On Strongly π gr-Irresolute Functions

C.Janaki

Assistant Professor, Department of Mathematics

L.R.G. Govt. Arts College for Women, Tirupur-4

Abstract:

The purpose of this paper is to introduce strongly π grirresolute functions, strongly regular π gr-irresolute functions and strongly β - π gr-irresolute functions and study some of their basic properties. Also, some new forms of homeomorphism are defined and obtained their characterizations.

Keywords: strongly π gr-irresolute, strongly regular π gr-irresolute, strongly β - π gr-irresolute, strongly π grc-homeomorphism, Strongly regular π grc-homeomorphism.

Mathematics Subject Classification: 54C10,54C08,54C05.

1.Introduction:

Levine [10]introduced the concept of generalized closed sets in topological spaces and a class of topological space called $T_{1/2}$ -space. The concept of π -closed sets in topological spaces was initiated by Zaitsav[21] and the concept of π g-closed set was introduced by Noiri and Dontchev[6]. N.Palaniappan[18] studied and introduced regular closed sets in topological spaces. The notion of homeomorphism has been studied by many topologists[13,16].Maki et al [13]introduced β homeomorphisms. The strong forms of continuous map have been discussed by Noiri[17], Levine[11], Arya and Gupta[2], Reily, Vamanamurthy[19] and Zorlutuna et.al[22],Munshi and Bassan[15]. Strongly π g α -irresolute functions and its properties were studied by Janaki.C[7].

In this paper, we introduce strongly π gr-irresolute function ,strongly regular π gr-irresolute functions and obtained their characterizations. Throughout this paper (X, τ),(Y, σ),(Z, η) (or simply X,Y,Z) represent the topological spaces on which no separation axioms are assumed unless otherwise mentioned. V.Jeyanthi

Assistant Professor, Department of Mathematics

Sree Narayana Guru College, Coimbatore-105

2.Preliminaries:

Let (X,τ) or simply X be a topological space and A be a subset of X. The closure and interior of A are denoted by Cl(A) and Int(A) respectively.

Definition: 2.1

A subset A of X is called is called

- (i) Pre-open[14] if $A \subset Int(Cl(A))$.
- (ii) Regular open [18] if Int(Cl(A)) = A.
- (iii) β -open [1]if A \subset Cl(Int(Cl(A))).

Finite union of regular open set is π -open[21] and its complement is π -closed.

Definition:2.2

A subset A of X is called π gr-closed [8] if rcl(A) \subset U whenever A \subset U and U is π -open in X.Let π GRO(X) denote the collection of π gr - open set of X and π GRC(X) denote the collection of π gr - closed set of X.

Definition:2.3

A function f: $X \rightarrow Y$ is called

- (i) Continuous [11]if $f^{1}(V)$ is closed in X for every closed set V of Y.
- (ii) g-continuous [11] if $f^{1}(V)$ is g-closed in X for every closed set V of Y.
- (iii) r-continuous[18] if $f^{1}(V)$ is regular closed in X for every closed set V of Y.
- (iv) π -irresolute[6,7] if $f^{-1}(V)$ is π -closed in X for every π -closed set V of Y.
- (v) an R-map [3]if f¹(V) is regular closed in X for every regular closed set V of Y.
- (vi) π gr-continuous[9] if if f¹(V) is π gr-closed in X for every closed set V of Y.
- (vii) π gr-irresolute[9] if if f¹(V) is π gr-closed in X for every π gr-closed set V of Y.
- (viii) β -irresolute[12] if f¹(V) is β -open in X for every β -open set V of Y.

Definition:2.4

A topological space X is called

- (i) a π gr-T_{1/2}-space [8] if every π gr-closed set is regular closed in X.
- (ii) a sub maximal space [5]if every dense subset of X is open in X
- (iii) extremally disconnected[4] if the closure of each open subset of X is open.
- (iv) hyper connected[20] if every open subset of X is dense .

Definition:2.5

A bijection f: $X \rightarrow Y$ is called

- (i) a homeomorphism[13,16] if both f and f^1 are continuous.
- (ii) a semi-homeomorphism[13,16] if both f and f^1 are semi-continuous.
- (iii) a gc-homomorphism [13,16] if both f and f^1 are g-continuous.

