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Abstract: 

The purpose of this paper is to introduce strongly πgr-
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functions and strongly β- πgr-irresolute functions and 
study some of their basic properties. Also, some new forms 
of homeomorphism are defined and obtained their 
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1.Introduction: 

Levine [10]introduced the concept of generalized closed sets 
in topological spaces and a class of topological space called 
T1/2-space. The concept of -closed sets in topological spaces 
was initiated by Zaitsav[21] and the concept of g-closed set 
was introduced by Noiri and Dontchev[6]. N.Palaniappan[18] 
studied and introduced regular closed sets in topological 
spaces.The notion of homeomorphism has been studied by 
many topologists[13,16].Maki et al [13]introduced β-
homeomorphisms.The strong forms of continuous map have 
been discussed by Noiri[17], Levine[11], Arya and Gupta[2], 
Reily, Vamanamurthy[19] and Zorlutuna et.al[22],Munshi and 
Bassan[15]. Strongly πg-irresolute functions and its 
properties were studied by Janaki.C[7]. 
 
In this paper, we introduce strongly gr-irresolute function 
,strongly regular πgr-irresolute  functions  and obtained their 
characterizations. Throughout this paper (X,),(Y,),(Z,η)  (or 
simply X,Y,Z) represent the topological spaces on which no 
separation axioms are assumed unless otherwise mentioned. 
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2.Preliminaries: 

Let (X,) or simply X be a topological space and A be a subset 
of X. The closure and interior of A are denoted by Cl(A) and 
Int(A) respectively. 
 
Definition: 2.1 
A subset A of X is called is called  

(i) Pre-open[14] if AInt(Cl(A)). 
(ii) Regular open [18]if Int(Cl(A)) = A . 
(iii) -open [1]if ACl(Int(Cl(A))). 

 
Finite union of regular open set is -open[21] and its 
complement is -closed. 
  
Definition:2.2 
A subset A of X is called gr-closed [8] if rcl(A) U 
whenever AU and U is -open in X.Let πGRO(X) denote 
the collection of πgr - open set of X and πGRC(X) denote the 
collection of πgr - closed set of X . 
 
Definition:2.3 
A function f: XY is called 

(i) Continuous [11]if f-1(V) is closed in X for every 
closed set V of Y. 

(ii) g-continuous [11] if f-1(V) is g-closed in X for 
every closed set V of Y. 

(iii) r-continuous[18] if f-1(V) is regular closed in X for 
every closed set V of Y. 

(iv) -irresolute[6,7] if f-1(V) is -closed in X for every 
-closed set V of Y. 

(v) an R-map [3]if f-1(V) is regular closed in X for 
every regular closed set V of Y. 

(vi) gr-continuous[9] if if f-1(V) is gr-closed in X for 
every closed set V of Y. 

(vii) gr-irresolute[9] if if f-1(V) is gr-closed in X for 
every gr-closed set V of Y. 

(viii) β-irresolute[12] if f-1(V) is β-open in X for every β-
open set V of Y. 

 

Definition:2.4 

A topological space X is called   
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(i) a πgr-T1/2-space [8] if every πgr-closed set is 
regular closed in X. 

(ii) a sub maximal space [5]if every dense subset of 
X is open in X 

(iii) extremally disconnected[4] if the closure of each 
open subset of X is open. 

(iv) hyper connected[20] if every open subset of X is 
dense . 

Definition:2.5 

A bijection f: XY is called 
(i) a homeomorphism[13,16] if both f and f-1 are 

continuous. 
(ii) a semi-homeomorphism[13,16] if both f and f-1 

are semi-continuous. 
(iii) a gc-homomorphism [13,16]if both f and f-1 are 

g-continuous. 
 
Definition:2.6 
A collection {Ai; i ∈Λ} of πgr-open sets in a topological 
space X is called πgr-open cover [9] of a subset B of X if B⊂ 
∪ {Ai ; i ∈Λ } holds.  
 
Definition:2.7 
A topological space X is πGR-compact [9] if every πgr-open 
cover of X has a finite sub cover.  
 
Definition:2.8 
A subset B of a topological space X is said to be πGR-
compact[9]relative to X if, for every collection                        
{Ai ; i ∈Λ }of πgr-open subsets of X such that B⊂∪{Ai ; 
i∈Λ },there exists a finite subset Λo of Λ such that B ⊂∪{Ai 
; i∈ Λo}  

 
Definition :2.9 
A subset B of a topological space X is said to be πGR-
compact [9] if B is πGR-compact as a subspace of X . 
 

