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Abstract:

The purpose of this paper is to introduce strongly mgr-
irresolute  functions, strongly regular mgr-irresolute
functions and strongly B- mgr-irresolute functions and
study some of their basic properties. Also, some new forms
of homeomorphism are defined and obtained their
characterizations.
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1.Introduction:

Levine [10]introduced the concept of generalized closed sets
in topological spaces and a class of topological space called
Ti-space. The concept of m-closed sets in topological spaces
was initiated by Zaitsav[21] and the concept of ng-closed set
was introduced by Noiri and Dontchev[6]. N.Palaniappan[18]
studied and introduced regular closed sets in topological
spaces.The notion of homeomorphism has been studied by
many topologists[13,16].Maki et al [13]introduced -
homeomorphisms.The strong forms of continuous map have
been discussed by Noiri[17], Levine[11], Arya and Gupta[2],
Reily, Vamanamurthy[19] and Zorlutuna et.al[22],Munshi and
Bassan[15]. Strongly mga-irresolute functions and its
properties were studied by Janaki.C[7].

In this paper, we introduce strongly ngr-irresolute function
,strongly regular mgr-irresolute functions and obtained their
characterizations. Throughout this paper (X,7),(Y,0),(Zn) (or
simply X,Y,Z) represent the topological spaces on which no
separation axioms are assumed unless otherwise mentioned.
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2.Preliminaries:

Let (X,7) or simply X be a topological space and A be a subset
of X. The closure and interior of A are denoted by CI(A) and
Int(A) respectively.

Definition: 2.1

A subset A of X is called is called
@) Pre-open[14] if AcInt(CI(A)).
(i) Regular open [18]if Int(CI(A)) = A .
(iii) B-open [1]if AcCI(Int(CI(A))).

Finite union of regular open set is m-open[21] and its
complement is n-closed.

Definition:2.2

A subset A of X is called ngr-closed [8] if rcl(A) <U
whenever AcU and U is r-open in X.Let tGRO(X) denote
the collection of mgr - open set of X and tGRC(X) denote the
collection of mgr - closed set of X .

Definition:2.3
A function f: X—Y is called
@) Continuous [11]if £1(V) is closed in X for every
closed set V of Y.
(i) g-continuous [11] if £Y(V) is g-closed in X for
every closed set V of Y.

(iii) r-continuous[18] if (V) is regular closed in X for
every closed set V of Y.
(iv) n-irresolute[6,7] if £(V) is n-closed in X for every

n-closed set V of Y.
v) an R-map [3]if f1(V) is regular closed in X for
every regular closed set V of Y.

(vi) ngr-continuous[9] if if f1(V) is ngr-closed in X for
every closed set V of Y.
(vii) ngr-irresolute[9] if if F(V) is ngr-closed in X for
every ngr-closed set V of Y.
(viii)  p-irresolute[12] if f(V) is B-open in X for every B-
open set V of Y.
Definition:2.4

A topological space X is called
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() a mgr-Typ-space [8] if every mgr-closed set is
regular closed in X.

(i) a sub maximal space [5]if every dense subset of
X is open in X

(iii) extremally disconnected[4] if the closure of each

open subset of X is open.

(iv) hyper connected[20] if every open subset of X is
dense .
Definition:2.5

A bijection f: X—Y is called
0] a homeomorphism[13,16] if both f and f* are
continuous.
(i) a semi-homeomorphism[13,16] if both f and f*
are semi-continuous.

(iii) a gc-homomorphism [13,16]if both f and f* are
g-continuous.
Definition:2.6

A collection {Ai; i €A} of mgr-open sets in a topological
space X is called mgr-open cover [9] of a subset B of X if BC
U {Ai ;i €A} holds.

Definition:2.7

A topological space X is tGR-compact [9] if every mgr-open
cover of X has a finite sub cover.

Definition:2.8
A subset B of a topological space X is said to be nGR-
compact[9]relative to X if, for every collection

{Ai ; i €A }of ngr-open subsets of X such that BCU{Ai ;
iEA },there exists a finite subset Ao of A such that B CU{AI
; 1€ Ao}

Definition :2.9

A subset B of a topological space X is said to be nGR-
compact [9] if B is tGR-compact as a subspace of X .

