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Abstract—The presence of long-memory or long-range dependence (LRD) in a stochastic process has important consequences in 
statistical inferences. Lo develops a robust test for detecting the existence of LRD and derives its asymptotic distribution. Teverovsky 
et al. uncover some drawbacks to using Lo’s method in practice. In particular, they find that Lo’s method has a strong preference for 
accepting the null hypothesis of no LRD. The bootstrap provides a practical method to correct the size distortion of the asymptotic 
tests. In this paper, we introduce a semi-parametric bootstrap testing procedure for detecting LRD. We investigate the size and power 
of Lo’s and its bootstrap tests by means of a computer simulation study. The results suggest that the bootstrap tests correct for size 
distortions of asymptotic tests for small sample sizes. 
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I. INTRODUCTION 

Long-memory, or long-range dependence (LRD), denotes the property of a time series to exhibit a 
significant dependence between very distant observations. Since the early work of Hurst [1], it has been 
recognised that many time series may exhibit the phenomenon of LRD. Time series with LRD has recently 
received considerable attention in economics (see [2]-[3] for example), but also in other research areas. 

There are several possible definitions of the property of LRD. According to [4], a stationary time series 
possesses LRD if its autocorrelations are absolutely non-summable. Equivalently, the spectral density 
function of a LRD process will be unbounded at low frequencies. 

The autoregressive fractionally integrated moving average, ARFIMA(p, d, q), process has widely been 
used in different fields, such as hydrology, computer science and finance, to represent a time series with 
LRD property. It is important to distinguish LRD processes from more common short range dependence 
processes such that the ARMA processes. A number of tests have been proposed to detect the presence of 
LRD in a given data set. Some of them are described in [5]. Historically, one of the most effective 
techniques was the rescaled range statistical analysis, first introduced by [1] to describe the long-term 
dependence of water levels in rivers and reservoirs. This analysis provides a sensitive method for revealing 
long-run correlations in random processes. What especially makes the rescaled range analysis appealing is 
that all the information about a complex signal are contained in one parameter only called as the Hurst 
exponent or the Hurst parameter, or even the H parameter. Lo modifies the rescaled range approach and 
proposes a test procedure for the null hypothesis of no LRD, in [6]. He derives the limiting distribution of 
the modified statistic under both short-range and long-range dependence. 

In the present study, the Lo’s modified test and the corresponding bootstrap test will be used to test for 
the null hypothesis of no presence of LRD in a stationary time series. We apply a bootstrap procedure that 
considers resampling blocks composed of cycles, as introduced in [7]. 

The paper is organized as follows. Section II describes the LRD notion and the modified Lo’s test. In 
section III, we review the block bootstrap methods and the bootstrap hypothesis testing. Then we describe 
a semi-parametric bootstrap procedure and give the algorithm to test for LRD. In section IV, we outline 
the experiment design and discuss the results of our Monte Carlo simulation study. At last, conclusions are 
pointed out in section V. 

II. LONG RANGE DEPENDENCE AND ITS DETECTION 

In this section, we give a brief description of the LRD notion and ARFIMA models. The classical 
rescaled range (R/S) statistic and the modified R/S statistic, to test for LRD, are also described. 
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A. The LRD Notion 

Historically, the importance of LRD processes as stochastic models lies in the fact that they provide an 
elegant explanation and interpretation of an empirical law that is commonly referred to as Hurst’s law or 
the Hurst effect. Even though the LRD notion recently has become important, there are various definitions 
of it. When definitions are given, they vary from author to author. There are alternative definitions not 
necessarily equivalent to one-another, in literature (for a collection of different notions behind the concept 
of LRD, see [8]). Most of the definitions of LRD appearing in literature are based on the second order 
properties of a stochastic process. Such properties include asymptotic behaviour of covariance, spectral 
density and variances of partial sums.  

Let  ,tX t Z  be a stationary time series process with ( )k , ( )k , ( )f   being autocovariance, 
autocorelation and spectral density function, respectively. In general, long memory is defined by the fact 
that the autocorrelations of the process are absolutely non-summable, [4], i.e. 

( )
k

k




           (1) 

However, there are alternative definitions. Suppose that there exists a real number  0,1   and a 
constant 0c   not depended on k  such that: 

( )lim 1
k

k
c k 





          (2) 

Then tX  is called a stationary process with LRD, or a stationary process with slowly decaying or long-
range correlations, [5]. 

LRD can equivalently be defined in the frequency domain. Suppose that there exists a real number 
 0,1   and a constant 0fc   not depended on   such that: 

0

( )lim 1
f

f
c 


 

         (3) 

Then tX  is called a stationary process with long memory or LRD or strong dependence, [5]. 
LRD processes can be represented as integrated I(d) processes with fractional (0,0.5)d . This can be 

done by generalising Box/Jenkins, [9], ARMA models to ARFIMA models. ARFIMA models were 
introduced by [10] and independently by [11]. Allowing also for short memory terms we have the 
ARFIMA(p, d, q) representation as following 

 ( ) 1 ( )d
t tB B X            (4) 

where B denotes the backshift operator, t  is a mean zero finite variance white noise process and Φ(•), Θ(•) 
denote, respectively, the p-order autoregressive and q-order moving average polynomials (see [5]).  
B. Detecting LRD 

It is important to distinguish LRD processes from more common short range dependence processes. For 
example, LRD processes violate the central limit theorem (CLT) in that the variance of the sample mean 
goes to zero more slowly than the usual order of 1/N (N denotes the sample size). On the other hand, the 
CLT is still valid for short memory processes. A number of tests have been proposed to detect the 
presence of LRD in an underlined data set. Some of them are described in [5]. 

