Degree of Approximation of a Function Belonging to $W\left(L_{r}, \xi(t)\right)(r>1)$-Class by $(E, 1)(C, 2)$ Product Summabilty Transform

Kusum Sharma ${ }^{1}$ and S. S. Malik ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Arts, Science \& Commerce, Mody Institute of Technology and Science (Deemed University), Laxmangarh-332311, Sikar (Rajasthan), INDIA.
${ }^{2}$ Department of Mathematics, Bhartiya Institute of Engineering \& Technology, Sikar- Rajasthan, INDIA.
${ }^{1} \mathrm{e}$-mail: kusum31sharma@rediffmail.com,
${ }^{2} \mathrm{e}$-mail: ssmalik@live.in

Abstract

The field of approximation theory is so vast that it plays an increasingly important role in applications in pure and applied mathematics. The present study deals with a theorem concerning the degree of approximation of a function f belonging to $W\left(L_{r}, \xi(t)\right)(r>1)$-class by using $(E, 1)(C, 2)$ of its Fourier series.

Key Words and Phrases : Degree of approximation, $W\left(L_{r}, \xi(t)\right)(r>1)$-class of function, $(E, 1)$ summability, $(C, 2)$ summability, $(E, 1)(C, 2)$ product summability, Fourier series, Lebesgue integral.

1 Introduction

The degree of approximation of a function belonging to the various classes Lipa, $\operatorname{Lip}(\alpha, r)$, Lip $(\xi(t), r)$ using different summability methods have been determined by several investigators like Alexits [2], Sahney and Goel [13], Quershi and Neha [11], Qureshi [9, 10], Chandra [1], Khan [4], Liendler [5], Mishra et al. [7] and Rhoades [12]. Recently Nigam [8] has obtained the degree of approximation of a function belonging to $\operatorname{Lip}(\xi(t), r)$ class by $(E, 1)(C, 2)$ summability method. In the present paper, a theorem on degree of approximation of a function f belonging to $W\left(L_{r}, \xi(t)\right)(r \geq 1)$ class by $(E, 1)(C, 2)$ product summability transform of Fourier series has been obtained which in turn generalizes the result of Nigam [8].

2 Preliminaries

Let $f(x)$ be periodic with period 2π and integrable in the sense of Lebesgue. The Fourier series associated with f at a point x is defined as

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{2.1}
\end{equation*}
$$

with $n^{\text {th }}$ partial sums $s_{n}(f ; x)$.
L_{∞} - norm of a function $f: R \rightarrow R$ is defined by

$$
\begin{equation*}
\|f\|_{\infty}=\sup \{|f(x)|: x \in R\} \tag{2.2}
\end{equation*}
$$

L_{r}-norm of a function is defined by

$$
\begin{equation*}
\|f\|_{r}=\left(\int_{0}^{2 \pi}|f(x)|^{r} d x\right)^{\frac{1}{r}}, r \geq 1 \tag{2.3}
\end{equation*}
$$

The degree of approximation of a signal $f: R \rightarrow R$ by a trigonometric polynomial t_{n} of degree n under sup norm $\left\|\|_{\infty}\right.$ is defined as

$$
\begin{equation*}
\left\|t_{n}-f\right\|_{\infty}=\sup \left\{\left|t_{n}(x)-f(x)\right|: x \in R\right\} \text { (Zygmund [14]) } \tag{2.4}
\end{equation*}
$$

and $E_{n}(f)$ of a function $f \in L_{r}$ is given by

$$
\begin{equation*}
E_{n}(f)=\min \left\|t_{n}-f\right\|_{r} \tag{2.5}
\end{equation*}
$$

This method of approximation is called trigonometric Fourier approximation (TFA).

A function $f \in \operatorname{Lip\alpha }$ if

$$
\begin{equation*}
f(x+t)-f(x)=O\left(|t|^{\alpha}\right) \text { for } 0<\alpha \leq 1 . \tag{2.6}
\end{equation*}
$$

$f \in \operatorname{Lip}(\alpha, r)$ for $0 \leq x \leq 2 \pi$, if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=O\left(|t|^{\alpha}\right), 0<\alpha \leq 1, r \geq 1 \tag{2.7}
\end{equation*}
$$

(definition 5.38 of Mc Fadden [6], 1942).