Definition:2.6

A collection {Ai; $i \in \Lambda$ } of π gr-open sets in a topological space X is called π gr-open cover [9] of a subset B of X if B $\subset \cup$ {Ai; $i \in \Lambda$ } holds.

Definition:2.7

A topological space X is π GR-compact [9] if every π gr-open cover of X has a finite sub cover.

Definition: 2.8

A subset B of a topological space X is said to be π GRcompact[9]relative to X if, for every collection {Ai ; i $\in \Lambda$ }of π gr-open subsets of X such that B $\subset \cup$ {Ai ; i $\in \Lambda$ },there exists a finite subset Λ o of Λ such that B $\subset \cup$ {Ai ; ; i $\in \Lambda$ o}

Definition :2.9

A subset B of a topological space X is said to be π GR-compact [9] if B is π GR-compact as a subspace of X.

3. Strongly π gr-irresolute functions.

Definition:3.1

A function f: $X \rightarrow Y$ is said to be strongly π gr-irresolute if $f^{1}(V)$ is open in X for every π gr-open set V of Y.

Definition:3.2

A function f: $X \rightarrow Y$ is said to be strongly regular irresolute(strongly r-irresolute)if $f^{1}(V)$ is open in X for every regular open set V of Y.

Let us denote strongly regular irresolute function as strongly r-irresolute.

Theorem:3.3

If f: $X \rightarrow Y$ is a strongly π gr-irresolute ,then f is strongly r-irresolute.

Proof:Let V be regular open set in Y and hence V is π gr-open in Y. Since f is strongly π gr-irresolute, then $f^1(V)$ is open in X. Therefore $f^1(V)$ is open in X for every regular open set V in Y. Hence f is strongly r- irresolute.

Theorem:3.4

If f: $X \rightarrow Y$ is a continuous and Y is a $\pi gr-T_{1/2}$ -space , then f is strongly πgr -irresolute.

Proof:Let V be π gr-open in Y. Since Y is π gr-T_{1/2}-space, V is regular open in Y and hence open in Y.Since f is continuous, $f^{1}(V)$ is open in X. Thus, $f^{1}(V)$ is open in X for every π gr-open set V in Y. Hence f is strongly π gr- irresolute.

Theorem:3.5

If f: $X \rightarrow Y$ is a πgr -irresolute, X is a πgr - $T_{1/2}$ -space, then f is strongly πgr -irresolute.

Proof: Let V be π gr-open in Y. Since f is π gr-irresolute, $f^{1}(V)$ is π gr-open in X. Since X is a π gr- $T_{1/2}$ -space, $f^{1}(V)$ is regular open in X and hence open in X. Thus, $f^{1}(V)$ is open in X for every π gr-open set V in Y. Hence f is strongly π gr- irresolute.

Theorem:3.6

Let f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be any functions. Then

- (i) $g \circ f: X \rightarrow Z$ is πgr -irresolute if f is πgr -continuous and g is strongly πgr -irresolute.
- (ii) $g \circ f: X \rightarrow Z$ is strongly πgr -irresolute if f is strongly πgr -irresolute and g is πgr -irresolute.

Proof:(i)Let V be a π gr-open set in Z. Since g is strongly π gr-irresolute, g⁻¹(V) is open in Y. Since f is π gr-continuous, f¹(g⁻¹(V)) is π gr-open in X.

 \Rightarrow (g \circ f)⁻¹(V) is π gr-open in X for every π gr-open set V in Z.

 \Rightarrow (g o f) is π gr-irresolute.

(ii) Let V be a π gr-open set in Z. Since g is π gr-irresolute, g⁻¹(V) is π gr-open in Y. Since f is strongly π gr-irresolute, f⁻¹(g⁻¹(V)) is open in X.

 \Rightarrow (g \circ f)⁻¹(V) is open in X for every π gr-open set V in Z.

 \Rightarrow (g o f) is strongly π gr-irresolute.

