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Abstract. The field of approximation theory is so vast that it plays an increasingly important role in
applications in pure and applied mathematics. The present study deals with a theorem concerning the
degree of approximation of a function f belonging to W (L,, £ (t)) (r > 1)-class by using (E, 1) (C,2)

of its Fourier series.
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1 Introduction

The degree of approximation of a function belonging to the various classes Lipa,
Lip (a,r), Lip (£ (t),r) using different summability methods have been determined
by several investigators like Alexits [2], Sahney and Goel [13], Quershi and Neha [11],
Qureshi [9, 10], Chandra [1], Khan [4], Liendler [5], Mishra et al. [7] and Rhoades [12].
Recently Nigam [8] has obtained the degree of approximation of a function belonging
to Lip (£ (t),r) class by (E,1)(C,2) summability method. In the present paper, a
theorem on degree of approximation of a function f belonging to W (L,,£(t))(r > 1)-
class by (E,1) (C,2) product summability transform of Fourier series has been obtained

which in turn generalizes the result of Nigam [8].

2 Preliminaries

Let f(z) be periodic with period 27 and integrable in the sense of Lebesgue. The

Fourier series associated with f at a point x is defined as



[e.9]

Qo :
f(z)~ 5 + ; (ay, cosnx + by, sin nx) (2.1)

with n* partial sums s, (f;z).

L. - norm of a function f: R — R is defined by

[fllee = sup{lf (x)] - v € R} (2.2)

L,-norm of a function is defined by

1£1, = ( / N |f(fv)|7"d:c>i, e (23)

The degree of approximation of a signal f : R — R by a trigonometric polynomial ¢,

of degree n under sup norm || || is defined as

[tn = flloo = sup{|tn (x) = f (2)] : € R } (Zygmund [14]) (2.4)

and E, (f) of a function f € L, is given by

En(f) = min|[tn — [, (2.5)

This method of approximation is called trigonometric Fourier approximation (TFA).

A function f € Lipa if
flx+t)— f(x)=0(|t|") for 0< a < 1. (2.6)

f € Lip(a,r) for 0 <z <2, if

2 %
(/ |f (x+1) —f(x)\Tda;) =0([t|"),0<a<1, r>1 (2.7)
0
(definition 5.38 of Mc Fadden [6], 1942).

Given a positive increasing function ¢ (t) and an integer r > 1, f € Lip(&(t),r)
if



(A%V@HthﬂwVM>i=O@@D (23)

If £(t) = t* then Lip(£(t),r) class reduces to the Lip (a,r) and if r — oo then
Lip (o, r) class reduces to the Lipa class.
and that f € W (L,,& (1)) if

21 %
([Tlrern-sanptela) —oew)szo @9
0
where £(t) is a positive increasing function of t.

If 8 =0 then W (L,,&(t)) reduces to the class Lip (£ (t),r) and if £(t) = ¢* then
Lip(&(t),r) class coincides with the class Lip(«,r) and if r — oo then Lip(a,r) class
reduces to the class Lipa.

We observe that

Lipa C Lip (ao,r) C Lip (§(t) ,7) CW (L, (1)) for 0 <a <1, r>1.

Let >, u, be a given infinite series with sequence of its n'" partial sum {s,,}.
The (E, 1) transform is defined as the n'* partial sum of (E,1) summability and is
given by

1 n
(E,l):E’éZQ—nZ<n>sk—>sasn—>oo (2.10)

k=0 k

then the infinite series Y~  u, is said to be (£,1) summable to a definite number s
(Hardy [3]).

The (C,2) transform is defined as the n** partial sum of (C,2) summability and is
given by

n

2
t”:(n+1)(n+2)ZW—’@’“)%H”S”*O@ (2.11)
k=0

then the infinite series ) ju, is (C,2) summable to a definite number s.

The (E,1) transform of the (C,2) transform defines (F,1)(C,2) transform and we
denote it by E}C2.



Thus if
1 & n
E,lleLZQ—n E ( ) C? — s asn— oo. (2.12)

k=0 k

then the series Y 7 ju,, is said to be summable by (E, 1) (C,2) summability transform

to a definite number s.

We use the following notations:

¢(t)=f@+t)+ f(z—1t)—2f ()

R n 1 k sin (v + 1) ¢t
M (t) = 5 Z{(k )(k;+1)(l<:+2)Z (k_wrl)T}

k=0 v=0

3 Main Theorem

If f is a 2m-periodic function, Lebesgue integrable on (0, 27), belonging to W (L, £ (t))
class then its degree of approximation by (F,1)(C,2) summability transform of its

Fourier series is given by

gz~ £, =0 |+ 17 e (57 )] (3.

provided & (t) satisfies the following conditions:

{/Onil (%)Trﬂnﬁr dt}i =0 <nil> (3.2)
([ () o) ot o

t
{?} is non-increasing in t, (3:4)

and

where ¢ is an arbitrary number such that s(1 —4§) —1 > 0, % +% =1,1<r < o0,
conditions (3.2) and (3.3) hold uniformly in z and E}C? is (E,1) (C,2) means of the
series (2.1).