Given a positive increasing function $\xi(t)$ and an integer $r \geq 1, f \in \operatorname{Lip}(\xi(t), r)$ if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=O(\xi(t)) \tag{2.8}
\end{equation*}
$$

If $\xi(t)=t^{\alpha}$ then $\operatorname{Lip}(\xi(t), r)$ class reduces to the $\operatorname{Lip}(\alpha, r)$ and if $r \rightarrow \infty$ then Lip (α, r) class reduces to the Lipo class.
and that $f \in W\left(L_{r}, \xi(t)\right)$ if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}\left|\{f(x+t)-f(x)\} \sin ^{\beta} x\right|^{r} d x\right)^{\frac{1}{r}}=O(\xi(t)), \beta \geq 0 \tag{2.9}
\end{equation*}
$$

where $\xi(t)$ is a positive increasing function of t .

If $\beta=0$ then $W\left(L_{r}, \xi(t)\right)$ reduces to the class $\operatorname{Lip}(\xi(t), r)$ and if $\xi(t)=t^{\alpha}$ then $\operatorname{Lip}(\xi(t), r)$ class coincides with the class $\operatorname{Lip}(\alpha, r)$ and if $r \rightarrow \infty$ then $\operatorname{Lip}(\alpha, r)$ class reduces to the class Lipa.
We observe that

$$
\operatorname{Lip} \alpha \subseteq \operatorname{Lip}(\alpha, r) \subseteq \operatorname{Lip}(\xi(t), r) \subseteq W\left(L_{r}, \xi(t)\right) \text { for } 0<\alpha \leq 1, r \geq 1
$$

Let $\sum_{n=0}^{\infty} u_{n}$ be a given infinite series with sequence of its $n^{\text {th }}$ partial sum $\left\{s_{n}\right\}$.
The $(E, 1)$ transform is defined as the $n^{\text {th }}$ partial sum of $(E, 1)$ summability and is given by

$$
\begin{equation*}
(E, 1)=E_{n}^{1}=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} s_{k} \rightarrow s \text { as } n \rightarrow \infty \tag{2.10}
\end{equation*}
$$

then the infinite series $\sum_{n=0}^{\infty} u_{n}$ is said to be $(E, 1)$ summable to a definite number s (Hardy [3]).
The $(C, 2)$ transform is defined as the $\mathrm{n}^{\text {th }}$ partial sum of $(C, 2)$ summability and is given by

$$
\begin{equation*}
t_{n}=\frac{2}{(n+1)(n+2)} \sum_{k=0}^{n}(n-k+1) s_{k} \rightarrow s \text { as } n \rightarrow \infty \tag{2.11}
\end{equation*}
$$

then the infinite series $\sum_{n=0}^{\infty} u_{n}$ is $(C, 2)$ summable to a definite number s.

The $(E, 1)$ transform of the $(C, 2)$ transform defines $(E, 1)(C, 2)$ transform and we denote it by $E_{n}^{1} C_{n}^{2}$.

Thus if

$$
\begin{equation*}
E_{n}^{1} C_{n}^{2}=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} C_{k}^{2} \rightarrow s \text { as } n \rightarrow \infty . \tag{2.12}
\end{equation*}
$$

then the series $\sum_{n=0}^{\infty} u_{n}$ is said to be summable by $(E, 1)(C, 2)$ summability transform to a definite number s .

We use the following notations:

$$
\begin{gathered}
\phi(t)=f(x+t)+f(x-t)-2 f(x) \\
M_{n}(t)=\frac{1}{2^{n} \pi} \sum_{k=0}^{n}\left\{\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{\nu=0}^{k}(k-\nu+1) \frac{\sin \left(\nu+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}
\end{gathered}
$$