Theorem:3.7

The following are equivalent for a function f: $X \rightarrow Y$:

- (i) f is strongly π gr-irresolute.
- (ii) For each $x \in X$ and each π gr-open set V of Y containing f(x), there exists an open set U in X containing x such that $f(U) \subset V$.
- (iii) $f^{1}(V) \subset int (f^{1}(V))$ for each πgr -open set V of Y.
- (iv) $f^{1}(F)$ is closed in X for every πgr -closed set F of Y.

Proof: (i) \Rightarrow (ii):

Let $x \in X$ and V be a π gr-open set in Y containing f(x).By hypothesis, $f^1(V)$ is open in X and contains x.

Set $U=f^{-1}(V)$. Then U is open in X and $f(U) \subset V$.

(ii) \Rightarrow (iii):

Let V be a π gr-open set in Y and $x \in f^{-1}(V)$.

By assumption, there exists an open set U in X containing x such that $f(U) \subset V$.

Then $x \in U \subset int(U)$

$$\subset$$
 int (f¹(V)).

Then $f^{1}(V) \subset int(f^{1}(V))$

(iii) \Rightarrow (iv):

Let F be a π gr-closed set in Y. Set V= Y – F. Then V is π gr-open in Y.

By (iii), $f^1(V) \subset int(f^1(V))$.

Hence $f^{1}(F)$ is closed in X.

 $(iv) \Rightarrow (i):$

Let V be π gr-open set in Y. Let F = Y - V. That is F is π grclosed set in Y. Then $f^{1}(F)$ is closed in X,(by (iv)). Then $f^{1}(V)$ is open in X. Hence f is strongly π gr-irresolute.

Theorem:3.8

A function f: $X \rightarrow Y$ is strongly π gr-irresolute if A is open in X, then f/A: $A \rightarrow Y$ is strongly π gr-irresolute.

Proof:Let V be a π gr-open set in Y. By hypothesis, $f^{-1}(V)$ is open in X. But $(f/A)^{-1}(V) = A \cap f^{-1}(V)$ is open in A and hence f/A is strongly π gr-irresolute.

Theorem:3.9

Let f: X \rightarrow Y be a function and {A_i: $i \in \Lambda$ } be a cover of X by open sets of (X, τ). Then f is strongly π gr-irresolute if f/A_i : (A_i, τ/A_i) \rightarrow (Y, σ) is strongly π gr-irresolute for each $i \in \Lambda$.

Proof:Let V be a π gr-open set in Y. By hypothesis, $(f/A_i)^{-1}(V)$ is open in A_i . Since A_i is open in X, $(f/A_i)^{-1}(V)$ is open in X for every $i \in \Lambda$.

$$\begin{split} f^{1}(V) &= X \cap f^{1}(V) \\ &= \bigcup \left\{ A_{i} \cap f^{1}(V) : i \in \Lambda \right\} \\ &= \bigcup \left\{ (f/A_{i})^{-1}(V) : i \in \Lambda \right\} \text{ is open} \end{split}$$

Hence f is strongly π gr-irresolute.

Theorem:3.10

Let f: $X \rightarrow Y$ be a strongly π gr-irresolute surjective function. If X is compact, then Y is π GRO-compact.

in X.

Proof:Let $\{A_i: i \in \Lambda\}$ be a cover of π gr-open sets of Y. Since f is strongly π gr-irresolute and X is compact, we get $X \subset \bigcup$ $\{f^1(A_i): i \in \Lambda\}$.Since f is surjective, $Y = f(X) \subset \bigcup \{A_i: i \in \Lambda\}$.Hence Y is π GRO-compact.

Theorem:3.11

If $f:X \to Y$ is strongly π gr-irresolute and a subset B of X is compact relative to X, then f(B) is π GRO-compact relative to Y.

Proof: Obvious.

Definition: 3.12

A function f: $X \rightarrow Y$ is said to be

(i) a strongly regular π gr-irresolute function if f¹(V) is regular open in X for every π gr-open set V in Y.

(ii) a strongly β - π gr-irresolute function if $f^{-1}(V)$ is β - open in X for every π gr-open set V in Y.

Theorem:3.13

(i) If f: $X \rightarrow Y$ is strongly regular π gr-irresolute , then f is strongly π gr-irresolute.

(ii) If f: $X \rightarrow Y$ is strongly regular π gr-irresolute , then f is strongly β - π gr-irresolute.