3. Strongly mgr-irresolute functions.

Definition:3.1

A function f: X—Y is said to be strongly mgr-irresolute if
(V) is open in X for every mgr-open set V of Y.

Definition:3.2

A function f; X—Y is said to be strongly regular
irresolute(strongly r-irresolute)if (V) is open in X for every
regular open set V of Y.

Let us denote strongly regular irresolute function as strongly
r-irresolute.

Theorem:3.3

If f: X—Y is a strongly mgr-irresolute ,then f is strongly r-
irresolute.

Proof:Let V be regular open set in Y and hence V is mgr-open
in Y. Since f is strongly mgr-irresolute, then f*(V) is open in
X. Therefore £*(V) is open in X for every regular open set V
in Y. Hence f is strongly r- irresolute.

Theorem:3.4

If f: X—Y is a continuous and Y is a mgr-Ty,-space , then f is
strongly mgr-irresolute.

Proof:Let V be ngr-open in Y. Since Y is ngr-Tio-Space, V is
regular open in Y and hence open in Y.Since f is continuous,
£1(V) is open in X. Thus,f%(V) is open in X for every mgr-
open set V in Y. Hence f is strongly ngr- irresolute.

Theorem:3.5

If f: X—Y is a ngr-irresolute, X is a ngr-Ty,-space , then f is
strongly mgr-irresolute.

Proof:Let V be mgr-open in Y. Since fis ngr-irresolute, (V)
is mgr-open in X. Since X isa mgr-Ty,-space, F(V) is regular
open in X and hence open in X. Thus, f}(V) is open in X for
every mgr-open set V in Y. Hence f is strongly ngr- irresolute.

Theorem:3.6
Let f: X—Y and g:Y—Z be any functions. Then

@) g o f. X>Z is ngr-irresolute if f is ngr-
continuous and g is strongly ngr-irresolute.

(i) go fi X—Z is strongly mgr-irresolute if f is
strongly mgr-irresolute and g is mgr-irresolute.

Proof:(i)Let V be a mgr-open set in Z. Since g is strongly ngr-
irresolute, g*(V) is open in Y. Since f is mgr-continuous,
£1(g™(V)) is mgr-open in X.

= (gof)Y(V) is mgr-open in X for every mgr-open set V in
Z

= (gof) isngr-irresolute.
(if) Let V be a mgr-open set in Z. Since g is ngr-irresolute,

g_l(V) is mgr-open in Y. Since f is strongly mgr-irresolute,
£1(g™(V)) is open in X.
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= (gof) (V) is open in X for every mgr-open set V in Z.
= (gof) is strongly ngr-irresolute.

Theorem:3.7

The following are equivalent for a function f: X—Y:

(i) fis strongly ngr-irresolute.

(i) For each xe X and each mgr-open set V of Y
containing f(x), there exists an open set U in X
containing x such that f(U) C V.

(i)  fYV) cint (F}(V)) for each mgr-open set V of
Y.

(iv) £1(F) is closed in X for every mgr-closed set F of
Y.

Proof: (i) = (ii):

Let xeX and V be a ngr-open set in Y containing f(x).By
hypothesis,f1(V) is open in X and contains x.

Set U=f*(V). Then U is open in X and f(U) C V.
(i) = (iii):
Let V be a mgr-open set in Y and x € f*(V).

By assumption, there exists an open set U in X containing X
such that f(U) C V.

Then x e U Cint(U)

cint (F{(V)).
Then £1(V) Cint(f(V))
(i) = (iv):

Let F be a mgr-closed set in Y. Set V=Y — F. Then V is ngr-
openinY.

By (iii), F(V) Cint(F(V)).
Hence f(F) is closed in X.
(iv) = (i):

Let V be mgr-open set in Y. Let F =Y — V. That is F is ngr-
closed set in Y. Then f(F) is closed in X,(by (iv)). Then
£1(V) is open in X. Hence f is strongly ngr-irresolute.

Theorem:3.8

A function f: X—Y is strongly mgr-irresolute if A is open in
X, then f/A: A=Y is strongly mgr-irresolute.

