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Abstract. The field of approximation theory is so vast that it plays an increasingly important role in

applications in pure and applied mathematics. The present study deals with a theorem concerning the

degree of approximation of a function f belonging to W (Lr, ξ (t)) (r > 1)-class by using (E, 1) (C, 2)

of its Fourier series.
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1 Introduction

The degree of approximation of a function belonging to the various classes Lipα,

Lip (α, r), Lip (ξ (t) , r) using different summability methods have been determined

by several investigators like Alexits [2], Sahney and Goel [13], Quershi and Neha [11],

Qureshi [9, 10], Chandra [1], Khan [4], Liendler [5], Mishra et al. [7] and Rhoades [12].

Recently Nigam [8] has obtained the degree of approximation of a function belonging

to Lip (ξ (t) , r) class by (E, 1) (C, 2) summability method. In the present paper, a

theorem on degree of approximation of a function f belonging to W (Lr, ξ(t))(r ≥ 1)-

class by (E, 1) (C, 2) product summability transform of Fourier series has been obtained

which in turn generalizes the result of Nigam [8].

2 Preliminaries

Let f(x) be periodic with period 2π and integrable in the sense of Lebesgue. The

Fourier series associated with f at a point x is defined as
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f (x) ∼
a0

2
+

∞∑

n=1

(an cos nx + bn sin nx) (2.1)

with nth partial sums sn(f ; x).

L∞ - norm of a function f : R → R is defined by

‖f‖∞ = sup {|f (x)| : x ∈ R} (2.2)

Lr-norm of a function is defined by

‖f‖r =

(∫ 2π

0

|f (x)|r dx

) 1
r

, r ≥ 1. (2.3)

The degree of approximation of a signal f : R → R by a trigonometric polynomial tn

of degree n under sup norm ‖ ‖∞ is defined as

‖tn − f‖∞ = sup {|tn (x) − f (x)| : x ∈ R } (Zygmund [14]) (2.4)

and En (f) of a function f ∈ Lr is given by

En(f) = min ‖tn − f‖r (2.5)

This method of approximation is called trigonometric Fourier approximation (TFA).

A function f ∈ Lipα if

f (x + t) − f (x) = O (|t|α) for 0< α ≤ 1. (2.6)

f ∈ Lip (α, r ) for 0 ≤ x ≤ 2π, if

(∫ 2π

0

|f (x + t) − f (x)|r dx

) 1
r

= O (|t|α) , 0 < α ≤ 1, r ≥ 1. (2.7)

(definition 5.38 of Mc Fadden [6], 1942).

Given a positive increasing function ξ (t) and an integer r ≥ 1, f ∈ Lip (ξ (t) , r)

if
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(∫ 2π

0

|f (x + t) − f (x)|r dx

) 1
r

= O (ξ (t)) (2.8)

If ξ (t) = tα then Lip (ξ (t) , r) class reduces to the Lip (α, r) and if r → ∞ then

Lip (α, r) class reduces to the Lipα class.

and that f ∈ W (Lr, ξ (t)) if

(∫ 2π

0

∣
∣{f (x + t) − f (x)} sinβ x

∣
∣r dx

) 1
r

= O (ξ (t) ) , β ≥ 0. (2.9)

where ξ(t) is a positive increasing function of t.

If β = 0 then W (Lr, ξ (t)) reduces to the class Lip (ξ (t) , r) and if ξ(t) = tα then

Lip(ξ(t), r) class coincides with the class Lip(α, r) and if r → ∞ then Lip(α, r) class

reduces to the class Lipα.

We observe that

Lipα ⊆ Lip (α, r) ⊆ Lip (ξ (t) , r) ⊆ W (Lr, ξ (t)) for 0 < α ≤ 1, r ≥ 1.

Let
∑∞

n=0 un be a given infinite series with sequence of its nth partial sum {sn}.