Proof:(i)Let f be a strongly regular πgr -irresolute function and let V be a πgr -open set in Y. Then $f^{1}(V)$ is regular open in X and hence open in X.

 \Rightarrow f⁻¹(V) is open in X for every π gr-open set V in Y.

Hence f is strongly regular π gr-irresolute.

(ii) Let f be a strongly regular π gr-irresolute function and let V be a π gr-open set in Y. Then

 $f^{1}(V)$ is regular open in X and hence open in X.

 \Rightarrow f¹(V) is open in X for every π gr-open set V in Y.

 \Rightarrow f⁻¹(V) is β -open in X for every π gr-open set V in Y.

Hence f is strongly β - π gr-irresolute.

Remark: 3.14

Converse of the above need not be true as seen in the following examples.

Example: 3.15

(i)Let $X=Y=\{a,b,c\}$, $\tau=\{\phi,\ X,\{a\},\{b\},\{a,b\},\{a,c\}\}$ and $\sigma=\{\phi,\ Y,\{a\},\{b\},\{a,b\}\}.$

Let $f:X \rightarrow Y$ be an identity map. Here for every π gr-open set V in Y, $f^{-1}(V)$ is open and β -open in X. Hence f is strongly π gr-irresolute and strongly β - π gr-irresolute.

But for every π gr-open set V in Y, f¹(V) is not regular open in X. Thus, f is not strongly regular π gr-irresolute .Hence strongly π gr-irresolute function need not be strongly regular π gr-irresolute function and strongly β - π gr-irresolute function.

Theorem:3.16

If f:X \rightarrow Y and g:Y \rightarrow Z, then g \circ f: X \rightarrow Z is

(i) strongly π gr-irresolute if f is strongly regular π gr-irresolute and g is π gr-irresolute.

(ii) strongly β - π gr-irresolute if f is strongly π gr-irresolute and g is π gr-irresolute.

Proof:Let V be an π gr-open set in Z. Since g is π gr-irresolute, g⁻¹(V) is π gr-open in Y. Since f is strongly regular π gr-irresolute, f⁻¹(g⁻¹(V)) is regular open in X.

 \Rightarrow (g \circ f)⁻¹(V) is regular open in X and hence open in X.

Hence $(g \circ f)$ is strongly π gr-irresolute.

(i) Let V be an πgr -open set in Z. Since g is πgr -irresolute, $g^{-1}(V)$ is πgr -open in Y. Since f is strongly πgr -irresolute, $f^{-1}(g^{-1}(V))$ is open in X and hence β -open in X.

 $\Longrightarrow (g\circ f)^{\text{-1}}(V) \text{ is } \beta\text{- open in } X \ \text{ for every } \pi gr\text{-open set } V \text{ in } Z.$

Hence $(g \circ f)$ is strongly β - π gr-irresolute.

Theorem:3.17

If $f:X \rightarrow Y$ and $g:Y \rightarrow Z$, then $g \circ f: X \rightarrow Z$ is

- (i) strongly regular π gr-irresolute if f is regular irresolute and g is strongly regular π gr-irresolute.
- (ii) strongly regular π gr-irresolute if f is regular continuous and g is strongly π gr-irresolute.
- (iii) strongly β π gr-irresolute if f is continuous and g is strongly π gr-irresolute.

Proof:Let V be a π gr-open set in Z. Since g is strongly regular π gr-irresolute, $g^{-1}(V)$ is regular open in Y. Since f is regular irresolute, $f^{-1}(g^{-1}(V))$ is regular open in X.

 \Rightarrow (g \circ f)⁻¹(V) is regular open in X.

Hence $(g \circ f)$ is strongly regular π gr-irresolute.

(i) Let V be an π gr-open set in Z. Since g is strongly π gr-irresolute, g⁻¹(V) is open in Y. Since f is regular continuous, f⁻¹(g⁻¹(V)) is regular open in X.

 \Rightarrow (g \circ f)⁻¹(V) is regular open in X.

Hence $(g \circ f)$ is strongly regular πgr -irresolute.

(ii) Let V be an π gr-open set in Z. Since g is strongly π gr-irresolute, g⁻¹(V) is open in Y.

