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Abstract- In this paper, we will study some properties of Tuples that there components are commutative bounded linear operators on a 

separable Hilbert space H, then we will develop those properties for infinity-Tuples and find some conditions for them to be Hilbert-Schmidt 

infinity tuple. The infinity-Tuples ,...),,( 321 TTTT  is called Hilbert-Schmidt infinity tuple if for every orthonormal basis {µi} and {λi} in H 

we have had 

 





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2
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i j
jiTTT   

Calculation of  iTTT ...321  doing by supreme over i for i=1, 2, 3... 
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I. INTRODUCTION 

Let B  be a Banach space and ,...,, 321 TTT  are 

commutative bounded linear mapping on B , the 

infinity-tuple T  is an infinity components 

,...),,( 321 TTTT   for each Bx  defined 

},...3,2,1,)(...{
)...(

321

321





nNnxTTTTSup
xTTTT

nn

 

The set 

},...3,2,1,0...{ 321
321  ikTTT i
kkk  

is the semi group generated by components ofT , 

for Bx  take 

 
,...}3,2,1,...,3,2,1,0:)...({

}:{,

,321
,3,2,1 



jikxTTT

SSxxTOrb

ji
kkk jjj

 

The set  xTOrb ,  is called orbit of vector x under 

infinity tuple ,...),,( 321 TTTT  . 

 

Definition 1.1 

Infinity-Tuple ,...),,( 321 TTTT   is said to be 

hypercyclic infinity-tuple if  xTOrb ,  is dense in 

B, that is 
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 

B
jikxTTT

SSx

xTOrb

ji
kkk jjj







,...}3,2,1,...,3,2,1,0:)...({

}:{

,

,321
,3,2,1

 

The first example of a hypercyclic operator on a 

Hilbert space was constructed by Rolewicz in 1969 

([11]). He showed that if B  is the backward shift on 

)(2 N , then B  is hypercyclic if and only if 1

. Let H  be a Hilbert space of functions analytic on 

a plane domain G  such that for each G  the 

linear functional of evaluation at   given by 

)(ff   

is a bounded linear functional on H . By the Riesz 

representation theorem there is a vector HK   

such that 

 Kff ,)(  . 

The vector HK   is called the reproducing kernel 

at G . 

Definition 1.2  

Strictly increasing sequence of positive integers 

1}{ kkm  is said to be Syndetic sequence, if 

 )( 1 nnn mmSup . 

An infinity tuple ,...),,( 321 TTTT   of operators 

,...,, 321 TTT  

on Banach space B  is called weakly mixing if for 

any pair of non-empty open subsets U and V   of B  

and any Syndetic sequences 


11, }{ kkm , 

12, }{ kkm , 
13, }{ kkm , … 

With 

,...3,2,1,)( ,,1  jmmSup jnjnn  

there exist 

,...,, 3,2,1, kkk mmm  

such that 

VUTTT jjj kkk
)...(,3,2,1

321  

An infinity-tuple ...)( 321 TTTT   is called 

topologically mixing if for any given open subsets 

U and V  subsets of B , there exist positive numbers

,...3,2,1, iK i , such that 

VUTTT jjj kkk
)...(,3,2,1

321  

for all iji Kk , where ,...3,2,1j .  

A sequence of operators 
1}{ nnT  is said to be a 

hypercyclic sequence on B , if there exists Bx  

such that its orbit under this sequence is dense in B

, that is 

    BxTxTxTxOrbxTOrb nn 
 ,...,,,,}{ 3211 . 

In this case the vector Bx is called hypercyclic 

vector for the sequence 
1}{ nnT . 
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Definition 1.3 

Let ...)( 321 TTTT   be an infinity tuple of 

commutative bounded linear mapping c on a 

separable Hilbert space H , also let 
1}{ kk and 


1}{ jj  be orthonormal basis for H , the infinity-

tuple ...)( 321 TTTT   is said to be Hilbert-Schmidt 

infinity Tuple, if we have 

 









1 1

2
321 ,...

i j
jiTTT   

Note that all operators in this paper are 

commutative operator defined on a separable 

Hilbert space, reader can see ]1[ - ]15[  for more 

information. 

I. MAIN RESULT 

Theorem 2.1  

[The Hypercyclicity Criterion for n-Tuples] 

 Let B  be a separable Banach space and 

),...,,,( 321 nTTTTT   is a tuple of commutative 

continuous linear mappings on B . If there exist two 

dense subsets Y  and Z  in B  and strictly increasing 

sequences 


11, }{ kkm , 

12, }{ kkm , 
13, }{ kkm , …, 

1, }{ knkm  

such that 

1. 0... ,,3,2,1
321 jnjjj k

n
kkk TTTT  on Y  as jim ,  

for ni ,...,3,2,1 , 

2. There exist function }:{ BZSS kk   such 

that for every Zz , 0zSk  and 

zzSTTTT k
k

n
kkk jnjjj ,,3,2,1 ...321  

Then ),...,,,( 321 nTTTTT   is a hypercyclic 

tuple. 