3. Strongly πgr-irresolute functions. 

Definition:3.1 

A function f: X→Y  is said to be strongly πgr-irresolute  if     
f-1(V) is open in X for every πgr-open set V of Y. 

 

Definition:3.2 

A function f: X→Y is said to be strongly regular 
irresolute(strongly r-irresolute)if  f-1(V) is  open in X for every 
regular open set V of Y. 

Let us denote strongly regular irresolute function as strongly 
r-irresolute. 

Theorem:3.3 

If f: X→Y is a strongly πgr-irresolute ,then f  is strongly r- 
irresolute. 

Proof:Let V be regular open set in Y and hence V is πgr-open 
in Y. Since f is strongly πgr-irresolute, then f-1(V) is open in 
X. Therefore f-1(V) is open in X for every regular open set V 
in Y. Hence f is strongly r- irresolute. 

Theorem:3.4 

If f: X→Y is a continuous and Y is a πgr-T1/2-space , then f is 
strongly πgr-irresolute. 

Proof:Let V be πgr-open in Y. Since Y is  πgr-T1/2-space, V is 
regular open in Y and hence open in Y.Since f is continuous, 
f-1(V) is open in X. Thus,f-1(V) is open in X for every  πgr-
open set V in Y. Hence f is strongly πgr- irresolute. 

Theorem:3.5 

If f: X→Y is a πgr-irresolute, X  is a πgr-T1/2-space , then f is 
strongly πgr-irresolute. 

Proof:Let V be πgr-open in Y. Since f is πgr-irresolute, f-1(V) 
is πgr-open in X. Since X is a  πgr-T1/2-space, f-1(V) is regular 
open in X and hence open in X. Thus, f-1(V) is open in X for 
every  πgr-open set V in Y. Hence f is strongly πgr- irresolute. 

Theorem:3.6 

Let f: X→Y and g:Y→Z be any functions. Then   

(i) g   f: X→Z is πgr-irresolute if f is πgr-
continuous and g is strongly πgr-irresolute. 

(ii) g  f: X→Z is strongly πgr-irresolute if f is 
strongly πgr-irresolute and g is πgr-irresolute. 

Proof:(i)Let V be a πgr-open set in Z. Since g is strongly πgr-
irresolute, g-1(V) is open in Y. Since f is πgr-continuous,        
f-1(g-1(V)) is πgr-open in X. 

 ( g  f)-1(V)  is πgr-open in X for every πgr-open set V in 
Z. 

 ( g f)  is πgr-irresolute. 

(ii) Let V be a πgr-open set in Z. Since g is πgr-irresolute,      
g-1(V) is πgr-open in Y. Since f is strongly πgr-irresolute,       
f-1(g-1(V)) is open in X. 
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 ( g f)-1(V)  is open in X for every πgr-open set V in Z. 

 ( g f)  is strongly πgr-irresolute. 

Theorem:3.7  

The following are equivalent for a function f: X→Y: 

(i) f is strongly πgr-irresolute. 
(ii) For each xX and each πgr-open set V of Y 

containing f(x), there exists an open set U in X 
containing x such that f(U)V. 

(iii) f-1(V)  int (f-1(V)) for each πgr-open set V of 
Y. 

(iv) f-1(F) is closed in X for every πgr-closed set F of 
Y. 

Proof: (i)  (ii):  

Let xX and V be a πgr-open set in  Y containing f(x).By 
hypothesis,f-1(V) is open in X and contains x.  

Set U=f-1(V). Then U is open in X and f(U)V. 

(ii)  (iii): 

Let V be a πgr-open set in Y and xf-1(V). 

By assumption, there exists an open set U in X containing x 
such that f(U) V. 

Then xU int(U) 

                   int (f-1(V)). 

Then f-1(V)  int(f-1(V)) 

(iii)  (iv):  

Let F be a πgr-closed set in Y. Set V= Y – F. Then V is πgr-
open in Y. 

 By (iii), f-1(V) int(f-1(V)). 

Hence f-1(F) is closed in X. 

(iv)  (i): 

Let V be πgr-open set in Y. Let F = Y – V. That is F is πgr-
closed set in Y. Then f-1(F) is closed in X,(by (iv)). Then        
f-1(V) is open in X. Hence f is strongly πgr-irresolute. 

 

 

Theorem:3.8 

A  function f: X→Y is strongly πgr-irresolute if  A is open in 
X, then f/A: A→Y is strongly πgr-irresolute. 

Proof:Let V be a πgr-open set in Y. By hypothesis, f-1(V) is 
open in X. But (f/A)-1(V) = A f-1(V) is open in A and hence 
f/A is strongly πgr-irresolute. 