Since f is continuous , $f^{1}(g^{-1}(V))$ is open in X.

 \Rightarrow (g \circ f)⁻¹(V) is open in X and hence β -open in X.

Hence $(g \circ f)$ is strongly β - π gr-irresolute.

Theorem :3.18

The following are equivalent for a function f: $X \rightarrow Y$:

- (i) f is strongly regular π gr-irresolute.
- (ii) For each $x \in X$ and each π gr-open set V of Y containing f(x), there exists a regular open set U in X containing x such that $f(U) \subset V$.
- (iii) $f^{1}(V) \subset Cl(Int (f^{1}(V)))$ for each π gr-open set V of Y.
- (iv) $f^{1}(F)$ is regular closed in X for every π gr-closed set F of Y.

Proof: Similar to that of Theorem 3.7

Theorem:3.19

The following are equivalent for a function f: $X \rightarrow Y$:

- (i) f is strongly β π gr-irresolute.
- (ii) For each $x \in X$ and each π gr-open set V of Y containing f(x), there exists a β open set U in X containing x such that $f(U) \subset V$.
- (iii) $f^{1}(V) \subset Cl(Int (f^{1}(V)))$ for each π gr-open set V of Y.
- (iv) $f^{1}(F)$ is β -closed in X for every π gr-closed set F of Y.

Proof: Similar to that of Theorem 3.7.

Lemma: 3.20

If f: $X \rightarrow Y$ is strongly regular π gr-irresolute and A is a regular open subset of X, then f/A : $A \rightarrow Y$ is strongly regular π gr-irresolute.

Proof:

Let V be a πgr -open in Y. By hypothesis, $f^1(V)$ is regular open in X. But $(f/A)^{-1}(V) = A \cap f^1(V)$ is regular open in A. Hence f/A is strongly regular πgr -irresolute.

Theorem:3.21

Let f: $X \rightarrow Y$ and $\{A_{\lambda}: \lambda \in \Lambda\}$ be a cover of X by regular open set of (X, τ) . Then f is a strongly regular π gr-irresolute function if $f/A_{\lambda}: A_{\lambda} \rightarrow Y$ is strongly regular π gr-irresolute for each $\lambda \in \Lambda$. **Proof:**Let V be any π gr-open set in Y. By hypothesis, $(f/A_{\lambda})^{-1}(V)$ is regular open in A_{λ} . Since A_{λ} is regular open in X, it follows that $(f/A_{\lambda})^{-1}(V)$ is π gr-open in X for each $\lambda \in \Lambda$.

$$f^{1}(V) = X \cap f^{1}(V)$$

$$= \bigcup \{ A_{\lambda} \cap f^{1}(V) : \lambda \in \Lambda \}$$

= $\bigcup \{ (f/A_{\lambda})^{-1}(V) : \lambda \in \Lambda \}$ is regular open in X.

Hence f is strongly regular π gr-irresolute.

Lemma:3.22

If f: $X \rightarrow Y$ is strongly β - π gr-irresolute and A is a regular-open subset of X, then f/A : $A \rightarrow Y$ is strongly β - π gr-irresolute.

Proof:Let V be a π gr-open in Y. By hypothesis, $f^1(V)$ is β -open in X. But $(f/A)^{-1}(V) = A \cap f^1(V)$ is β - open in A.Hence f/A is strongly β - π gr-irresolute.

Theorem:3.23

Let f: $X \rightarrow Y$ and $\{A_{\lambda} : \lambda \in \Lambda\}$ be a cover of X by β - open sets of (X, τ) . Then f is a strongly β - π gr-irresolute function if f/A_{λ} : $A_{\lambda} \rightarrow Y$ is strongly β - π gr-irresolute for each $\lambda \in \Lambda$.

Proof:Let V be any π gr-open set in Y. By hypothesis, $(f/A_{\lambda})^{-1}(V)$ is β - open in A_{λ} . Since A_{λ} is β - open in X, it follows that $(f/A_{\lambda})^{-1}(V)$ is β -open in X for each $\lambda \in \Lambda$.

$$I(\mathbf{V}) = \mathbf{X} \cap f^{1}(\mathbf{V})$$
$$= \bigcup \{ \mathbf{A}_{\lambda} \cap f^{1}(\mathbf{V}) : \lambda \in \Lambda \}$$

= $\bigcup \{ (f/A_{\lambda})^{-1}(V) : \lambda \in \Lambda \}$ is β - open in X.

