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I. Introduction 

The Weibull model was first introduced by Ernst Hjalmar 
Waloddi Weibull in 1951. Initially it was described as a 
statistical distribution. It has many applications in population 
growth, agricultural growth, height growth and is also used to 
describe survival in cases of injury or disease or in population 
dynamic studies [7]. In 1997, Lianjun Zhang [13] used this 
model to describe tree height-diameter data of ten conifer 
species. In the paper by Fekedulegn et al. [6] used this model 
for the top height data of Norway spruce from the Bowmont 
Norway spruce Thinning Experiment. Colbert et al. [1] have 
tried to define some character developments such as forest trees 
height growth and diameter development by using the model. 
The paper by Karadavut et al. [8] used the model to evaluate the 
relative growth rate of silage corn. Ozel and ertekin in 2011 
[10] studied the Weibull growth model and applied it to the 
oriental beach Juvenilities growth. Weibull model is also used 
to study the height growth of Pinus radiate by Colff and 
Kimberley in 2013 [2]. Lumbres et al. [9] used this model to 
describe the diameter at breast height of Pinus Kesiya. 
The Weibull growth model can be derived from the one 
parameter Weibull distribution function, which is given by 

퐹(푥) = 1 − 푒푥푝 −푥 	 ; 푥 > 0,   (1) 

where 훿 > 0 is a shape parameter. The distribution function 
has the point of inflection at 푥 = [(훿 − 1) 훿⁄ ]  and 퐹 = 1 −
푒푥푝(−(1 − 훿 )) . Then the eq. (2) can be used to get a 
sigmoidal growth curve for empirical use [12].  

푓(푥) = 훽 + (훼 − 훽)퐹(푘푥;휃)   (2) 

For the Weibull distribution, 

푓(푥) = 훼 − (훼 − 훽)푒푥푝	{−(푘푥) }.  (3) 

The form of the model (3) is the model that David Ratkowsky 
[11] calls the Weibull model. The equation (3) can also be 
written as, 

푤(푡) = 푎 − 푏 푒푥푝(−푐푡 ).   (4) 

Where 푎 = 훼, 푏 = 훼 − 훽, 푐 = 푘  and 푚 = 훿. For this study, 
the model (4) will be considered as the Weibull model with 
four parameters. Philippe Grosjean [7] used a three parameter 
Weibull model with considering 훽 = 0  in eq. (3), which is 
given in eq. (5). This eq. gives the Weibull model with three 
parameters.  

푤(푡) = 푎(1− 푒푥푝(−푐푡 ))   (5) 

In 2000, Alistair Duncan Macgregor Dove [3] used a two 
parameters Weibull model to investigate parasite richness of 
nine species of fishes. He used 

푤(푡) = 푎(1− 푒푥푝(−푐푡)).   (6) 

This model can be derived from the Weibull model with three 
parameters by considering 푚 = 1  to the eq. (5). Dove also 
defines the parameters of the model (6) for parasite richness of 
fishes as 푎 is the maximum regional fauna richness and 푐 is an 
index of the mean infracommunity richness. 
The properties and the derivations of the Weibull models play a 
crucial rule for estimating the parameters. Proper 
understanding of the mathematics of these models avoids 
problems encountered in the method of parameter estimations 
of the models. This paper provided the most fundamental 
properties and careful observations of the first and second 
derivatives of the models. This paper also provides some useful 
definition of the parameters for initial estimates of the Weibull 
models, which is also a major requirement for estimating the 
parameters using any iteration method. Three well-known 
Forestry data sets are considered to estimate the parameters of 
these models.   

II. Material and methods 
The growth models considered for this study are Weibull 
model with two parameters (6), Weibull model with three 
parameters (5) and Weibull model with four parameters (4). 
For these three models consider, w is the dependent growth 
variable, t  is the independent variable, 푎, 푏, 푐  and 푚  are 
parameters to be estimated, log is the natural logarithms and 
exp(푒) is the base of the natural logarithms. The properties of 
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the parameters of this model are discussed in this paper. The 
parameters are estimated using the Newton –Raphson method 
of nonlinear regression relating the mean diameter at breast 
height data and top height growth data originated from the 
Bowmont Norway spruce thinning experiment, sample plot 

3661 [5, 6]. The average height of 12 Weeping Higan cherry 
trees planted in Washington, D.C. are also used to testing the 
validity of the models for forestry viewpoint. At the time of 
planting, the trees were one year old and were all 6 feet in 
height [14]. 