Theorem:3.9 

Let f: X→Y be a function and {Ai: iΛ} be a cover of X by 
open sets of (X,τ). Then f is strongly πgr-irresolute if  f/Ai : 
(Ai,τ/Ai) →(Y,σ) is strongly πgr-irresolute for each iΛ. 

Proof:Let V be a πgr-open set in Y. By hypothesis,            
(f/Ai)-1(V) is open in Ai. Since Ai is open in X, (f/Ai)-1(V) is 
open in X  for every  iΛ. 

   f-1(V) = X f-1(V) 

 = {Ai  f-1(V): iΛ} 

 = {(f/Ai)-1(V): iΛ} is open  in X.  

Hence f is strongly πgr-irresolute. 

Theorem:3.10 

Let f: X→Y be a strongly πgr-irresolute surjective function. If 
X is compact, then Y is πGRO-compact. 

Proof:Let {Ai: iΛ} be a cover of πgr-open sets of Y. Since 
f is strongly πgr-irresolute and X is compact, we get X  

{f-1(Ai): iΛ}.Since f is surjective, Y = f(X)   {Ai: i
Λ}.Hence Y is πGRO-compact. 

Theorem:3.11 

If f:X → Y is strongly πgr-irresolute and a subset B of X is 
compact relative to X, then f(B) is πGRO-compact relative to 
Y. 

Proof: Obvious. 

Definition: 3.12 

A function f: X→Y is said to be  

(i) a strongly regular πgr-irresolute function if f-1(V) 
is regular open in X for every πgr-open set V in 
Y. 
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(ii) a strongly β- πgr-irresolute function if f-1(V) is 
β- open in X for every πgr-open set V in Y. 

Theorem:3.13 

(i) If f: X→Y is strongly regular πgr-irresolute , then f is 
strongly πgr-irresolute. 

(ii) If f: X→Y is strongly regular πgr-irresolute , then f is 
strongly β-πgr-irresolute. 

 Proof:(i)Let f be a strongly regular πgr-irresolute function 
and let V be a πgr-open set in Y. Then f-1(V) is regular open in 
X and hence open in X. 

  f-1(V) is open in X for every πgr-open set V in Y. 

Hence f is strongly regular πgr-irresolute. 

(ii) Let f be a strongly regular πgr-irresolute function and let V 
be a πgr-open set in Y. Then               

f-1(V) is regular open in X and hence open in X. 

  f-1(V) is open in X for every πgr-open set V in Y. 

  f-1(V) is β-open in X for every πgr-open set V in Y. 

Hence f is strongly β- πgr-irresolute. 

Remark: 3.14 

Converse of the above need not be true as seen in the 
following examples. 

Example: 3.15  

(i)Let X= Y = {a,b,c} , τ= {φ, X,{a},{b},{a,b},{a,c}} and σ 
={φ, Y,{a},{b},{a,b}}. 

Let f:X→Y be an identity map. Here for every πgr-open set V 
in Y, f-1(V) is open and β-open in X. Hence f is strongly πgr-
irresolute and strongly β-πgr-irresolute. 

But for every πgr-open set V in Y, f-1(V) is not regular open in 
X. Thus, f is not strongly regular πgr-irresolute .Hence 
strongly πgr-irresolute function need not be strongly regular 
πgr-irresolute function  and strongly β-πgr-irresolute function .   

Theorem:3.16 

If f:X→Y and g:Y→Z , then g f: X→Z is 

(i) strongly πgr-irresolute if f  is strongly regular πgr-
irresolute and g is πgr-irresolute. 

(ii) strongly β-πgr-irresolute if f is strongly πgr-
irresolute and g is πgr-irresolute. 

Proof:Let V be an πgr-open set in Z. Since g is πgr-irresolute, 
g-1(V) is πgr-open in Y. Since f is strongly regular πgr-
irresolute , f-1(g-1(V)) is regular open in X. 

         (g  f)-1(V)  is regular open in X and hence open in X. 

                       Hence (g  f) is strongly πgr-irresolute. 

(i) Let V be an πgr-open set in Z. Since g is πgr-
irresolute, g-1(V) is πgr-open in Y. Since f is 
strongly πgr-irresolute , f-1(g-1(V)) is  open in X 
and hence β-open in X. 

                   (g  f)-1(V) is β- open in X  for every πgr-open 
set V in Z. 

Hence (g  f) is strongly β- πgr-irresolute. 

Theorem:3.17 

If f:X→Y and g:Y→Z , then g f: X→Z is 

(i) strongly regular πgr-irresolute if f is regular 
irresolute and g is strongly regular πgr-irresolute. 