Hence f is strongly β - π gr-irresolute.

Theorem:3.24

f

If a function f: $X \rightarrow Y$ is strongly β - π gr-irresolute, then f¹(B) is β -closed in X for any nowhere dense set B of Y.

Proof: Let B be any nowhere dense subset of Y. Then Y–B is regular in Y and hence π gr-open in Y. By hypothesis, $f^{1}(Y-B)$ is β -open in X. Hence $f^{1}(B)$ is β -closed in X.

Theorem:3.25

If a function f: $X \rightarrow Y$ and g: $Y \rightarrow Z$, then $g \circ f : X \rightarrow Z$ is strongly β - π gr-irresolute if

a) f is strongly β - π gr-irresolute and g is π gr-irresolute.

- b) f is an R-map and g is strongly regular π gr-irresolute.
- c) f is β -irresolute and g is strongly β - π gr-irresolute.
- d) f is β -irresolute and g is strongly π gr-irresolute.
- e) f is β -continuous and g is strongly π gr-irresolute.
- f) f is β -irresolute and g is strongly regular π gr-irresolute.

Proof: Follows from the definitions.

Theorem:3.26

Let X be a sub maximal and extremally disconnected space. Then the following are equivalent for a function f: $X \rightarrow Y$. Then the following are equivalent:

- a) f is strongly regular π gr-irresolute.
- b) f is strongly π gr-irresolute.
- c) f is strongly β π gr-irresolute.

Proof:

If X is sub maximal and extremally disconnected , then $\tau{=}RO(X){=}\beta O(X)$ and hence the result follows.

Definition:3.27

A bijection f: $X \rightarrow Y$ is

- (i) a π gr-homeomorphism if both f and f¹ are π gr-continuous.
- (ii) a π grc-homeomorphism if both f and f¹ are π grirresolute.
- (iii) a strongly π grc-homeomorphism if both f and f¹ are strongly π gr-irresolute.
- (iv) a strongly regular π grc-homeomorphism if both f and f¹ are strongly regular π gr- irresolute.
- (v) a strongly β - π grc- homeomorphism if both f and f¹ are strongly β - π gr-irresolute.

Theorem:3.28

If a bijective function f: $X \rightarrow Y$ is strongly regular π grc-homeomorphism, then

- 1) f is π grc-homeomorphism.
- 2) f is strongly π gr-homeomorphism.

Proof: (1)Since a bijection f is strongly regular π grchomeomorphism, f and f¹ are strongly regular π gr-irresolute. Every strongly regular π gr-irresolute function is π gr-irresolute.(Since every regular open set is π gr-open). Therefore, both f and f¹ are π gr-irresolute functions and hence f is a π grc-homeomorphism. (2)Since every strongly regular π gr-irresolute function is strongly π gr-irresolute and hence the result follows.

Proposition:3.29

- (i) Every strongly regular π grc-homeomorphism is a strongly π grc-homeomorphism and a strongly β - π grc- homeomorphism.
- (ii) Every strongly regular π grc-homeomorphism is a strongly β - π grc-homeomorphism.

Proof: Follows from the definitions.

Remark: 3.30

The family of all strongly π grc-homeomorphism from (X,τ) onto itself is denoted by St π grch (X,τ)

Theorem:3.31

If $f:X \rightarrow Y$ and $g:Y \rightarrow Z$ are strongly regular π grc-homeomorphisms, then $g \circ f: X \rightarrow Z$ is a strongly π grc-homeomorphism.

Proof: Let V be a π gr-open set in Z. Then $(\text{gof})^{-1}(V) = f^{-1}(g^{-1}(V)) = f^{-1}(U)$, where $U = g^{-1}(V)$. Since g is strongly regular π gr-chomeomorphism, g is strongly regular π gr-irresolute and $g^{-1}(V)$ is regular open in Y for every π gr-open set V in Z. Hence $U=g^{-1}(V)$ is π gr-open in Y. Since every regular open set is π gr-open. Also, since f is strongly regular π gr-irresolute, $f^{-1}(U)$ is regular open in X and hence open in X. Therefore, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is open in X. Hence $(g \circ f)$ is strongly π gr-irresolute.