Table 1. Mean diameter at breast height data from the Bowmont Norway spruce thinning experiment, sample plot 3661. 

Age (years) 20 25 30 35 40 45 50 55 60 64 
Mean DBH 8.4 10.4 12.35 14.74 17.13 19.5 21.49 23.82 25.55 26.5 

The Weibull growth models can be written in the form as 

푤 = 푓(푡 ,퐁) + 휀 ,     (7) 

푖 = 1,2,⋯ ,푛, where 푤 ′푠 are the response variables, 푡 ′푠  are 
the independent variable, 퐁  is the vector of parameters 
푏 	(푏 ,푏 ,⋯ ,푏 ) to be estimated. Where 푚 is the number of 
parameter, 푛  is the number of observations and  휀 ′푠  are 
random errors in the models has mean zero and constant 
variance 휎 . Root mean square error (RMSE) and coefficient 
of determination test (푅 ) are used to check the validity of 
these models. A FORTRAN programming has been developed 
for the Newton-Raphson algorithm. The confidence intervals 
of the parameters are also provided. 

A. Method of Estimation 

The parameters of these models are estimated by minimizing 
the sum of square residue 푆(푩) under the assumption that the 
휀 ′푠 are independent 푁(0,휎 ) random variable. 

푆(푩) = ∑ [푤 − 푓(푡 ,퐁)]    (8) 

Since 푤  and 푡  are fixed observations, the 푆(푩) is a function 
of 푩. Now the eq. (8) is differentiated with respect to 푩 and 
setting the result to zero, we get 

푓 = ∑ [푤 − 푓(푡 ,퐁)] ( ,푩) = 0  (9) 

for 푗 = 1,2,⋯ ,푚 . This provides a system of 푚  nonlinear 
equation with 푚 unknown parameters and that must be solved 
for 푩  using any iteration method. In this literature, the 
Newton-Raphson iteration method is used to solve the 
equations. The general Newton-Raphson method for system of 
nonlinear equation is given by 

퐁( ) = 퐁( ) − 퐽 퐹 퐁( ) ; 	푘 = 0, 1, 2, 3⋯          (10) 

Where 

퐽 =

⎣
⎢
⎢
⎢
⎢
⎡ 					 	⋯	

					 ⋯	
⋮												⋮											⋮
					 ⋯	 ⎦

⎥
⎥
⎥
⎥
⎤

퐁( )

,퐁( ) = 푏 ( ), 푏 ( ),⋯ , 푏 ( )  

and 퐹 퐁( ) =

푓
푓
⋮
푓 퐁( )

. 

The eq. (10) is the (푘 + 1)푡ℎ  iteration of the parameters in 
Newton-Raphson method. Since this is an iteration method, so 
the process may be repeated using a pre-defined stopping 
criterion. This method requires specifications of the starting 
values of the parameters to be estimated. The initial value 
specifications of the parameters are given bellow.  

III. Results 

A. Properties of Weibull growth model 

There is a clear relationship between the properties of various 
mathematical models and the estimation of their respective 
parameters. If the properties of nonlinear mathematical models 
are to be known then it may quite helpful to estimate the 
parameters to be estimated. Even some cases, due to lack of 
knowledge of these properties, it may seem to face different 
problems to use in various biological growth. Therefore, in this 
paper, an attempt has been made to discuss the different 
fundamental properties of the Weibull growth models. 

1. Properties of Four Parameter Weibull Model 

In the form of the model (4), 푎, 푏, 푐 and 푚 are the parameters 
and are defined correspondingly as: 푎 is the asymptote or the 
limiting value of the response variable, 푏  is the biological 
constant, 푐 is the parameter governing the rate at which the 
response variable approaches its potential maximum and 푚 is 
the allometric constant [6] and 푡 is the independent variable 푤 
is the response variable of 푡. 
The Weibull growth model rises from a point 훽, at the starting 
growth setting 푡 = 0;푤 = 푎 − 푏 = 훼 − 훼 + 훽 = 훽;  to the 
limiting value of 훼, which is the maximum possible value of 
푤(푡); that is when 푡 → ∞ ⇒ 푤 → 훼. Examining the model at 
the starting of the growth, which is most preferably when the 
independent variable (푡) is zero, the only way to understand 
and make clear the meaning and possible range of the 
parameter 푏 that is defined as a biological constant. In other 
word from the expression  푤(0) = 푎 − 푏, it is logical to define 
the parameter 푏 as a constant that should make the expression 
푎 − 푏  reasonably small enough to at least consider it as a 
possible value of the model parameter estimate at the starting 
growth. Based on the model assumption and evaluation of the 
model at the start of growth, it was evident that: 