(ii) strongly regular πgr-irresolute if f is regular 
continuous and g is strongly πgr-irresolute. 

(iii) strongly β- πgr-irresolute if  f is continuous and 
g is strongly πgr-irresolute. 

Proof:Let V be a πgr-open set in Z. Since g is strongly 
regular πgr-irresolute, g-1(V) is regular open in Y. Since f is 
regular irresolute , f-1(g-1(V)) is   regular open in X. 

                  (g  f)-1(V)  is regular open in X . 

                  Hence (g  f) is strongly regular πgr-irresolute. 

(i) Let V be an πgr-open set in Z. Since g is strongly 
πgr-irresolute, g-1(V) is  open in Y. Since f is 
regular continuous , f-1(g-1(V)) is  regular open in 
X. 

 (g  f)-1(V)  is regular open in X . 

Hence (g  f) is strongly regular πgr-irresolute. 

(ii) Let V be an πgr-open set in Z. Since g is strongly 
πgr-irresolute, g-1(V) is  open in Y.     

Since f is  continuous , f-1(g-1(V)) is  open in X. 
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        (g  f)-1(V)  is  open in X  and hence β-open in X. 

               Hence (g  f) is strongly  β-πgr-irresolute. 

Theorem :3.18 

The following are equivalent for a function f: X→Y: 

(i) f is strongly regular πgr-irresolute. 
(ii) For each xX and each πgr-open set V of Y 

containing f(x), there exists a regular open set U 
in X containing x such that f(U)V. 

(iii) f-1(V) Cl(Int (f-1(V))) for each πgr-open set V 
of Y. 

(iv) f-1(F) is regular closed in X for every πgr-closed 
set F of Y. 

Proof:  Similar to that of Theorem 3.7 

Theorem:3.19 

The following are equivalent for a function f: X→Y: 

(i) f is strongly β- πgr-irresolute. 
(ii) For each xX and each πgr-open set V of Y 

containing f(x), there exists a β- open set U in X 
containing x such that f(U)V. 

(iii) f-1(V) Cl(Int (f-1(V))) for each πgr-open set V 
of Y. 

(iv) f-1(F) is β-closed in X for every πgr-closed set F 
of Y. 

Proof: Similar to that of Theorem  3.7. 

Lemma: 3.20 

If f: X→Y is strongly regular πgr-irresolute and A is a regular 
open subset of X, then f/A : A→Y is strongly regular πgr-
irresolute. 

Proof: 

Let V be a πgr-open in Y . By hypothesis, f-1(V) is regular 
open in X. But (f/A)-1(V) = A f-1(V) is regular open in A. 
Hence f/A is strongly regular πgr-irresolute. 

 

Theorem:3.21 

Let f: X→Y and {Aλ: λΛ} be a cover of X by regular open 
set of (X,τ). Then f is a strongly regular πgr-irresolute function 
if f/Aλ: Aλ→Y is strongly regular πgr-irresolute for each λ
Λ. 

Proof:Let V be any πgr-open set in Y. By hypothesis,            
(f/Aλ)-1(V) is regular open in Aλ. Since Aλ is regular open in 
X, it follows that (f/Aλ)-1(V) is πgr-open in X for each  λΛ. 

f-1(V) =X f-1(V) 

 = {Aλ  f-1(V): λΛ} 

 = {(f/Aλ)-1(V): λΛ} is regular open  in X.  

Hence f is strongly regular πgr-irresolute. 

Lemma:3.22 

If f: X→Y is strongly β- πgr-irresolute and A is a regular-open 
subset of X, then f/A : A→Y is strongly β- πgr-irresolute. 

Proof:Let V be a πgr-open in Y . By hypothesis, f-1(V) is β- 
open in X. But (f/A)-1(V) = A f-1(V) is β- open in A.Hence 
f/A is strongly β- πgr-irresolute. 

Theorem:3.23 

Let f: X→Y and {Aλ: λΛ} be a cover of X by β- open sets 
of (X,τ). Then f is a strongly β- πgr-irresolute function if f/Aλ: 
Aλ→Y is strongly β- πgr-irresolute for each λΛ. 

Proof:Let V be any πgr-open set in Y. By hypothesis, (f/Aλ)-

1(V) is β- open in Aλ. Since Aλ is β- open in X, it follows that 
(f/Aλ)-1(V) is β-open in X for each  λΛ. 

f-1(V) =X f-1(V) 

 = {Aλ  f-1(V): λΛ} 

 = {(f/Aλ)-1(V): λΛ} is β- open  in X.  