Proof:Let V be a mgr-open set in Y. By hypothesis, (V) is
open in X. But (f/A)}(V) = AN f*(V) is open in A and hence
f/A is strongly ngr-irresolute.

Theorem:3.9

Let f: X—Y be a function and {A;: i€ A} be a cover of X by
open sets of (X,1). Then f is strongly ngr-irresolute if f/A; :
(Ait/Aj)) —(Y,0) is strongly mtgr-irresolute for each i € A.

Proof:Let V be a mgr-open set in Y. By hypothesis,
(fIA)Y(V) is open in A;. Since A, is open in X, (FFA)Y(V) is
open in X for every i€ A.
(V) = XN (V)
=U{A NfY(V):ieA}
=UJ{fA) (V) ie A} is open in X.
Hence f'is strongly mgr-irresolute.

Theorem:3.10

Let f: X—Y be a strongly ngr-irresolute surjective function. If
X is compact, then Y is tGRO-compact.

Proof:Let {A;: i€ A} be a cover of ngr-open sets of Y. Since
f is strongly mgr-irresolute and X is compact, we get X< UJ

{f*(A): i€ A}.Since f is surjective, Y = f(X) c U{A: ie
A} Hence Y is tGRO-compact.

Theorem:3.11

If X — Y is strongly mgr-irresolute and a subset B of X is
compact relative to X, then f(B) is tGRO-compact relative to
Y.

Proof: Obvious.
Definition: 3.12
A function f: X—Y is said to be

0] a strongly regular mgr-irresolute function if f(V)
is regular open in X for every mgr-open set V in
Y.
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(i) a strongly B- mgr-irresolute function if £(V) is
B- open in X for every mgr-open set V in Y.

Theorem:3.13

(i) If f: X—>Y is strongly regular mgr-irresolute , then f is
strongly mgr-irresolute.

(i) If f: XY is strongly regular mgr-irresolute , then f is
strongly B-mgr-irresolute.

Proof:(i)Let f be a strongly regular mgr-irresolute function
and let V be a mgr-open set in Y. Then f*(V) is regular open in
X and hence open in X.

= (V) is open in X for every ngr-open set Vin Y.
Hence fis strongly regular ngr-irresolute.

(ii) Let f be a strongly regular mgr-irresolute function and let V
be a mgr-open set in Y. Then

£1(V) is regular open in X and hence open in X.

=> (V) is open in X for every mgr-open set V in Y.
= (V) is B-open in X for every mgr-open set Vin'Y.
Hence fis strongly B- ngr-irresolute.

Remark: 3.14

Converse of the above need not be true as seen in the
following examples.

Example: 3.15

()Let X=Y = {ab,c} , == {, X,{a},{b},{ab},{ac}} and o
={o, Y,{a},{b},{a,b}}.

Let f:X—Y be an identity map. Here for every mgr-open set V
inY, f(V) is open and B-open in X. Hence f is strongly ngr-
irresolute and strongly B-ngr-irresolute.

But for every mgr-open set V in Y, £1(V) is not regular open in
X. Thus, f is not strongly regular mgr-irresolute .Hence
strongly mgr-irresolute function need not be strongly regular
ngr-irresolute function and strongly B-mgr-irresolute function .

Theorem:3.16
If £ X—>Y and g2Y—Z, then gof: X—Z s

(i) strongly mgr-irresolute if f is strongly regular mgr-
irresolute and g is mgr-irresolute.

(i) strongly B-mgr-irresolute if f is strongly ngr-
irresolute and g is mgr-irresolute.

Proof:Let V be an ngr-open set in Z. Since g is ngr-irresolute,
g'l(V) is mgr-open in Y. Since f is strongly regular mgr-
irresolute , f1(g™(V)) is regular open in X.
= (gof)*(V) is regular open in X and hence open in X.
Hence (g o f) is strongly ngr-irresolute.
0] Let V be an mgr-open set in Z. Since g is mgr-
irresolute, g(V) is mgr-open in Y. Since f is
strongly mgr-irresolute , f(g*(V)) is open in X

and hence f-open in X.

