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Abstract- In this paper, we will study some properties of Tuples that there components are commutative bounded linear operators on a
separable Hilbert space H, then we will develop those properties for infinity-Tuples and find some conditions for them to be Hilbert-Schmidt
infinity tuple. The infinity-TuplesT = (T,,T,, T,,...) is called Hilbert-Schmidt infinity tuple if for every orthonormal basis {p} and {A} inH

we have had

iiKTszTs---ii 1M ]2 < o0

=1 j=1

Calculationof T,T,T,...A; doing by supreme over i fori=1, 2, 3...
Keywords: Hypercyclic vector, Hypercyclicity Criterion, Hilbert-Schmidt, Infinity -tuple, Periodic point.

. INTRODUCTION Orb(T,x)={Sx:S € Q} =
Let B be a Banach space and T,,T,,T,,... are {7 () k2 0,1=123,., ] =123,.}

commutative bounded linear mapping onB, the . .
PpIng The set Orb(T, x) is called orbit of vector x under
infinity-tuple T is an infinity components

infinity tupleT = (T,,T,,T.,...).
T =(T,T,,T,,...) foreach x € B defined yup USERERD)

T=TT,T,..(x) =

The set Infinity-Tuple T =(T,,T,,T,,...) is said to be

hypercyclic infinity-tuple if Orb(T, x) is dense in
Q= {TATETS Kk 20,i =123} yperey yup (%)

B, that is
is the semi group generated by components of T ,

for x € B take
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Orb(T, x)

={Sx:S eQ}
= {1 T, Ty (x) ki 20, =1,2,3,.., j=123,..}
=B

The first example of a hypercyclic operator on a
Hilbert space was constructed by Rolewicz in 1969
([11]). He showed that if B is the backward shift on

¢*(N), then AB is hypercyclic if and only if 1| >1

. Let H be a Hilbert space of functions analytic on
a plane domain G such that for each 1 G the

linear functional of evaluation at A given by
f— f(1)

is a bounded linear functional on H. By the Riesz

representation theorem there is a vector K, e H

such that
f(2)=(f.K,).
The vector K, € H is called the reproducing kernel
at1eG.
Definition 1.2

Strictly increasing sequence of positive integers

{m }._, is said to be Syndetic sequence, if

Sup,(m,,;, —m_) <oo.

n+l

An infinity tuple T =(T,,T,,T;,...) of operators

T.T,, T

on Banach space B is called weakly mixing if for
any pair of non-empty open subsets U and V. of B

and any Syndetic sequences

Mt AMcohan Mk -

With
Sup, (M, ; —m, ;) <o, j=123,..
there exist
My 1My 50 My g
such that
T T, T L U) NV = ¢
An infinity-tuple T =(T,T,T,...) is called

topologically mixing if for any given open subsets
U and V subsets of B, there exist positive numbers

K;,i=123,..., such that
Ky i1 Ko, T K. j
T, TM L (U)NV =9

forall k; ; >

K,where j =1,2,3,....

A sequence of operators {T, },_, is said to be a

hypercyclic sequence onB, if there exists xe B
such that its orbit under this sequence is dense in B
, that is

Orbl{T,}2,, x)=Orb(x, T,x, T,X, T,X,...)= B.

In this case the vector x e Bis called hypercyclic

vector for the sequence{T }._; .
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Definition 1.3

Let T=(T,T,T;..) be an infinity tuple of
commutative bounded linear mapping ¢ on a

separable Hilbert spaceH, also let {e,}, and
{B;};. be orthonormal basis forH, the infinity-
tuple T =(T,T,T;...) is said to be Hilbert-Schmidt

infinity Tuple, if we have

iiKTlTZTs...ai B;) <o

i=l j=1

Note that all operators in this are

paper
commutative operator defined on a separable

Hilbert space, reader can see [1]-[15] for more

information.

l. MAIN RESULT

Theorem 2.1
[The Hypercyclicity Criterion for n-Tuples]

Let B be a separable Banach space and
T=(,T,T,,..,T,) is a tuple of commutative
continuous linear mappings on B . If there exist two
dense subsets Y and Z in B and strictly increasing

sequences

M AMcohan iMshas -

= {mk,n }(I:ozl
such that

Ko Ko e Ka Ky i
T, Ty . T -0

1. onY as m; —o

fori=123,...,n,

2. There exist function {S,|S, :Z — B} such

that for every zeZ, S,z—>0 and

Ky o Ko i Ko K. .
T, 0T, T T, ™Sz > 2

Then T =(T,T,,T,,..,T,) is a hypercyclic

tuple.