Hence f is strongly β- πgr-irresolute. 

Theorem:3.24 

If a function f: X→Y is strongly β-πgr-irresolute , then   f-1(B) 
is β-closed in X for any nowhere dense set B of Y. 

Proof: Let B be any nowhere dense subset of Y. Then Y−B is 
regular in Y and hence πgr-open in Y. By hypothesis,             
f-1(Y−B) is β-open in X. Hence f-1(B) is β-closed in X. 

Theorem:3.25 

If a function f: X→Y and g: Y→Z, then g  f :X→Z is 
strongly β-πgr-irresolute if  

a) f is strongly β-πgr-irresolute and g is πgr-irresolute. 
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b) f is an R-map and g is strongly regular πgr-irresolute. 
c) f is β-irresolute and g is strongly β-πgr-irresolute. 
d) f is β-irresolute and g is strongly πgr-irresolute. 
e) f is β-continuous  and g is strongly πgr-irresolute. 
f) f is β-irresolute and g is strongly regular πgr-

irresolute. 

Proof: Follows from the definitions. 

Theorem:3.26 

Let X be a sub maximal and extremally disconnected space. 
Then the following are equivalent for a function f: X→Y. 
Then the following are equivalent: 

a) f is strongly regular πgr-irresolute. 
b) f is strongly πgr-irresolute. 
c) f is strongly β- πgr-irresolute. 

Proof:  

If X is sub maximal and extremally disconnected , then 
τ=RO(X)=βO(X) and hence the result follows. 

Definition:3.27 

A bijection f: X→Y is  

(i) a  πgr-homeomorphism if both f and  f-1 are πgr-
continuous. 

(ii) a πgrc-homeomorphism if both f and f-1 are  πgr-
irresolute. 

(iii) a strongly πgrc-homeomorphism if both f and  f-1 
are strongly  πgr-irresolute. 

(iv) a strongly regular πgrc-homeomorphism if both f  
and f-1 are strongly regular πgr- irresolute. 

(v) a strongly β-πgrc- homeomorphism if both f and 
f-1  are strongly  β- πgr-irresolute. 

Theorem:3.28 

If  a  bijective function f: X→Y is strongly regular πgrc-
homeomorphism, then 

1) f is πgrc-homeomorphism. 
2) f is strongly πgr-homeomorphism. 

Proof: (1)Since a bijection f is strongly regular πgrc-
homeomorphism, f and f-1 are strongly regular πgr-irresolute. 
Every strongly regular πgr-irresolute function is πgr-
irresolute.(Since every regular open set is  πgr-open) 
.Therefore, both f and f-1 are πgr-irresolute functions and 
hence f  is a πgrc-homeomorphism.   

(2)Since every strongly regular πgr-irresolute function  is 
strongly πgr-irresolute and hence the result follows. 

Proposition:3.29 

(i) Every strongly regular πgrc-homeomorphism is 
a strongly πgrc-homeomorphism and a strongly 
β-πgrc- homeomorphism. 

(ii) Every strongly regular πgrc-homeomorphism is 
a strongly β-πgrc- homeomorphism. 

Proof: Follows from the definitions. 

Remark:3.30 

The family of all strongly πgrc-homeomorphism from (X,τ) 
onto itself is denoted by Stπgrch(X,τ) 

Theorem:3.31 

If f:X→Y and g:Y→Z   are strongly regular πgrc-
homeomorphisms, then g  f: X→Z is a strongly πgrc-
homeomorphism. 

Proof: Let V be a πgr-open set in Z. Then (gof)-1(V) =            
f-1(g-1(V)) =f-1(U), where U =g-1(V).Since g is strongly regular 
πgrc-homeomorphism, g is strongly regular πgr-irresolute and 
g-1(V) is regular open in Y for every πgr-open set V in Z. 
Hence U=g-1(V) is πgr-open in Y.Since every regular open set 
is πgr-open.  Also, since  f is strongly regular πgr-irresolute,         
f-1(U) is regular open in X and hence open in X. Therefore,         
(g  f)-1(V) = f-1(g-1(V))  is open in X. Hence (g  f) is strongly 
πgr-irresolute. 

Now, (g  f)(A) =g(f(A)) =g(B), where B= f(A). Since f is 
strongly regular πgrc-homeomorphism. f(A) is regular open in 
Y and hence πgr-open in Y. Now g is strongly regular πgr-
homeomorphism implies g(B) is regular open in Z and hence 
open in Z. Hence (g  f)-1  is strongly πgr-irresolute. 

 (g  f) is a strongly πgrc-homeomorphism. 
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