 푎 > 0, since a is the limiting value. 
 The parameter 푏  is always positive (푏 > 0) and its 

size depends on the size of the parameter a. Since if 
푏 = 0 then 푤 = 푎 at the starting of the growth and if 
b < 푎 then w > 푎 at the start of the growth and both 
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cases violate the model assumption concerning the 
parameter a which states that when t → ∞ ⇒ w → α. 

 For biological growth analysis, the parameter c and 푚 
must be positive. 

 The Weibull model is sigmoidal when 푚 > 1, 
otherwise it has no inflexion point [7]. 

 
The Weibull model does not pass through the origin (when푡 =
0;푤 ↛ 0) and that is the main limitation of the model for some 
biological growth. Now, 

= 푏푐푚푡 푒     (11) 

The first derivative of the model described the slope of the 
curve or the rate of change of the dependent variable with 
respect to the independent variable and is positive. That 
indicates that the model is an increasing function of the 
independent variable. 
Now to investigate some important properties of the model, the 
second derivative of the model was derived and may be 
expressed as 

푑 푤
푑푡

= 푏푐푚(푚 − 1)푡 푒 − 푏푐 푚 푡 푒  

= 푐푚푡 (푎 − 푤)(푚− 1− 푐푚푡 )     (12) 

It is seen that the second derivative of the model is positive 
> 0  for 푤 < 푎 − 푏푒 ; zero = 0  for 푤 = 푎 −

푏푒  and negative < 0  for w > 푎 − 푏e . In terms 
of the predictor variable; the second derivative is positive for 

0 ≤ 푡 < ;  zero for 푡 =  and negative for 

< 푡 < ∞. 
So the model approaches the asymptote at an increasing rate for 
w < 푎 − 푏e  and at a decreasing rate for w < 푎 − 푏e . 
The point where the model makes a transition from an 
increasing to a decreasing slope, the second derivative of the 
model is zero = 0  and at the same point the growth 
function has a constant slope. The point is known as the point 
of inflection and it occurs at 푤 = 푎 − 푏푒 . This is the most 
important property of the model. 

2. Properties of Three Parameters Weibull Model 

From the equation (5), the Weibull model with three 
parameters was given by: 

푤(푡) = 푎(1− 푒푥푝(−푐푡 )) 

Here a, c and m are the parameters and they have the similar 
properties and definitions with the Weibull model with four 
parameters, t is the independent variable and w is the response 
variable. 
The Weibull model with three parameters passes through the 
origin that is when 푡 = 0;푤 = 0.  for the case of some 

biological growth, this is an advantage of this model. Now the 
derivatives of the model with respect to the independent 
variable are given bellow: 

= 푎푐푚푡 푒     (13) 

= 푐푚푡 (푎 − 푤)(푚− 1− 푐푚푡 )  (14) 

For the Weibull model with three parameters it is seen that the 
second derivative of the model is positive > 0  for 

w < 푎 − 푎e ; zero = 0  for 푤 = 푎 − 푎푒  and 

negative < 0  for w > 푎 − 푎e . In terms of the 
predictor variable; the second derivative is positive for 

0 ≤ 푡 <  zero for 푡 =  and negative for 

< 푡 < ∞.  Again from (13), it is seen that the first 

derivative of the Weibull model  is positive. This means 
that the yield model is an increasing function of the 
independent variable. 
From the above discussion, it is achieved that the three 
parameter Weibull model approaches the asymptote at an 
increasing rate for values of the dependent variable less than 
푎 − 푎푒 . The differential form of the growth model is a 
decreasing function of the independent variable for w > 푎 −
푎e . This implies that the yield function of the three 
parameter Weibull model is approaching the asymptote at a 
decreasing rate for values of the dependent variable greater 
than 푎 − 푎푒 . The point where the growth function of the 
Weibull model makes a transition from an increasing to a 
decreasing slop, the growth function has a constant slop and the 
point is termed as the point of inflection of the model which 
occurs at = 푎 − 푎푒  . 