Now, $(g \circ f)(A) = g(f(A)) = g(B)$, where B = f(A). Since f is strongly regular π grc-homeomorphism. f(A) is regular open in Y and hence π gr-open in Y. Now g is strongly regular π gr-homeomorphism implies g(B) is regular open in Z and hence open in Z. Hence $(g \circ f)^{-1}$ is strongly π gr-irresolute.

 \Rightarrow (g \circ f) is a strongly π grc-homeomorphism.

Bibliography

[1] M.E.Abd, EI. Monsef, S.N.EL.Deeb and R.A. Mashmoud,

"β-open sets and β-continuous mappings", Bull. Fac. Sci.

Asiut Univ., 12(1983), 77-90.

[2] S.P.Arya and R.Gupta, "On strongly continuous

mappings", Kyungpook Math, 13(1974), 131-143.

[3] D.A.Carnahan,"Some properties related to compactness

in topological spaces", Ph.D, Thesis, Univ. of Arkansas,

(1973).

[4] J.Dontchev, "The characterization of spaces and maps

via semi-preopen sets", Indian J.Pure Appl Math., 25

(1994), 939-947.

[5]J.Dontchev, On submaximal Spaces, Tamkang J.Math.,

26(1995),253-260.

- [6] J.Dontchev, T.Noiri, "Quasi normal spaces and π g-closed sets", Acta Math. Hungar, 89 (3),2000,211- 219.
- [7] Janaki.C, "Studies on πgα-closed sets in topology", Ph.D. Thesis, Bharathiar University, Sep- 2009.
- [8] Jeyanthi. V and Janaki.C, "πgr-closed sets in topological spaces ",Asian Journal of Current Engg. and Maths 1:5 sep 2012, 241-246.
- [9]Jeyanthi.V and janaki.C," On *mgr-continuous* functions

in topological spaces", IJERA, Vol 1, issue 3, Jan-Feb-

2013.

- [10]N. Levine, "Generalized closed sets in topology, Rend. Cir. Mat. Palermo, 19(1970), 89-96.
- [11] N.Levine, "Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70(1963), 36-41.
- [12] R.A. Mahmood and M.E.Abd El.Monsef, "β-irresolute and β-topological invariant", Proc. Pakistan Acad. Sci., 27(1990),285-296.
- [13] H.Maki, P.Sundaram and K.Balachandran, "On generalized homeomorphisms in topological Spaces", Bull. Fukuoka Univ.Ed.Part III, 40 (1991), 13-21.
- [14] A.S.Mashour, I.A.Hasanein and S.N.EI.Deeb, "A note on semi-continuity and pre- Continuity", Indian. J .Pure Appl. Math., 13(1982),213-218.
- [15] B.M. Munshi and D.S.Bassan, "Super continuous functions", Indian, J.Pure and Appl.Math., 13(1982), 229-236.
- [16] T.Neubrunn, "On Semi-homeomorphisms and related mappings", Acta Fac. Rerum Natur, Univ. Comenian Math., 33(1977),133-137.
- [17] T.Noiri, "Strong forms of continuity in topological spaces", Rend. Circ.Mat.Palermo (supplement) Ser.II, 12(1986),107-113.
- [18]Palaniappan .N and Rao.K.C, "Regular generalized closed sets", Kyungpook Math.J.33(1993), 211-219.
- [19]I.L.Reily and M.K.Vamanamurthy, "On super continuous mappings", Indian J.Pure appl. Math., 14(1983), 767-772.

- [20] L.A.Steen and J.A. Seeback Jr., "Counter examples in topology", Springer -verlag, NewYork, 1978.
- [21] V.Zaitsav, "On certain classes of topological spaces and their bicompactifications", Dok1 Akad Nauk, SSSR (178), 778-779.
- [22] I.Zorlutana, T.Noiri and M.Kucuk, "On strongly precontinuous functions", Bull. Malays. Math. Sci. Soc., 31(2008), 185-192.