The (E, 1) transform is defined as the nth partial sum of (E, 1) summability and is

given by

(E, 1) = E1
n =

1

2n

n∑

k=0

(
n

k

)

sk → s as n → ∞ (2.10)

then the infinite series
∑∞

n=0un is said to be (E, 1) summable to a definite number s

(Hardy [3]).

The (C, 2) transform is defined as the nth partial sum of (C, 2) summability and is

given by

tn =
2

(n + 1) (n + 2)

n∑

k=0

(n − k + 1) sk → s as n → ∞ (2.11)

then the infinite series
∑∞

n=0un is (C, 2) summable to a definite number s.

The (E, 1) transform of the (C, 2) transform defines (E, 1)(C, 2) transform and we

denote it by E1
nC2

n.
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Thus if

E1
nC2

n =
1

2n

n∑

k=0

(
n

k

)

C2
k → s as n → ∞. (2.12)

then the series
∑∞

n=0un is said to be summable by (E, 1) (C, 2) summability transform

to a definite number s.

We use the following notations:

φ (t) = f (x + t) + f (x − t) − 2f (x)

Mn (t) =
1

2nπ

n∑

k=0

{(
n

k

)
1

(k + 1) (k + 2)

k∑

ν=0

(k − ν + 1 )
sin
(
ν + 1

2

)
t

sin t
2

}

3 Main Theorem

If f is a 2π-periodic function, Lebesgue integrable on (0, 2π), belonging to W (Lr, ξ (t))

class then its degree of approximation by (E, 1) (C, 2) summability transform of its

Fourier series is given by

∥
∥E1

nC2
n − f

∥
∥

r
= O

[

(n + 1)β+ 1
r ξ

(
1

n + 1

)]

(3.1)

provided ξ (t) satisfies the following conditions:

{∫ 1
n+1

0

(
t |φ (t) |

ξ (t)

)r

sinβr dt

} 1
r

= O

(
1

n + 1

)

(3.2)

{∫ π

1
n+1

(
t−δ |φ (t)|

ξ (t)

)r

dt

} 1
r

= O
{

(n + 1)δ
}

(3.3)

and {
ξ(t)

t

}

is non-increasing in t, (3.4)

where δ is an arbitrary number such that s (1 − δ) − 1 > 0, 1
r

+ 1
s

= 1, 1 ≤ r ≤ ∞,

conditions (3.2) and (3.3) hold uniformly in x and E1
nC2

n is (E, 1) (C, 2) means of the

series (2.1).
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Note 3.1 For β = 0, our theorem reduces to the theorem of Nigam [8] and thus

generalizes it.

4 Lemma

In order to prove our theorem, we need following lemmas:

Lemma 4.1. For 0 ≤ t ≤ 1
n+1

,

|Mn(t)| = O (n + 1) (4.1)

Proof. For 0 ≤ t ≤ 1
n+1

, sin nt ≤ n sin t,

|Mn (t)| ≤
1

2nπ

∣
∣
∣
∣
∣

n∑

k=0

{(
n

k

)
1

(k + 1) (k + 2)

k∑

ν=0

(k − ν + 1 )
sin
(
ν + 1

2

)
t

sin t
2

}∣∣
∣
∣
∣

≤
1

2nπ

∣
∣
∣
∣
∣

n∑

k=0

{(
n

k

)
1

(k + 1) (k + 2)

k∑

ν=0

(k − ν + 1 )
(2ν + 1) sin t

2

sin t
2

}∣∣
∣
∣
∣

≤
1

2nπ

∣
∣
∣
∣
∣

n∑

k=0

{(
n

k

)
1

(k + 1) (k + 2)
(2k + 1)

k∑

ν=0

(k − ν + 1 )

}∣∣
∣
∣
∣

≤
1

2nπ

∣
∣
∣
∣
∣

n∑

k=0

{(
n

k

)
1

(k + 1) (k + 2)
(2k + 1)

(k + 1) (k + 2)

2

}∣∣
∣
∣
∣

=
1

2n+1π

n∑

k=0

{(
n

k

)

(2k + 1)

}

=
1

2n+1π
{2n (n + 1)}

= O(n + 1)