Note that, if the tuple T=(T,T,,T,,...,T,)

satisfying the hypothesis of previous theorem, then

we say that T satisfying the hypothesis of

Hypercyclicity Criterion.

Theorem 2.2

[The Hypercyclicity Criterion for infinity-
Tuples]

Let B be a separable Banach space and

T=(,T,T,..) is an infinity tuple of

commutative continuous linear mappings onB . If
there exist two dense subsets Y and Z in B and

strictly increasing sequences

s b i b -
Such that:

1L TT,*T . >0o0nY as m;— o for
i=123...,
2. There exist function {S,|S, :Z — B} such

that for every zeZ, S,z—>0 and

Koo Ko o Ka
T T, T ..5,2 > 2
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Then T =(T,T,,T,,..T,) is a hypercyclic

tuple.
Theorem 2.3

Suppose X Dbe an F-sequence space with the
unconditional basis {e,},, and T,T,T,,.. are
unilateral weighted backward shifts with weight

sequences
b ko acsha -

also T =(T,,T,,T,,...) be an infinity tuple of those

operators , then the following assertions are

equivalent:

1. Infinity tuple T is chaotic.
2. Infinity tuple T is Hypercyclic and has a non-
trivial periodic point.

3. Infinity tuple T has a non-trivial periodic

point.
4. The series Z(H:l(e—mﬂ convergence in
m=1 G
X fori=123,....

Proof:

Proof of the cases (1) > (2) and (2) —> (3) are
trivial. For(3) — (4), suppose that T has a non-

trivial periodic point, and

X={x}e X

be a non-trivial periodic point for T, that is there

are

My Hys Mg, € N

such that
TATSTS.(X) = x
Comparing the entries at positions i+ kM , for

A =123,..,nkeNU{0}

of x and
TATT4 . T4 (X) = X
we find that
Xivkm, = (HZi(aHkNH ))XJ'+(k+1)
A=123,...

so that we have,

. 1 f -1
Kpaon, = 17 @) %, =<, ([T &)

keNU{0}2=123..

with

e~ o125

{8
x={x,}e X it follows that

Since is an unconditional basis and
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» 1 basis, condition (4) implies that for each je N

kzz;‘ H::lkMA(aj,/l) M, and M,N e the series

5601

— X s €

JHKMA "~ j+kM . © 1

€2 \k=0 y(iM,)=>" Py v A ) VI

2=123,.. =10 L
convergence in X . Without loss of generality, (Hil(mkl))i[ J+le HkM}
assume that j > N , applying the operators k=0 szl (m“)

lel‘szkz‘stka‘j__(X) converges for A=123,.. and define infinity

elements in X . Moreover, if M > then
forj=12,3,..Q -1, with
-I-lku‘l-rzkm‘ZT3kM‘3 =Y, (jw MA)
Q=Min{M, : 1=123,...}
fora=123,..., and
to this series and note that
T 0T, T =

Ky j Kz i Ka j _
T, m(en)_ajen_l V/A(jwMi)TlMszMszMS---WA(jwMA)

For n>2 and j=1,2,3,..., we deduce that S0

3 I S T ol D)= o )
j+kM; —v, "2 j+kM ;v
k=0 HtjzlkM (mM) o | if N> i th
2=123.. Also, if N > j; then
convergence in X . By adding these series, we see T, T o((i, ) N) = o, j)N)

that condition (4) holds. ]
form.. >N and i=123,....