Note 3.1 For § = 0, our theorem reduces to the theorem of Nigam [8] and thus

generalizes it.

4 Lemma

In order to prove our theorem, we need following lemmas:

Lemma 4.1.

Proof. For 0 <t < -1

| M, (1)] <

IN

IN

IN

Lemma 4.2.

F0r0§t§n+r1,
IM,(t)] =0 (n+1) (4.1)
el sinnt <n sint,
n k . 1
1 n 1 sm(z/—i-—)t
—_ b — 1 N 2/
2n %{ k (k—i—l)(k:—l—?)yzzo( v+1) sin £ H
n k .
1 n 1 (2v +1)sint
— k—v+1) ——5—2
2 k:(]{ k) (E+1)(k+2) yzo( v+1) sin & H
ii{ " (2k+1)§k:(k—y+1)}‘
2n | k) (k+1)(k+2) s
1| n 1 (k+1)(k+2)
— 1
2n M{ k) (k+1)(k+2) (2k+1) 2
1 2 n
ont1ir {( I ) (2k+1)}
k=0
1
e (2 1))
O(n+1)
O
Forﬁ_1 <t<m,
1
Mu0)] =0 (5 (42)



Proof. For n+r1 <t<m sini>Landsinnt <1

1 = n 1 b sm(u—|—
1| n 1 i 1

= o ;{<k )(k+1)(k+2)y0(k_y+1) (g)
1| n 1 i

=2 ;{(k >(k:+1)(k:+2) ;0““_”“)}‘

! = n 1 (k+1)(k+2)

| =\ k) ) (kT2 2

5 Proof of Main Theorem

Let s,(z) denote the partial sum of the series (2.1), then we have

)= @) =5 [ o)

Therefore, the E}C? transform of s, (f;z) is given by

sin (n+ %)t

it
SlIl2

dt

1
) (k+1)(k+2)
k
Z(n—v—i—l)sin(u—i—%)t}dt]

v=0




We consider,

L] < / 16 (0] [ M, ()] de

(5.1)

Applying Holder’s inequality and the fact that ¢ (t) € W (L,, £ (t)) due to the fact that

feW(L,,&(t)), condition (3.2) and Lemma 4.1, we have

|| <

ol [ {y o]
o) [ (<]

[ (et [ ek o)

Since £(t) is positive increasing function and using second mean value theorem for

integrals, we have

1
s

1
1 w1 dt 1

1 t—(1+B)s+1 sl
g<n+1){—(1+6)s+1}€ ]
_ 1 14p-1
ol ()

ot

=0

1 1 1
=0 (n+1)ﬂ+i§( )} since —+—-=1, 1 <r < oc.
n+1

r S

Now we consider,

1< [ 16113 (0)]d

n+1

(5.2)



Using Holder’s inequality, [sint| < 1 and sint > (%),

[ ey o] ([ {cesy o]

n+1 n+1

|I5| <

:O{(n+1)6} /7r {W}Sdtr by (3.3)

1

-0 {(n + 1)5} /” {tf_(;jﬂ } dt] S by Lemma 4.2

Now putting t = i,

(

Since £ (t) is a positive increasing function and

using second mean value theorem for integrals,

L=0{(n+1)’(n+1)¢ ! /n+1 ay 1° f L <n+
= n n —_— or some — n
2 n+1 , y68+2—ﬁs ) T =
1
1 [ d . 1

_ 5+1 L ey L

=014 (n+1) £(n+1)}_/1 y6s+2—ﬁs:| ,forsomeﬁglgn—i—l
_{ y~s0+05-1 }”4‘1 ;
I —s0+pBs—1]J,

<n - 1) } :(n + 1)*5*%5]
{
(nil)} since -4~ =1 (5.3)

Now combining (5.1), (5.2) and (5.3), we get

|E$CZ—f|=O{(n+1)ﬁ+,{§<L>}

n—+1




Now using L,- norm, we get

This completes the proof of the main theorem .

6 Applications

Following corollaries can be derived from our main theorem:

6.1 Corollary

If £(t) =t*,0 < a < 1, then weighted class W (L., (t)), r > 1, reduces to the class
Lip (c,r) and the degree of approximation of 27- periodic function f, belonging to the

class Lip (a, r ),% < a < 1is given by

E1C? - f] :o{m} (6.1)

Proof. The result follows by setting 5 =0 in (3.1). m

6.2 Corollary

If£(t) =1t* for 0 < a <1 andr = oo in corollary 6.1, then f € Lipa. In this case,

using (6.1), we have

1,2 _ 1
st n-o{ )



Proof. For r = oo, we get

B2~ fl|l = sup |EMCZ— f|= o{;}

0< <27 (n+1)*
that is,
1
EBlC? - fl =03 ———
Bici=11=0{ o)
m
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