3 Main Theorem

If f is a 2π-periodic function, Lebesgue integrable on $(0,2 \pi)$, belonging to $W\left(L_{r}, \xi(t)\right)$ class then its degree of approximation by $(E, 1)(C, 2)$ summability transform of its Fourier series is given by

$$
\begin{equation*}
\left\|E_{n}^{1} C_{n}^{2}-f\right\|_{r}=O\left[(n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right] \tag{3.1}
\end{equation*}
$$

provided $\xi(t)$ satisfies the following conditions:

$$
\begin{gather*}
\left\{\int_{0}^{\frac{1}{n+1}}\left(\frac{t|\phi(t)|}{\xi(t)}\right)^{r} \sin ^{\beta r} d t\right\}^{\frac{1}{r}}=O\left(\frac{1}{n+1}\right) \tag{3.2}\\
\left\{\int_{\frac{1}{n+1}}^{\pi}\left(\frac{t^{-\delta}|\phi(t)|}{\xi(t)}\right)^{r} d t\right\}^{\frac{1}{r}}=O\left\{(n+1)^{\delta}\right\} \tag{3.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\{\frac{\xi(t)}{t}\right\} \text { is non-increasing in } \mathrm{t} \tag{3.4}
\end{equation*}
$$

where δ is an arbitrary number such that $s(1-\delta)-1>0, \frac{1}{r}+\frac{1}{s}=1,1 \leq r \leq \infty$, conditions (3.2) and (3.3) hold uniformly in x and $E_{n}^{1} C_{n}^{2}$ is $(E, 1)(C, 2)$ means of the series (2.1).

Note 3.1 For $\beta=0$, our theorem reduces to the theorem of Nigam [8] and thus generalizes it.

4 Lemma

In order to prove our theorem, we need following lemmas:
Lemma 4.1. For $0 \leq t \leq \frac{1}{n+1}$,

$$
\begin{equation*}
\left|M_{n}(t)\right|=O(n+1) \tag{4.1}
\end{equation*}
$$

Proof. For $0 \leq t \leq \frac{1}{n+1}, \sin n t \leq n \sin t$,

$$
\begin{aligned}
\left|M_{n}(t)\right| & \leq \frac{1}{2^{n} \pi}\left|\sum_{k=0}^{n}\left\{\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{\nu=0}^{k}(k-\nu+1) \frac{\sin \left(\nu+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{2^{n} \pi}\left|\sum_{k=0}^{n}\left\{\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{\nu=0}^{k}(k-\nu+1) \frac{(2 \nu+1) \sin \frac{t}{2}}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{2^{n} \pi}\left|\sum_{k=0}^{n}\left\{\binom{n}{k} \frac{1}{(k+1)(k+2)}(2 k+1) \sum_{\nu=0}^{k}(k-\nu+1)\right\}\right| \\
& \leq \frac{1}{2^{n} \pi}\left|\sum_{k=0}^{n}\left\{\binom{n}{k} \frac{1}{(k+1)(k+2)}(2 k+1) \frac{(k+1)(k+2)}{2}\right\}\right| \\
& =\frac{1}{2^{n+1} \pi} \sum_{k=0}^{n}\left\{\binom{n}{k}(2 k+1)\right\} \\
& =\frac{1}{2^{n+1} \pi}\left\{2^{n}(n+1)\right\} \\
& =O(n+1)
\end{aligned}
$$

Lemma 4.2. For $\frac{1}{n+1} \leq t \leq \pi$,

$$
\begin{equation*}
\left|M_{n}(t)\right|=O\left(\frac{1}{t}\right) \tag{4.2}
\end{equation*}
$$

Proof. For $\frac{1}{n+1} \leq t \leq \pi, \sin \frac{t}{2} \geq \frac{t}{\pi}$ and $\sin n t \leq 1$

$$
\begin{aligned}
\left|M_{n}(t)\right| & \leq \frac{1}{2^{n} \pi}\left|\sum_{k=0}^{n}\left\{\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{\nu=0}^{k}(k-\nu+1) \frac{\sin \left(\nu+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{2^{n} \pi}\left|\sum_{k=0}^{n}\left\{\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{\nu=0}^{n}(k-\nu+1)\left(\frac{1}{\frac{t}{\pi}}\right)\right\}\right| \\
& \leq \frac{1}{2^{n} t}\left|\sum_{k=0}^{n}\left\{\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{\nu=0}^{k}(k-\nu+1)\right\}\right| \\
& \leq \frac{1}{2^{n} t}\left|\sum_{k=0}^{n}\left\{\binom{n}{k} \frac{1}{(k+1)(k+2)} \frac{(k+1)(k+2)}{2}\right\}\right| \\
& =\frac{1}{2^{n+1} t} \sum_{k=0}^{n}\binom{n}{k} \\
& =\frac{1}{2^{n+1} t}\left\{2^{n}\right\} \\
& =O\left(\frac{1}{t}\right)
\end{aligned}
$$