Lemma 4.2. For 1
n+1

≤ t ≤ π,

|Mn(t)| = O

(
1

t

)

(4.2)
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Proof. For 1
n+1

≤ t ≤ π, sin t
2
≥ t

π
and sin nt ≤ 1

|Mn (t)| ≤
1

2nπ

∣
∣
∣
∣
∣

n∑

k=0

{(
n

k

)
1

(k + 1) (k + 2)

k∑

ν=0

(k − ν + 1 )
sin
(
ν + 1

2

)
t

sin t
2

}∣∣
∣
∣
∣

≤
1

2nπ

∣
∣
∣
∣
∣

n∑

k=0

{(
n

k

)
1

(k + 1) (k + 2)

k∑

ν=0

(k − ν + 1 )

(
1
t
π

)}∣∣
∣
∣
∣

≤
1

2n t

∣
∣
∣
∣
∣

n∑

k=0

{(
n

k

)
1

(k + 1) (k + 2)

k∑

ν=0

(k − ν + 1 )

}∣∣
∣
∣
∣

≤
1

2n t

∣
∣
∣
∣
∣

n∑

k=0

{(
n

k

)
1

(k + 1) (k + 2)

(k + 1) (k + 2)

2

}∣∣
∣
∣
∣

=
1

2n+1t

n∑

k=0

(
n

k

)

=
1

2n+1 t
{2n}

= O

(
1

t

)

5 Proof of Main Theorem

Let sn(x) denote the partial sum of the series (2.1), then we have

sn (x) − f (x) =
1

2π

∫ π

0

φ (t)
sin
(
n + 1

2

)
t

sin t
2

dt

Therefore, the E1
nC2

n transform of sn (f ; x) is given by

E1
nC2

n − f (x) =
1

π 2n

[
n∑

k=0

(
n

k

)
1

(k + 1) (k + 2)

∫ π

0

φ (t)

sin t
2

{
k∑

ν=0

(n − ν + 1) sin

(

ν +
1

2

)

t

}

dt

]

=

∫ π

0

φ (t) Mn (t) dt
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=

[∫ 1
n+1

0

+

∫ π

1
n+1

]

φ (t) Mn (t))dt

= I1 + I2 (say) (5.1)

We consider,

|I1| ≤
∫ 1

n+1

0

|φ (t)| |Mn (t)| dt

Applying Hölder’s inequality and the fact that φ (t) ∈ W (Lr, ξ (t)) due to the fact that

f ∈ W (Lr, ξ (t)), condition (3.2) and Lemma 4.1, we have

|I1| ≤

[∫ 1
n+1

0

{
t |φ (t)| sinβ t

ξ (t)

}r

dt

] 1
r
[∫ 1

n+1

0

{
ξ (t) |Mn (t)|

t sinβ t

}s

dt

] 1
s

= O

(
1

n + 1

)[∫ 1
n+1

0

{
ξ (t) |Mn (t)|

t1+β

}s

dt

] 1
s

= O

(
1

n + 1

)[∫ 1
n+1

0+

{
ξ (t) (n + 1)

t1+β

}s

dt

] 1
s

Since ξ(t) is positive increasing function and using second mean value theorem for

integrals, we have

|I1| = O

{

ξ

(
1

n + 1

)}[∫ 1
n+1

∈

dt

t(1+β)s

] 1
s

for some 0 ≤∈<
1

n + 1

= O

[

ξ

(
1

n + 1

){
t−(1+β)s+1

− (1 + β) s + 1

} 1
n+1

∈

] 1
s

= O

[

ξ

(
1

n + 1

)

(n + 1)1+β− 1
s

]

= O

{

(n + 1)β+1− 1
s ξ

(
1

n + 1

)]

= O

{

(n + 1)β+ 1
r ξ

(
1

n + 1

)}

since
1

r
+

1

s
= 1, 1 ≤ r ≤ ∞. (5.2)

Now we consider,

|I2| ≤
∫ π

1
n+1

|φ (t)| |Mn (t)| dt
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Using Hölder’s inequality, |sin t| < 1 and sin t ≥
(