The most popular test for long memory is the rescaled range (R/S) statistic, proposed by [1] and 
discussed in details in [5] and [12]. Classical R/S analysis aims at inferring from an empirical record the 
value of the Hurst parameter for the LRD process that presumably generated the record at hand. 
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For a time series  ,tX t N , let 
1

t

t j
j

Y X


  be the aggregated time series. Then, the adjusted range 

statistic or ( , )R t k  statistic is defined by 

       
00

( , ) max mint i t t k t t i t t k ti ki k

i iR t k Y Y Y Y Y Y Y Y
k k     

                
 (5) 

This range can be interpreted as the ideal capacity of a water reservoir with inflows at time i denoted by 
iX  for the time span between t  and t k (see [5]). For the adjusted range ( , )R t k  be independent of a 

scale, it is standardized by standard deviation  2
,

1

1( , )
t k

i t k
i t

S t k X X
k



 

   , where ,
1

1 t k

t k i
i t

X X
k



 

  . Then, 

for all possible values of k and t, the rescaled adjusted range statistic is given by 

  ( , )/
( , )k

R t kR S
S t k

         (6) 

To estimate the LRD parameter H, we plot the logarithm R/S against logarithm of k for all possible 
values of k. Hurst, [1], observed that many empirical records may be well represented by the relation 
log( / ) log( )kR S c H k   as k becomes large, with typically values of the Hurst parameter in the interval 

 0.5,1  and c a finite positive constant that does not depend on k. Then H can be estimated as the slope 
ordinary least squares (OLS) estimator. 

Lo, [6], proposed a modified R/S statistic that is obtained by replacing the denominator of the classical 
R/S, given by (6), by a consistent estimator of the square root of the variance of the partial sum. Lo, [6], 
derives the limiting distribution of his modified R/S statistic under both short-range and long-range 
dependence. Following [6], we define 

    
1

22

1 1 1

1 2( ) ( )
qN N

q i i k k i
i i k i

S N X X q X X X X
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 
   

 
     
 

     (7) 

where 
1

N

i
i

X X


 and ( ) 1
1k

kq
q

  


 for a fixed integer q N . Then the Lo’s modified R/S statistic, 

usually denoted by ( )qV N , is defined by 

1/ 2 ( )( )
( )q

q

R NV N N
S N

         (8) 

As N increases without bound, the truncation lag ( )q q N also increases such that  1/ 4q o N� . 
Recently, it is established that Lo’s modified R/S method does not provide a safe ultimate test for LRD 

detection. Teverovsky et al., [13], identify a number of serious drawbacks to using Lo’s method in practice. 
They also show that the value of Lo's modified R/S statistic is sensitive to the choice of the truncation lag q, 
used to estimate the standard deviation of the process. As the truncation lag increases, the test statistic has 
a strong bias towards accepting the null of no long run dependence, even when the DGP is a basic 
fractionally integrated (FI) process. 

The right choice of the truncation point q is essential so long as the Lo’s results are asymptotic whereas, 
in practice, the sample size is always finite. Lo, [6], suggests a data-driven formula for choosing q as 

2/31/3

2

ˆ3 2
ˆ2 1L

Nq 


             
       (9) 
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where ̂ is the estimated first-order autocorrelation coefficient, N is the sample length and the symbol    
denotes the greatest integer function. Lo, [6], shows that this choice of q is appropriate if the data 
generation process is an AR(1) process. Some simulation studies ([6], [13], [14]) have shown that, in 
general, the larger the q, the less likely the null hypothesis is to be rejected. After a trial-error procedure, 
Wang et al., [14], suggest the following modified formula to choose the truncation lag q. 

2/31/4

2

ˆ2
ˆ10 1W

Nq 


             
       (10) 

Murphy and Izzeldin, [15], use a truncation lag that does not depend on the data, given by 
1/4

8
100M
Nq

     
   

        (11) 

We use all these three truncation lags in our Monte Carlo study. 

III. BLOCK BOOTSTRAP METHODS AND HYPOTHESIS TESTING 

A. The Block Bootstrap Methods 
Bootstrap method, originally introduced by Efron, [16], is a resample technique that provides better 

estimations in small sample sizes than the classical methods. However, Efron’s bootstrap classical 
application in the context of dependent data, such as a time series, fails to work. In this case, the bootstrap 
technique must be carried out in such a way that the dependence structure of the original time series to be 
preserved in the bootstrap time series. Block bootstrap methods for dependent data were introduced by 
[17]-[19], among others. In these methods, the data is divided in blocks which are approximately 
independent and the joint distribution of the variables in different blocks is about to the same due to 
stationarity. The block bootstrap for time series consists of randomly resampling blocks of consecutive 
values of the given data and aligning these blocks into a bootstrap sample. Different methods differ in the 
way as blocks are constructed. Kunsch, [19], and Liu and Singh, [20], have independently formulated a 
resampling procedure, called the moving-block bootstrap (MBB), for general weakly-dependent 
observations. For a theoretical comparison of some block bootstrap methods see [21]. 