5 Proof of Main Theorem

Let $s_{n}(x)$ denote the partial sum of the series (2.1), then we have

$$
s_{n}(x)-f(x)=\frac{1}{2 \pi} \int_{0}^{\pi} \phi(t) \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \frac{t}{2}} d t
$$

Therefore, the $E_{n}^{1} C_{n}^{2}$ transform of $s_{n}(f ; x)$ is given by

$$
\begin{aligned}
E_{n}^{1} C_{n}^{2}-f(x) & =\frac{1}{\pi 2^{n}}\left[\sum_{k=0}^{n}\binom{n}{k} \frac{1}{(k+1)(k+2)}\right. \\
& \left.\int_{0}^{\pi} \frac{\phi(t)}{\sin \frac{t}{2}}\left\{\sum_{\nu=0}^{k}(n-\nu+1) \sin \left(\nu+\frac{1}{2}\right) t\right\} d t\right] \\
& =\int_{0}^{\pi} \phi(t) M_{n}(t) d t
\end{aligned}
$$

$$
\begin{align*}
& \left.=\left[\int_{0}^{\frac{1}{n+1}}+\int_{\frac{1}{n+1}}^{\pi}\right] \phi(t) M_{n}(t)\right) d t \\
& =I_{1}+I_{2}(\text { say }) \tag{5.1}
\end{align*}
$$

We consider,

$$
\left|I_{1}\right| \leq \int_{0}^{\frac{1}{n+1}}|\phi(t)|\left|M_{n}(t)\right| d t
$$

Applying Hölder's inequality and the fact that $\phi(t) \in W\left(L_{r}, \xi(t)\right)$ due to the fact that $f \in W\left(L_{r}, \xi(t)\right)$, condition (3.2) and Lemma 4.1, we have

$$
\begin{aligned}
\left|I_{1}\right| & \leq\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{t|\phi(t)| \sin ^{\beta} t}{\xi(t)}\right\}^{r} d t\right]^{\frac{1}{r}}\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{\xi(t)\left|M_{n}(t)\right|}{t \sin ^{\beta} t}\right\}^{s} d t\right]^{\frac{1}{s}} \\
& =O\left(\frac{1}{n+1}\right)\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{\xi(t)\left|M_{n}(t)\right|}{t^{1+\beta}}\right\}^{s} d t\right]^{\frac{1}{s}} \\
& =O\left(\frac{1}{n+1}\right)\left[\int_{0^{+}}^{\frac{1}{n+1}}\left\{\frac{\xi(t)(n+1)}{t^{1+\beta}}\right\}^{s} d t\right]^{\frac{1}{s}}
\end{aligned}
$$

Since $\xi(t)$ is positive increasing function and using second mean value theorem for integrals, we have

$$
\begin{align*}
\left|I_{1}\right| & =O\left\{\xi\left(\frac{1}{n+1}\right)\right\}\left[\int_{\epsilon}^{\frac{1}{n+1}} \frac{d t}{t^{(1+\beta) s}}\right]^{\frac{1}{s}} \text { for some } 0 \leq \epsilon<\frac{1}{n+1} \\
& =O\left[\xi\left(\frac{1}{n+1}\right)\left\{\frac{t^{-(1+\beta) s+1}}{-(1+\beta) s+1}\right\}_{\epsilon}^{\frac{1}{n+1}}\right]^{\frac{1}{s}} \\
& =O\left[\xi\left(\frac{1}{n+1}\right)(n+1)^{1+\beta-\frac{1}{s}}\right] \\
& =O\left\{(n+1)^{\beta+1-\frac{1}{s}} \xi\left(\frac{1}{n+1}\right)\right] \\
& =O\left\{(n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\} \text { since } \frac{1}{r}+\frac{1}{s}=1,1 \leq r \leq \infty . \tag{5.2}
\end{align*}
$$