2t
π

)
,

|I2| ≤

[∫ π

1
n+1

{
t−δ |φ (t) | sinβ t

ξ (t)

}r

dt

] 1
r
[∫ π

1
n+1

{
ξ (t) |Mn (t)|

t−δ sinβ t

}s

dt

] 1
s

= O
{

(n + 1)δ
}
[∫ π

1
n+1

{
ξ (t) |Mn (t)|

t−δ+β

}s

dt

] 1
s

by (3.3)

= O
{

(n + 1)δ
}
[∫ π

1
n+1

{
ξ (t)

t1−δ+β

}s

dt

] 1
s

by Lemma 4.2

Now putting t = 1
y
,

I2 = O
{

(n + 1)δ
}



∫ n+1

1
π






ξ
(

1
y

)

yδ−1−β






s

dy

y2





1
s

Since ξ (t) is a positive increasing function and
ξ( 1

y )
1
y

is also increasing function and

using second mean value theorem for integrals,

I2 = O

{

(n + 1)δ (n + 1) ξ

(
1

n + 1

)}[∫ n+1

η

dy

yδs+2−βs

] 1
s

, for some
1

π
≤ η ≤ n + 1

= O

{

(n + 1)δ+1 ξ

(
1

n + 1

)}[∫ n+1

1

dy

yδs+2−βs

] 1
s

, for some
1

π
≤ 1 ≤ n + 1

= O

{

(n + 1)δ+1 ξ

(
1

n + 1

)}[{
y−sδ+βs−1

−sδ + βs − 1

}n+1

1

] 1
s

= O

{

(n + 1)δ+1 ξ

(
1

n + 1

)}[
(n + 1)−δ− 1

s
+β
]

= O

{

ξ

(
1

n + 1

)}{
(n + 1)1− 1

s
+β
}

= O

{

(n + 1)β+ 1
r ξ

(
1

n + 1

)}

since
1

r
+

1

s
= 1 (5.3)

Now combining (5.1), (5.2) and (5.3), we get

∣
∣E1

nC2
n − f

∣
∣ = O

{

(n + 1)β+ 1
r ξ

(
1

n + 1

)}
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Now using Lr- norm, we get

∥
∥E1

nC2
n − f

∥
∥

r
=

{∫ 2π

0

∣
∣E1

nC2
n − f

∣
∣r dx

} 1
r

=

[{∫ 2π

0

{

(n + 1)β+ 1
r ξ

(
1

n + 1

)}r

dx

} 1
r

]

=

{

(n + 1)β+ 1
r ξ

(
1

n + 1

)}[{∫ 2π

0

dx

} 1
r

]

=

{

(n + 1)β+ 1
r ξ

(
1

n + 1

)}

.

This completes the proof of the main theorem .

6 Applications

Following corollaries can be derived from our main theorem:

6.1 Corollary

If ξ (t) = tα, 0 < α ≤ 1, then weighted class W (Lr, ξ (t)), r ≥ 1, reduces to the class

Lip (α, r) and the degree of approximation of 2π- periodic function f, belonging to the

class Lip (α, r ) , 1
r

< α < 1 is given by

∣
∣E1

nC2
n − f

∣
∣ = O

{
1

(n + 1)α− 1
r

}

(6.1)

Proof. The result follows by setting β = 0 in (3.1).

6.2 Corollary

If ξ (t) = tα for 0 < α < 1 and r = ∞ in corollary 6.1, then f ∈ Lipα. In this case,

using (6.1), we have

∣
∣E1

nC2
n − f

∣
∣ = O

{
1

(n + 1)α

}
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Proof. For r = ∞, we get

∥
∥E1

nC2
n − f

∥
∥
∞

= sup
0≤ x≤2π

∣
∣E1

nC2
n − f

∣
∣ = O

{
1

(n + 1)α

}

that is,
∣
∣E1

nC2
n − f

∣
∣ = O

{
1

(n + 1)α

}
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