L=
So that each w(j,N) and j< N is a periodic point

Proof of (4) — (1). It follows from theorem 2.1 that ;T \We shall show that T has a dense set of

under condition (4) the operator T is Hypercyclic. periodic points. Since {e } is a basis, it suffices to

Hence it remains to show that T has a dense set of show that for every element

periodic points. Since {e },_, is an unconditional
X € Span{e, : k € N}
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there is a periodic point y arbitrarily close to it. For

this, let

m
X=Y ex;&>0.
=1

Without lost of generality, for A =1,2,3,... we can

assume that

‘xj. Llau <1i=123,....m,

Since {e,},, is an unconditional basis,

condition (4) implies that there are M,N >m,

such that

=DM

k

b <
1 Hk:l (ajvi) m,

A=123,..

for every sequence {s,;},i=1,2,3,... taking values 0

or 1. By (1) and (2) the infinity elements

rnt -
yt = in'v/(l’ M(p)
i=1
p=123,...
of X isa periodic point forT and we have

Z(xi.y/(i,M(p)—ei)

i=1 i

ly: =x]=

m,

ST dm,)

i=1

As 1 =123,..., so by this, the proof is complete. [

Theorem 2.4

Let X be a topological vector space and T,,T,,Ts,...

are commutative bounded linear mapping on X,

and T =(T,,T,,T,,...) be an infinity tuple of those

operators. The following conditions are equivalent:

Infinity tuple T is weakly mixing.
For any pair of non-empty open subsets U

and V in X, and for any Syndetic

sequences
M Mo hen Mg -
there exist
m;, m,, m;, ...
such that
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TUTTL(U) NV =9 form., =123,..,i=123,...50
II. It suffices in Il to consider only those
T mk"1+mk"‘1T mk"2+mk"‘2T My 3+Myr 3 \/
sequences ( 1 L (U))ﬂ( )#¢
me; =123,..,i=123,...
M ke {mecshy s -
for which there is some By the assumption on

m>1,m,>1,m,>1, .. " " "
! 2 : b Mo Mk -
with

m,; e{m;2m} forall j we have

forallk, j >1. {m,:k=123.3IN

{n+m,n+m,,n+m,,..}=¢

Proof(l — 11 ), Given If for all j we can select

my; e{m,, k= 12,3..}3N

e Mo b Mk -
{n+m ,n+m,,n+m,,..}#¢

and U and V satisfying the hypothesis of
then we have
condition Il , take

T T, T L U) NV # 4.
mj = Supk{mk+1,j - mk,j -k =1,2,3,...} 1 2 3 ( ) ¢

. . By this the proof is completed.
for all j and since infinity product map

The case (11 — 111) is trivial.

n-times
—
TxTxTx..xT:

n-tines n-times Case(IIl - 1), Suppose thatU , V,andV,are non-
XxXXxXXx..xX—>XxXxXx..xX

empty open subsets of X , then there are

as n — oo, is transitive, then there is
My My o My gy e My e

Me1s Mooy Mg, oo _
inN , such that

in M , such that

-I-lmkl‘1'|'2mk1‘2'|'3mk1‘3 ...Tamkl‘n (U ) ﬂvl * ¢

(AR AN T)) g

YN N e L ¥ IR
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Tlmkl‘szmk1‘2T3mkl‘3 ) mk1 n (U ) mv * ¢

This will imply that T is weakly mixing. Since
(111 s satisfied, then we can take

My My o0 Mgy M e
in M, such that

T:Lmkz‘l'l'zmkz‘Z-I'smkl3 me " (U) ﬂv * ¢

By continuity, we can find \71 cV, open and non-

empty such that
T, T, 2T N, €V,

Also there exist some

' ' ' '
mkvl, mkvz, mkv3, . mk'n, vy
in X , such that
Tlm{(‘1+UIT2mL‘2+UzT3mL‘3+n3 T Mic 0+l Uc V

Now we take
My =My +1
for

all j, indeed we find strictly increasing

sequences of positive integer
My g Meor Mgy ooy, My oy
such that

m,; €{m;,2m;}

forall j,and

Tlmk‘szmk‘zTamk‘s ) mkn (U)ﬂv ¢¢

Now we have
(Tlmli‘1+’71T2m|2‘z+’72T3mk3+’73 “.Tsmli‘n'*"]n LU ) m\-/‘l + ¢
So the set

(7, sty Mot T meatn )y
P LS LSS LRI (V) Yo VARSS

is a subset of

(Tlm';‘lﬂhszlL‘zﬂhT ml’«s“ls T mk n+1n (U ))
(Tlmk‘lTka‘zTgmk‘S T mkn (V ))
Then we have
Tlmk‘lTka‘zTgmk‘S mk n (U ) nv + ¢

Also by similarly method we conclude that

T, T T LT (U)ﬂV # .
This is the end of proof. [
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