Now we consider,

$$
\left|I_{2}\right| \leq \int_{\frac{1}{n+1}}^{\pi}|\phi(t)|\left|M_{n}(t)\right| d t
$$

Using Hölder's inequality, $|\sin t|<1$ and $\sin t \geq\left(\frac{2 t}{\pi}\right)$,

$$
\begin{aligned}
\left|I_{2}\right| & \leq\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{t^{-\delta}|\phi(t)| \sin ^{\beta} t}{\xi(t)}\right\}^{r} d t\right]^{\frac{1}{r}}\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{\xi(t)\left|M_{n}(t)\right|}{t^{-\delta} \sin ^{\beta} t}\right\}^{s} d t\right]^{\frac{1}{s}} \\
& =O\left\{(n+1)^{\delta}\right\}\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{\xi(t)\left|M_{n}(t)\right|}{t^{-\delta+\beta}}\right\}^{s} d t\right]^{\frac{1}{s}} \text { by (3.3) } \\
& =O\left\{(n+1)^{\delta}\right\}\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{\xi(t)}{t^{1-\delta+\beta}}\right\}^{s} d t\right]^{\frac{1}{s}} \text { by Lemma 4.2 }
\end{aligned}
$$

Now putting $t=\frac{1}{y}$,

$$
I_{2}=O\left\{(n+1)^{\delta}\right\}\left[\int_{\frac{1}{\pi}}^{n+1}\left\{\frac{\xi\left(\frac{1}{y}\right)}{y^{\delta-1-\beta}}\right\}^{s} \frac{d y}{y^{2}}\right]^{\frac{1}{s}}
$$

Since $\xi(t)$ is a positive increasing function and $\frac{\xi\left(\frac{1}{y}\right)}{\frac{1}{y}}$ is also increasing function and using second mean value theorem for integrals,

$$
\begin{align*}
I_{2} & =O\left\{(n+1)^{\delta}(n+1) \xi\left(\frac{1}{n+1}\right)\right\}\left[\int_{\eta}^{n+1} \frac{d y}{y^{\delta s+2-\beta s}}\right]^{\frac{1}{s}} \text {, for some } \frac{1}{\pi} \leq \eta \leq n+1 \\
& =O\left\{(n+1)^{\delta+1} \xi\left(\frac{1}{n+1}\right)\right\}\left[\int_{1}^{n+1} \frac{d y}{y^{\delta s+2-\beta s}}\right]^{\frac{1}{s}}, \text { for some } \frac{1}{\pi} \leq 1 \leq n+1 \\
& =O\left\{(n+1)^{\delta+1} \xi\left(\frac{1}{n+1}\right)\right\}\left[\left\{\frac{y^{-s \delta+\beta s-1}}{-s \delta+\beta s-1}\right\}_{1}^{n+1}\right]^{\frac{1}{s}} \\
& =O\left\{(n+1)^{\delta+1} \xi\left(\frac{1}{n+1}\right)\right\}\left[(n+1)^{-\delta-\frac{1}{s}+\beta}\right] \\
& =O\left\{\xi\left(\frac{1}{n+1}\right)\right\}\left\{(n+1)^{1-\frac{1}{s}+\beta}\right\} \\
& =O\left\{(n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\} \text { since } \frac{1}{r}+\frac{1}{s}=1 \tag{5.3}
\end{align*}
$$

Now combining (5.1), (5.2) and (5.3), we get

$$
\left|E_{n}^{1} C_{n}^{2}-f\right|=O\left\{(n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\}
$$

Now using $L_{r^{-}}$norm, we get

$$
\begin{aligned}
\left\|E_{n}^{1} C_{n}^{2}-f\right\|_{r} & =\left\{\int_{0}^{2 \pi}\left|E_{n}^{1} C_{n}^{2}-f\right|^{r} d x\right\}^{\frac{1}{r}} \\
& =\left[\left\{\int_{0}^{2 \pi}\left\{(n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\}^{r} d x\right\}^{\frac{1}{r}}\right] \\
& =\left\{(n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\}\left[\left\{\int_{0}^{2 \pi} d x\right\}^{\frac{1}{r}}\right] \\
& =\left\{(n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\} .
\end{aligned}
$$

This completes the proof of the main theorem .