3. Properties of Two Parameters Weibull Model 

The two parameters Weibull growth model is given by the eq. 
(6) and which can be written as 

푤(푡) = 푎(1 − 푒푥푝(−푐푡)). 

The parameters of this model 푎 and 푐 also have the similar 
properties and definitions with the Weibull model with four 
parameters. 
The Weibull model is started from 0 (as when 푡 = 0;푤 = 0) to 
the limiting value of 푎 (as 푡 → ∞;푤 = 푎), which is also known 
as the upper asymptote of this model. Also since this model 
passes through the origin, so for some biological growth it may 
be an advantage of this model. The first and second derivatives 
of the model with respect to the independent variable may be 
expressed as follows: 

= 푎푐푒       (15) 

= −푎푐 푒      (16) 
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This describes that the first derivative of the model is always 
positive, which indicates that the model parameter estimates 
increase monotonically as the independent variable increases. 
Also a careful examination of the second derivative of the 
model revealed that it is always negative that is the growth 
curve is a decreasing function of 푡  and this implies that 
increment of a stand parameter, decreases over the entire range 
of the independent variable. The slop of the yield curve 
decreases as the independent variable increases. Since the 

second derivative does not show a change in sign so the model 
has no point of inflection and this is the major drawback of the 
model for forestry growth and yield modeling. The Table 2 
illustrate the fundamental mathematical properties of the 
Weibull growth model to proper understand the mathematics of 
the models and avoids problems encountered in the method of 
parameter estimation of the nonlinear Weibull growth models. 
 

Table 2. Summary of the properties of the Weibull growth models 

 
 Weibull 4 parameter Weibull 3 parameter Weibull 2 parameter 
Integral form of 

the growth 
function 푤(푡)  

 
 

푎 − 푏	푒푥푝	(−푐푡 ) 

 
 

푎(1− 푒푥푝(−푐푡 )) 

 
 

푎(1− 	푒푥푝	(−푐푡)) 
Lower asymptote −∞ −∞ −∞ 
Upper asymptote 푎 푎 푎 
Starting point of 

the growth 
function 

푎 − 푏 0 0 

Growth rate  푏푐푚푡 푒  푎푐푚푡 푒  푎푐	푒  

Maximum 
growth rate 푏푚푐 푒  푎푚푐 푒  푈푛푑푒푓푖푛푒푑 

Relative growth 
rate as function of 

time 

푏푐푚푡 푎푒 − 푏  푎 푐푚푡 푒 − 1  푐푒 (1− 푒 )  

Relative growth 
rate as function of 

biomass 
푐푚

1
푐

ln
푏

푎 −푤
푎 −푤
푤

 푐푚
1
푐

ln
푎

푎 −푤
푎 −푤
푤

 
푐(푎 −푤)

푤 

Second derivative 
of the growth 

function  

 
푐푚푡 (푎 − 푤)(푚− 1− 푐푚푡 ) 

 
푐푚푡 (푎 −푤)(푚− 1 − 푐푚푡 ) 

 
−푎푐 푒  

Point of 
inflection 푤(푡) = 푎 − 푏푒  푎 − 푎푒  푁표	푝표푖푛푡	표푓	푖푛푓푙푒푐푡푖표푛 

Domain of the 
independent 

variable 

(0,∞) (0,∞) (0,∞) 

Domain of the 
dependent 
variable 

(푎 − 푏,푎) (0,푎) (0,푎) 

B. Starting Value Specification 

All iteration procedures require initial values of the parameters 
to be estimates and the better these initial estimates are, the 
faster will be the convergence to the fitted value. Initial value 
specification is one of the most difficult problems encountered 
in estimating parameters of nonlinear model [4]. If the initial 
estimates are poor, convergence to the wrong final values can 
easily occur. There is no any general method for obtaining 
initial estimates. One uses whatever information is available. 
For Weibull models,  
Starting value of 풂: From the earlier discussion, it is noticed 
that for Weibull growth model, the parameter 푎 is defined as 
the limiting value of the dependent variable. Therefore for the 
biological growth, the parameter 푎  was specified as the 
maximum value of the dependent variable in the data. 
Starting value of 풃: The starting value for the biological 
constant, 푏, was specified by evaluating the model at the start 

of the growth when the predictor variable is zero. To specify 
the starting value of the parameter 푏 for the Weibull model is 
given bellow: 

푤 = 푎 − 푏       

푏 = 푎 −푤                 (17) 

Where	푎  is the starting value of the parameter 푎, w  is the 
value of the response variable at time 푡 = 0. 
Starting value of 풄: The parameter c is defined as the rate 
constant at which the response variable approaches its 
maximum possible value 푎. On the basis of this definition one 
can write, 푐 = ( )

( ); where 푤  and 푤  are the value of the 
response variable corresponding to the first (푡 ) and the last 
observations (푡 )  respectively. 푎  is the starting value 
specified for the parameter 푎. 
Starting value of 풎: The equation (4) can be written as 
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m = log log .    