= (gof)™(V) is B- open in X for every mgr-open
set Vin Z

Hence (g o f) is strongly B- ngr-irresolute.
Theorem:3.17

If X—Y and g:Y—Z, thengof: X—Z s

(M strongly regular mgr-irresolute if f is regular
irresolute and g is strongly regular zgr-irresolute.
(i) strongly regular mgr-irresolute if f is regular

continuous and g is strongly ngr-irresolute.
strongly B- mgr-irresolute if fis continuous and
g is strongly mgr-irresolute.

(iii)

Proof:Let V be a mgr-open set in Z. Since g is strongly
regular mgr-irresolute, g™(V) is regular open in Y. Since f is
regular irresolute , f*(g™(V)) is regular open in X.

= (gof)*(V) is regular open in X .
Hence (g o f) is strongly regular ngr-irresolute.

(M Let V be an ngr-open set in Z. Since g is strongly
ngr-irresolute, g(V) is open in Y. Since f is
regular continuous , £(g™*(V)) is regular open in
X.
= (gof)*(V) is regular open in X .

Hence (g of) is strongly regular mgr-irresolute.

(i) Let V be an ngr-open set in Z. Since g is strongly
ngr-irresolute, g*(V) is openin Y.

Since fis continuous , f*(g™(V)) is open in X.
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= (gof)*(V) is open in X and hence p-open in X.
Hence (g of) is strongly B-mgr-irresolute.
Theorem :3.18
The following are equivalent for a function f: X—Y:

(i) fis strongly regular ngr-irresolute.

(i) For each xe X and each mgr-open set V of Y
containing f(x), there exists a regular open set U
in X containing x such that f(U) C V.

(iii) £1(V) cCl(Int (F(V))) for each mgr-open set V
of Y.

(iv) £1(F) is regular closed in X for every mgr-closed
set Fof Y.

Proof: Similar to that of Theorem 3.7
Theorem:3.19
The following are equivalent for a function f: X—Y:

(i) f'is strongly B- ngr-irresolute.

(i) For each xe X and each mgr-open set V of Y
containing f(x), there exists a - open set U in X
containing x such that f(U) C V.

(i)  FYV) c<ClI(Int (F(V))) for each mgr-open set V
of Y.

(iv) f1(F) is B-closed in X for every ngr-closed set F
of Y.

Proof: Similar to that of Theorem 3.7.
Lemma: 3.20

If f: X—Y is strongly regular ngr-irresolute and A is a regular
open subset of X, then f/A : A—Y is strongly regular ngr-
irresolute.

Proof:

Let V be a mgr-open in Y . By hypothesis, (V) is regular
open in X. But (FAYY(V) = ANTYV) is regular open in A.
Hence /A is strongly regular ngr-irresolute.

Theorem:3.21

Let f: X—>Y and {A;:A € A} be a cover of X by regular open
set of (X,t). Then fis a strongly regular wgr-irresolute function
if f/A;: Av—Y is strongly regular ngr-irresolute for each A€
A.

Proof:Let V be any mgr-open set in Y. By hypothesis,
(fIA) (V) is regular open in A,. Since A, is regular open in
X, it follows that (f/A,)™(V) is mgr-open in X for each A€ A.

V) =X N (V)

=U{A. NFiV): LeA]

=U {(f#A) (V): L€ A} is regular open in X.
Hence fis strongly regular ngr-irresolute.
Lemma:3.22

If f: X—Y is strongly B- mgr-irresolute and A is a regular-open
subset of X, then f/A : A—Y is strongly B- mgr-irresolute.

Proof:Let V be a mgr-open in Y . By hypothesis, f(V) is p-
open in X. But (ffA)(V) = ANfY(V) is - open in A.Hence
f/A is strongly B- mgr-irresolute.

Theorem:3.23

Let f: X—Y and {A;:A€ A} be a cover of X by B- open sets
of (X,7). Then f is a strongly B- mgr-irresolute function if f/A;:
A=Y is strongly B- ngr-irresolute for each A € A.

Proof:Let V be any mgr-open set in Y. By hypothesis, (f/A;)
(V) is B- open in A,. Since A, is B- open in X, it follows that
(F/A) (V) is B-open in X for each A€ A.

f1V) =X N (V)

=U{A nfliV):reA;

=U {(fIA) (V): L€ A} is p- open in X.
Hence f is strongly B- mgr-irresolute.
Theorem:3.24

If a function f: X—Y is strongly B-ngr-irresolute , then f*(B)
is B-closed in X for any nowhere dense set B of Y.