6 Applications

Following corollaries can be derived from our main theorem:

6.1 Corollary

If $\xi(t)=t^{\alpha}, 0<\alpha \leq 1$, then weighted class $W\left(L_{r}, \xi(t)\right), r \geq 1$, reduces to the class $\operatorname{Lip}(\alpha, r)$ and the degree of approximation of 2π - periodic function f, belonging to the class $\operatorname{Lip}(\alpha, r), \frac{1}{r}<\alpha<1$ is given by

$$
\begin{equation*}
\left|E_{n}^{1} C_{n}^{2}-f\right|=O\left\{\frac{1}{(n+1)^{\alpha-\frac{1}{r}}}\right\} \tag{6.1}
\end{equation*}
$$

Proof. The result follows by setting $\beta=0$ in (3.1).

6.2 Corollary

If $\xi(t)=t^{\alpha}$ for $0<\alpha<1$ and $r=\infty$ in corollary 6.1, then $f \in$ Lip α. In this case, using (6.1), we have

$$
\left|E_{n}^{1} C_{n}^{2}-f\right|=O\left\{\frac{1}{(n+1)^{\alpha}}\right\}
$$

Proof. For $r=\infty$, we get

$$
\left\|E_{n}^{1} C_{n}^{2}-f\right\|_{\infty}=\sup _{0 \leq x \leq 2 \pi}\left|E_{n}^{1} C_{n}^{2}-f\right|=O\left\{\frac{1}{(n+1)^{\alpha}}\right\}
$$

that is,

$$
\left|E_{n}^{1} C_{n}^{2}-f\right|=O\left\{\frac{1}{(n+1)^{\alpha}}\right\}
$$

References

[1] P. Chandra, "Trigonometric approximation of functions in L_{p} norm", J. Math. Anal. Appl. Vol. 275 No. 1, 2002, pp. 13-26.
[2] G. Alexits, Convergence problems of orthogonal series, Pergamon Press, London, 1961.
[3] G. H. Hardy, "Divergent series", first edition, Oxford University Press, 1949, 70.
[4] H. H. Khan, "On degree of approximation of functions belonging to the class Lip (α, p) ", Indian J. Pure Appl. Math, Vol. 5, No. 2, 1974, pp. 132-136.
[5] L. Leindler, "Trigonometric approximation of functions in L_{p} norm", J. Math. Anal. Appl., Vol. 302, No. 1, 2005, pp. 129-136.
[6] L. Mc Fadden, "Absolute Nörlund summability", Duke Math. J., Vol. 9, 1942, pp. 168-207.
[7] V. N. Mishra, H. H. Khan, I. A. Khan, K. Khatri and L. N. Mishra, "Trigonometric Approximation of signals (functions) belonging to the $\operatorname{Lip}(\xi(t), r),(r \geq 1)$ - class by $(E, q)(q>0)$-Means of the conjugate series of its Fourier Series", Advances in Pure Mathematics, Vol. 3, 2013, pp. 353-358.
[8] H. K. Nigam, "Degree of approximation of a function belonging to $\operatorname{Lip}(\xi(t), r)$ class by $(E, 1)(C, 2)$ summability means", Asian Journal of Fuzzy and Applied Mathematics 1 No. 3, 2013, pp. 61-68.
[9] K. Qureshi, "On the degree of approximation of a periodic function f by almost Nörlund means", Tamkang J. Math. 12 No. 1, 1981, pp. 35-38.
[10] K. Qureshi, "On the degree of approximation of a function belonging to the class Lip α ", Indian J. pure Appl. Math. 13 No. 8, 1982, pp. 560-563.
[11] K. Qureshi, H. K. Neha, "A class of functions and their degree of approximation", Ganita. 41 No. 1, 1990, pp. 37-42.
[12] B. E. Rhaodes, "On the degree of approximation of functions belonging to Lipschitz class by Hausdorff means of its Fourier series", Tamkang J. Math. 34 no. 3, 2003, pp. 245-247.
[13] B. N. Sahney, D. S. Goel, "On the degree of continuous functions", Ranchi University, Math. Jour., 4, 1973, pp. 50-53.
[14] A. Zygmund, "Trigonometric series", 2nd rev. ed., Vol. 1, Cambridge Univ. Press, Cambridge, 1959.

