \ldots\right)(U) \cap \tilde{V}_{1} \neq \phi
\end{aligned}
$$

is a subset of

$$
\begin{aligned}
& \left(T_{1}^{m_{k, 1}^{\prime}+\eta_{1}} T_{2}^{m_{k, 2}^{\prime}+\eta_{2}} T_{3}^{m_{k, 3}^{\prime}+\eta_{3}} \ldots T_{3}^{m_{k, n}^{\prime}+\eta_{n}} \ldots(U)\right) \cap \\
& \left(T_{1}^{m_{k, 1}} T_{2}^{m_{k, 2}} T_{3}^{m_{k, 3}} \ldots T_{3}^{m_{k, n}} \ldots\left(\tilde{V}_{1}\right)\right) .
\end{aligned}
$$

Then we have

$$
T_{1}^{m_{k, 1}} T_{2}^{m_{k, 2}} T_{3}^{m_{k, 3}} \ldots T_{3}^{m_{k, n}} \ldots(U) \cap \tilde{V}_{1} \neq \phi
$$

Also by similarly method we conclude that

$$
T_{1}^{m_{k, 1}} T_{2}^{m_{k, 2}} T_{3}^{m_{k, 3}} \ldots T_{3}^{m_{k, n}} \ldots(U) \cap \tilde{V}_{2} \neq \phi
$$

This is the end of proof.

References

[1] J. Bes, Three problems on hypercyclic operators, PhD thesis, Kent State University, 1998.
[2] P. S. Bourdon and J. H. Shapiro, Cyclic Phenomena for Composition Operators, Memoirs of Amer. Math. Soc. (125), Amer. Math. Providence, RI, 1997.
[3] R. M. Gethner and J. H. Shapiro, Universal vectors for Operators on Spaces of Holomorphic Functions, Proc. Amer. Math. Soc., (100) (1987), 281-288.
[4] G. Godefroy and J. H. Shapiro, Operators with dense, Invariant, Cyclic vector manifolds, J. Func. Anal., 98 (2) (1991), 229-269.
for all j, and
[5] K. Goswin and G. Erdmann, Universal Families and Hypercyclic Operators, Bulletin of the American Mathematical Society, 98 (1991), 229-269.
[6] M. Habibi, n-Tuples and Chaoticity, Int. Journal of Math. Analysis, 6 (14) (2012), 651-657.
[7] M. Habibi, ∞-Tuples of Bounded Linear Operators on Banach Space, Int. Math. Forum, 7 (18) (2012), 861-866.
[8] M. Habibi and B. Yousefi, Conditions for a Tuple of Operators to be Topologically Mixing, Int. Jour. App. Math., 23 (6) (2010), 973-976.
[9] C. Kitai, Invariant closed sets for linear operators, Thesis, University of Toronto, 1982.
[10] A. Peris and L. Saldivia, Syndentically hypercyclic operators, Integral Equations Operator Theory, 5 (2) (2005), 275-281.
[11] S. Rolewicz, On orbits of elements, Studia Math., (32) (1969), 17-22.
[12] H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc., (347) (1995), 993-1004.
[13] G. R. McLane, Sequences of derivatives and normal families, Jour. Anal. Math., 2 (1952), 72-87.
[14] B. Yousefi and M. Habibi, Hypercyclicity Criterion for a Pair of Weighted Composition Operators, Int. Jour. of App. Math., 24, (2) (2011), 215-219.
[15] B. Yousefi and M. Habibi, Syndetically Hypercyclic Pairs, Int. Math. Forum, 5(66) (2010), 3267-3272.