Note that, if the tuple ),...,,,( 321 nTTTTT 

satisfying the hypothesis of previous theorem, then 

we say that T satisfying the hypothesis of 

Hypercyclicity Criterion. 

Theorem 2.2  

[The Hypercyclicity Criterion for infinity-

Tuples] 

Let B  be a separable Banach space and 

,...),,( 321 TTTT   is an infinity tuple of 

commutative continuous linear mappings on B . If 

there exist two dense subsets Y  and Z  in B  and 

strictly increasing sequences 


11, }{ kkm , 

12, }{ kkm , 
13, }{ kkm , … 

Such that: 

1. 0...,3,2,1
321 jjj kkk TTT  on Y  as jim ,  for 

,...3,2,1i , 

2. There exist function }:{ BZSS kk   such 

that for every Zz , 0zSk  and 

zzSTTT k
kkk jjj ...,3,2,1

321  
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Then ),...,,,( 321 nTTTTT   is a hypercyclic 

tuple. 

Theorem 2.3 

Suppose X  be an F-sequence space with the 

unconditional basis 
1}{ kke  and ,...,, 321 TTT  are 

unilateral weighted backward shifts with weight 

sequences 


11, }{ kka , 

12, }{ kka , 
13, }{ kka , … 

also ,...),,( 321 TTTT   be an infinity tuple of those 

operators , then the following assertions are 

equivalent: 

1. Infinity tuple T is chaotic. 

2. Infinity tuple T is Hypercyclic and has a non-

trivial periodic point. 

3. Infinity tuple T has a non-trivial periodic 

point. 

4. The series  



 



















1
1

,m

m

k
ik

m

a
e  convergence in 

X  for ,...3,2,1i . 

 

Proof: 

Proof of the cases )2()1(   and )3()2(   are 

trivial. For )4()3(  , suppose that T  has a non-

trivial periodic point, and 

Xxx n  }{  

be a non-trivial periodic point for T , that is there 

are 

N,...,, 321   

such that 

.)...(321
321 xxTTT   

Comparing the entries at positions kMi   for 

}0{,,...,3,2,1 Nkn   

of x  and 

xxTTTT n
n )(...321

321
  

we find that 

    

,...3,2,1
11



   




 kj
M

t tkNjkMj xax
 

so that we have, 

     
,...3,2,1},0{

1

1

1

1










 




 

Nk

acxax kMj

t tj
kMj

jt tkMj  

with 

   ,...3,2,1,
1 ,   

jxmc j
j

t j   

Since 
1}{ kke  is an unconditional basis and

Xxx n  }{  it follows that 
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 

 
,...3,2,1

.1

.1

0

0
1 ,





















































k
kMjkMj

k
kMjkMj

t j

ex
c

e
a

 

convergence in X . Without loss of generality, 

assume that Nj  , applying the operators 

)...(,3,2,1
321 xTTT jjj kkk  

 for 1,...3,2,1  Qj , with 

,...}3,2,1:{  MMinQ  

 to this series and note that 

1321 )...(,3,2,1
 njn

kkk eaeTTT jjj  

For 2n  and ,...3,2,1j , we deduce that 

 
,...3,2,1

.1
0

1 ,




























 
k

kMjkMj

t j

e
m  

convergence in X . By adding these series, we see 

that condition )4(  holds. 

 

Proof of )1()4(  . It follows from theorem 1.2  that 

under condition )4(  the operator T is Hypercyclic. 

Hence it remains to show that T  has a dense set of 

periodic points. Since 
1}{ kke  is an unconditional 

basis, condition )4(  implies that for each Nj  

and NNM ,  the series 

   

  
 




















































0
1 ,

1 ,

0
1 ,

.1.

.1,

k
kMjkMj

k k

j

k k

k
kMjkMj

k j

e
m

m

e
m

Mj













  

converges for ,...3,2,1  and define infinity 

elements in X . Moreover, if iM   then 

  MjTTT jjj kkk ,...3,2,1,
321   

for ,...3,2,1 , and 

    



MjTTTMj

TTT
MMM

kkk jjj

,...,

...
321

3,2,1,

321

321 
 

so 

     NjiNjiTTT jjj mmm ,,,,...3,2,1,
321    

Also, if ijN   then 

     NjiNjiTTT jjj mmm ,,,,...3,2,1,
321    

for Nm ij ,  and ,...3,2,1i . 

So that each  Nj,  and Nj   is a periodic point 

forT . We shall show that T  has a dense set of 

periodic points. Since }{ ke  is a basis, it suffices to 

show that for every element 

}:{ NkeSpanx k   
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there is a periodic point y  arbitrarily close to it. For 

this, let 

.0,
1





m

j
jj xex  

Without lost of generality, for ,...3,2,1  we can 

assume that 

 miax i

t tj ,...,3,2,1,1.
1 ,  

 

Since 
1}{ nke  is an unconditional basis, then 

condition )4(  implies that there are mNM ,  

such that 

 
,...3,2,1

.1
1

1 ,
,





























m
e

aMk
kk

k j
ik  

for every sequence ,...3,2,1},{ , iik  taking values 0 

or 1. By )1(  and )2(  the infinity elements 

 
,...3,2,1

,.
1








 

tm

i
it Mixy

 

of X  is a periodic point forT and we have 

  
i

m

i
ii eMixxy 






 
1

,.  