Now at time t = ℎ
2,  where ℎ  is the last value of the 

independent variable in the data set.  

푚 =
( / )

푙표푔 푙표푔     (18) 

From the equation (18), we can estimate the starting value for 
the parameter m. Here 푎 ,푏 , 푐  are the starting values for the 
respective parameters and 푤  is the value of the response 

variable at time t = . 
For finding the initial values of the parameters of three 
parameters and two parameters Weibull model, one can 
proceed similarly as the Weibull model with four parameters. 

C. Parameter Estimations 

Three Weibull growth models have been fitted to mean 
diameter at breast height, top height and average cherry height 

growth data. The parameters of these models are estimated 
using Newton-Raphson method of estimation. Parameter 
estimates for the Weibull models with the corresponding 
observed and predicted to mean diameter at breast height are 
presented in Table 3. The RMSE and 휒  values along with the 
value of coefficient of determination (푅 ) are also presented. It 
is observed that the RMSE values for Weibull models for Mean 
diameter at breast height are given by 0.165m, 0.888m and 
1.313m. The table values of 휒  for 99.5% level of significance 
is found to be higher than our calculated 휒  values for Weibull 
model with four parameters whereas it is 99% higher in the 
case of Weibull model with three parameters and 90% for 
Weibull models with two parameters at (푛 − 1− 푘) degree of 
freedom, where 푛 is the number of observation and 푘  is the 
number of parameters to be estimated. The 푅  values of the 
Weibull models are 99.929%, 97.926%  and 95.349%  for 
four, three and two parameters respectively. 

Table 3: Fitting of Weibull growth models for mean diameter at breast height. 

 
Age(Year) MDBH Weibull model 

with four 
parameters 

Weibull model with 
three parameters 

Weibull model 
with two 

parameters 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 

8.40 
10.40 
12.35 
14.74 
17.13 
19.50 
21.49 
23.82 
25.55 
26.50 

8.4188 
10.2364 
12.4403 
14.8111 
17.1983 
19.4970 
21.6368 
23.5748 
25.2897 
26.7768 

6.5375 
10.3155 
13.3088 
15.8310 
18.0218 
19.9605 
21.6980 
23.2699 
24.7023 
26.0151 

4.9531 
9.1343 
12.6640 
15.6436 
18.1589 
20.2823 
22.0748 
23.5879 
24.8652 
24.8652 

푎 
푏 
푐 
푚 

33.15763 
25.74324 
0.03980 
1.54465 

49.02721 
 

0.14311 
0.72304 

24.8652 
 

0.1694 
 

휒  
RMSE(m) 
푅 (%) 

0.013 
0.165 

99.929 

0.783 
0.888 
97.926 

2.771 
1.313 

95.349 
 
Estimated parameters and the observed and predicted values 
for top height growth data along with the RMSE, 휒  and 푅  
values are presented in the Table 4. The table values of 휒  for 
99.5% level of significance is found to be higher than our 
calculated 휒  values for both models and the RMSE values are 
given by 0.110m and 0.486m for Weibull models with four 
parameters and three parameters respectively. The 
Determination coefficient values of the Weibull model with 
four and three parameters are found to be 99.93%  and 
98.612%  respectively. The Weibull model with two 
parameters cannot fit the top height growth data with 
Newton-Raphson method of estimation due to the occurrence 
of a singular or badly scaled matrix in the iteration process. 

Average height growth data of Cherry trees are also used and 
the parameter estimates with the observed and predicted values 
are presented in table 5. The computed RMSE value for each 
models along with the 휒  and 푅  values are also presented. It is 
observed that table values of 휒  for 99.5%  level of 
significance is found to be higher than our calculated 휒  values 
for the Weibull models. The RMSE for both the models are also 
acceptable and are given by 0.133ft and 0.193ft for Weibull 
models with four parameters and three parameters respectively. 
The 푅  value of Weibull four and three parameters growth 
models fitted to average height growth of cherry trees are 
estimated as 99.911%  and 99.812%  respectively. For this 
data set also, the Weibull model of two parameters cannot fit 
with Newton-Raphson method of estimation due to the 
occurrence of singular matrix in the iteration process. The 95% 
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confidence intervals of each parameter of the Weibull models, 
푎, 푏, 푐  and 푚  are calculated for the forestry data sets and 

presented in the Table 6. 