Proof: Let B be any nowhere dense subset of Y. Then Y-B is
regular in Y and hence wgr-open in Y. By hypothesis,
£1(Y—B) is p-open in X. Hence f(B) is p-closed in X.

Theorem:3.25

If a function f: X—Y and g Y—Z, then gof :X—Z is
strongly B-mgr-irresolute if

a) fis strongly B-ngr-irresolute and g is mgr-irresolute.
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b) fisan R-map and g is strongly regular mgr-irresolute.

c) fisp-irresolute and g is strongly B-ngr-irresolute.

d) fis B-irresolute and g is strongly mgr-irresolute.

e) fis p-continuous and g is strongly mgr-irresolute.

f) f is P-irresolute and g is strongly regular mgr-
irresolute.

Proof: Follows from the definitions.
Theorem:3.26

Let X be a sub maximal and extremally disconnected space.
Then the following are equivalent for a function f: X—Y.
Then the following are equivalent:

a) fis strongly regular mgr-irresolute.
b) fis strongly mgr-irresolute.
c) fis strongly B- ngr-irresolute.

Proof:

If X is sub maximal and extremally disconnected , then
=RO(X)=BO(X) and hence the result follows.

Definition:3.27

A bijection f: X—Y is

0] a mgr-homeomorphism if both f and f* are ngr-
continuous.

(i) a mgre-homeomorphism if both f and f* are mgr-
irresolute.

(iii) a strongly mgrc-homeomorphism if both fand f*

are strongly mgr-irresolute.

a strongly regular wgrc-homeomorphism if both f

and f* are strongly regular mgr- irresolute.

(v) a strongly B-mgrc- homeomorphism if both f and
' are strongly p- mgr-irresolute.

(iv)

Theorem:3.28

If a bijective function f: X—Y is strongly regular mgrc-
homeomorphism, then

1) fis mgrc-homeomorphism.
2) fis strongly mgr-homeomorphism.

Proof: (1)Since a bijection f is strongly regular ngre-
homeomorphism, f and f* are strongly regular mgr-irresolute.
Every strongly regular mgr-irresolute function is ngr-
irresolute.(Since every regular open set is  mgr-open)
Therefore, both f and ' are ngr-irresolute functions and
hence f is a mgrc-homeomorphism.

(2)Since every strongly regular mgr-irresolute function is
strongly mgr-irresolute and hence the result follows.

Proposition:3.29

0] Every strongly regular mgrc-homeomorphism is
a strongly mgrc-homeomorphism and a strongly
B-mgre- homeomorphism.

(i) Every strongly regular mgrc-homeomorphism is
a strongly B-ngrc- homeomorphism.

Proof: Follows from the definitions.
Remark:3.30

The family of all strongly mgrc-homeomorphism from (X,t)
onto itself is denoted by Strgrch(X,t)

Theorem:3.31

If X->Y and gY—Z are strongly regular ngrc-
homeomorphisms, then g o f: X—Z is a strongly ngrc-
homeomorphism.

Proof: Let V be a mgr-open set in Z. Then (gof)’(V) =
fY(g™*(V)) =F1(U), where U =g™(V).Since g is strongly regular
ngre-homeomorphism, g is strongly regular mgr-irresolute and
g*(V) is regular open in Y for every mgr-open set V in Z.
Hence U=g*(V) is mgr-open in Y.Since every regular open set
is mgr-open. Also, since fis strongly regular ngr-irresolute,
£1(V) is regular open in X and hence open in X. Therefore,
(goH(V) = FH(g™(V)) is open in X. Hence (g of) is strongly
ngr-irresolute.

Now, (go f)(A) =g(f(A)) =g(B), where B= f(A). Since f is
strongly regular tgrc-homeomorphism. f(A) is regular open in
Y and hence mgr-open in Y. Now g is strongly regular ngr-
homeomorphism implies g(B) is regular open in Z and hence
open in Z. Hence (go f)™ is strongly mgr-irresolute.

= (g of) is a strongly ngrc-homeomorphism.
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