 




 




























1
1

1
1

,
1               

.,.            

k
ikMi

t t

m

i

i

t ti

Me
Ma

Mdx











 

 



































 











1
1

1
1

,
1                

,.             

k
ikMi

t t

m

i

i

t ti

Me
Ma

Mdx











 

 







































 



m

i k
ikMi

t t

Me
Ma1 1

1
,

1
              

             

As ,...3,2,1 , so by this, the proof is complete. � 

 

Theorem 2.4 

Let X be a topological vector space and ,...,, 321 TTT  

are commutative bounded linear mapping on X , 

and ,...),,( 321 TTTT   be an infinity tuple of those 

operators. The following conditions are equivalent: 

I. Infinity tuple T  is weakly mixing. 

II. For any pair of non-empty open subsets U  

and V  in X , and for any Syndetic 

sequences 

11, }{ kkm , 

12, }{ kkm , 
13, }{ kkm , … 

 there exist  

1m , 2m , 3m , … 

such that 
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 VUTTT mmm )...(321
321 . 

III. It suffices in II  to consider only those 

sequences 

11, }{ kkm , 

12, }{ kkm , 
13, }{ kkm , … 

for which there is some 

11 m , 12 m , 13 m , … 

with 

}2,{, jjjk mmm   

for all 1, jk . 

 

Proof  III  , Given 


11, }{ kkm , 

12, }{ kkm , 
13, }{ kkm , … 

and U  and V  satisfying the hypothesis of 

condition II , take 

,...}3,2,1:{ ,,1   kmmSupm jkjkkj  

for all j  and since infinity product map 

    

  

timesntimesn

timesn

XXXXXXXX

TTTT








......

:...  

as n , is transitive, then there is 

1,km  , 2,km  , 3,km  , … 

in N , such that 

 
         






VTTT

UTTT
kkk

kkk

mmm

mmm

...

)...(
1

3

1

2

1

1

321

3,2,1,

3,2,1, 
 

for ,...3,2,1,...,3,2,1,  im ik so 

   
,...3,2,1,...,3,2,1

)...(

,

321
3,3,2,2,1,1,






 

im
VUTTT

ik

mmmmmm kkkkkk 
 

By the assumption on 


11, }{ kkm , 

12, }{ kkm , 
13, }{ kkm , … 

for all j  we have 





,...},,{
,...}3,2,1:{

321

1,

mnmnmn
kmk 

 

If for all j  we can select 





,...},,{
,...}3,2,1:{

321

1,,

mnmnmn
kmm kjk 

 

then we have 

.)...(3,2,1,
321  VUTTT kkk mmm

  

By this the proof is completed. 

The case  IIIII   is trivial. 

Case  IIII  , Suppose thatU , 1V and 2V are non-

empty open subsets of X , then there are 

1,1km , 2,1km , 3,1km , …, nkm ,1
,… 

in N , such that 

13321 )...(... ,13,12,11,1 VUTTTT nkkkk mmmm
  

and 
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23321 )...(... ,13,12,11,1 VUTTTT nkkkk mmmm
  

This will imply that T is weakly mixing. Since 

)(III is satisfied, then we can take 

1,2km , 2,2km , 3,2km , …, nkm ,2
,… 

in N , such that 

23321 )...(... ,23,22,21,2 VUTTTT nkkkk mmmm
  

By continuity, we can find 11
~ VV   open and non-

empty such that 

.~... 21321
3,2,1, VVTTT kkk mmm   

Also there exist some 

1,km , 2,km , 3,km , …, nkm , , …, 

in N , such that 

23321
~...... ,33,22,11, VUTTTT nnkkkk mmmm    

Now we take 

jjkjk mm  ,,  

for all j , indeed we find strictly increasing 

sequences of positive integer 

1,km , 2,km , 3,km , …, nkm , , …, 

such that 

}2,{, jjjk mmm   

for all j , and 

.~)...(... 13321
,3,2,1, VUTTTT nkkkk mmmm

  

Now we have 

.~)......( 13321
,33,22,11,   VUTTTT nnkkkk mmmm

  

So the set 

 
  .~)(......

......

13321

3321

,3,2,1,

,33,22,11,









VUTTTT

TTTT
nkkkk

nnkkkk

mmmm

mmmm



  

is a subset of 

 
 .)~...(...

)...(...

13321

3321

,3,2,1,

,33,22,11,

VTTTT

UTTTT
nkkkk

nnkkkk

mmmm

mmmm


 

 

Then we have 

13321
~)...(... ,3,2,1, VUTTTT nkkkk mmmm

  

Also by similarly method we conclude that 

.~)...(... 23321
,3,2,1, VUTTTT nkkkk mmmm

  

This is the end of proof. � 
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