 
Table 4: Fitting of Weibull growth models for top height growth data. 

Age(Year) Top height data Weibull model with four 
parameters 

Weibull model with 
three parameters 

20 
25 
30 
35 
40 
45 
50 
55 
60 
65 

7.30 
9.00 
10.90 
12.60 
13.90 
15.40 
16.90 
18.20 
19.00 
20.00 

7.3574 
9.0215 

10.7636 
12.4661 
14.0689 
15.5408 
16.8680 
18.0474 
19.0831 
19.9833 

6.3041 
9.1973 
11.3371 
13.0626 
14.5143 
15.7676 
16.8690 
17.8494 
18.7307 
19.5294 

푎 
푏 
푐 
푚 

24.64759 
18.53032 
0.06927 
1.29917 

33.57433 
 

0.20797 
0 .62228 

휒  
RMSE(m) 

푅  

0.009 
0.110 
99.930 

0.252 
0.486 

98.612 
 

Table 5: Fitting of Weibull growth models for average height growth data of Cherry trees. 

Age(Year) Height(feet) Weibull model with four 
parameters 

Weibull model with 
three parameters 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

6.0 
9.5 

13.0 
15.0 
16.5 
17.5 
18.5 
19.0 
19.5 
19.7 
19.8 

5.9429 
9.7502 

12.7259 
14.9420 
16.5465 
17.6853 
18.4812 
19.0305 
19.4057 
19.6597 
19.8302 

  5.5247 
  9.7765 
12.8617 
15.0626 
16.6175 
17.7084 
18.4700 
18.9995 
19.3663 
19.6197 
19.7942 

푎 
푏 
푐 
푚 

20.16013 
18.37222 
0.25638 
1.14778 

20.17351 
 

  0.32001 
  1.05056 

휒  
RMSE(ft) 

푅  

0.016 
0.133 

99.911 

0.055 
0.193 

99.812 
 

Table 6: 95% Confidence intervals of the parameters of Weibull growth models. 

    
Data 

 
Models 

푎 푏 푐 푚 
Lower 
limit 

Upper 
limit 

Lower 
limit 

Upper 
limit 

Lower 
limit 

Upper 
limit 

Lower 
limit 

Upper 
limit 

 
DBH 

Wiebull_4 28.408 37.908 20.426 31.061 .029 .051 1.291 1.798 
Weibull_3 41.153 56.901   -.008 .294 .433 1.013 
Weibull_2 25.093 38.477   0.103 0.236   

Top 
Height  

Wiebull_4 21.024 28.271 14.309 22.751 .052 .087 1.052 1.546 
Weibull_3 27.856 39.292   .027 .389 .423 .821 

Average 
Height  

Wiebull_4 19.723 20.597 16.381 20.364 .184 .329 .970 1.325 
Weibull_3 19.787 20.560   .296 .345 .998 1.103 
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IV. Discussion 
The main Focus of this paper is to discuss some fundamental 
properties of the Weibull models and estimate the parameters 
using Newton-Raphson iteration method and construe some of 
the appropriate statistical outputs from forestry viewpoint. 
Good initial estimates are required to estimate the parameters 
from any iteration method. Also to specify good initial 
estimates of the parameters one should know the properties of 
the parameters. This paper developed some expressions to 
specify the initial values of the parameters based on the 
definitions and properties of the parameter of the Weibull 
models. These expressions will be very useful to specify the 
initial values of the parameters for Weibull models in the 
forestry data. From the result it is noticed that the 
Newton-Raphson algorithm is a very useful method in case of 
Weibull models. It is observed from the above results that the 
Weibull model with four parameter produce the best fit for all 
three forestry data sets. The Weibull model with three 
parameters also provides a satisfactory result for the data sets. 
But unfortunately the Weibull model with two parameters is 
failed to fit two data sets.  
The Properties of the curve of the Weibull functions will help 
to select the Weibull models for appropriate field of forestry 
and use these models to predict and control a forestry system in 
a more mathematical manner.  
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