Lahiri, [22], showed that in general, the MBB procedure fails to provide a valid approximation to the 
distribution of normalized sample mean under LRD. One of the reasons behind this is that joining 
independent bootstrap blocks to form the bootstrapped statistic destroys the strong dependence of the 
underlying observations. Carlstein et al., [23], sampled blocks dependently, attempting to follow each 
block with one that might realistically follow it in the underlying process. Hesterberg, [24], used the 
matched-block bootstrap for LRD processes, investigating block matching rules, based on linear 
combinations of observations in the block. Ekonomi and Butka, [7], introduced the bootstrap with cycling 
blocks (BCB) to estimate the fractional parameter in ARFIMA models. The validity of BCB for stationary 
time series is shown in [25]. In this paper, we consider BCB with circular moving blocks similar to [26]. 
We briefly describe the BCB procedure in following. 

Let , 1,2,...,tX t N  be an observed time series. A cycle is defined as a pair of alternating high and low 
runs of the data that are created when the terms of the time series cross the sample mean. Then we define a 
block composed of a fixed number of consecutive cycles. Let 1 2, ,..., kC C C   denote the created cycles and 
let , 1,2,...,jn j k  be the number of terms of the cycle jC . Then, the created cycles would be written as 

11 1 2{ , , ..., }nC X X X , 
1 1 1 22 1 2{ , , ..., }n n n nC X X X   ,…, 1 2 1... 1{ , ..., }

kk n n n NC X X
    . The cycle lengths and 

the number of cycles are random variables so long as they are determined automatically by the data. The 
number of cycles of a block is a tuning parameter and is analogous with the block length in MBB. We 
consider the circular moving-block bootstrap approach, which amounts to wrapping the data around in a 
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circle before the blocks are created, as in [26]. If the number of cycles per block is set to be s, then the 
blocks would be 1 1{ , ,..., }j j j j sB C C C    for 1,2,...,j k  (if i k , we assign (mod )i i kC C ). We treat a 
cycle as an inseparable observation. Since the cycles, consequently the blocks, are created automatically 
by the series’ crossings of the sample mean we pretend that the dependence structure of the bootstrap 
sample mimics the dependence structure of the original data. 
B. Bootstrap Hypothesis Testing 

In briefly, the implementation of the bootstrap for hypothesis testing can be summarized as follows (for 
details see [27]). Suppose that ̂  is the observed value of a test statistic   with cumulative distribution 
function F  under the null hypothesis. Let we wish to perform a test at level   that rejects the null 
hypothesis when ̂  is in the upper tail. Than the p-value of ̂  is ˆ ˆ( ) 1 ( )p F   . If we knew F , we 
would simply calculate ˆ( )p   and reject the null whenever ˆ( )p   . But in practice F  is unknown or the 
asymptotic approximation of it may perform poorly for finite sample sizes. A popular alternative is to 
perform a bootstrap test. In the spirit of the bootstrap we first generate Q bootstrap samples and compute 
the bootstrap test statistic j

  for each one, most commonly by the same procedure used to calculate ̂  
from the real sample. The basic idea is to create a large number of such samples which all obey the null 
hypothesis and, as far as possible, resamples the original sample. Then, if we wish to reject when ̂  is in 

the upper tail, the bootstrap p-value is 
1

1ˆ ˆ ˆ( ) ( )
Q

j
j

p I
Q

  



   where I(•) denotes the indicator function. 

When we wish to perform a two-tailed test, and we are willing to assume that   is symmetrically 
distributed around zero, we can use the symmetric bootstrap p-value given by 

 
1

1ˆ ˆ ˆ( )
Q

s j
j

p I
Q

   



         (12) 

If we are not willing to make the assumption that   is symmetrically distributed around zero, we can use 
the equal-tail bootstrap p-value given by 

     
1 1

1 1ˆ ˆ ˆ ˆ2 min ,
Q Q

et j j
j j

p I I
Q Q

      

 

 
   

 
      (13) 

In this paper we consider both ˆ sp   and ˆ etp   bootstrap p-values. 

C.  The Algorithm 
Suppose that we wish to test the null hypothesis H0: “There is no LRD in the process under 

consideration” against the alternative hypothesis, H1: “There is LRD”. Let  1 2, ,..., NX X X  be the 
observed time series. The algorithm for testing for LRD, used in this paper, consists as follows. 

Step 1. Calculate the test statistic ( )qV N   defined by equation (8) with truncation lag (9), (10) or (11). 
Step 2. Fit an AR(p0) model, choosing the parameter p0 such that AR(p0) is the best fitting data model in 

all {AR(p), p=1,2,...,30} models. We use AIC or BIC information criteria to select the best fitting model. 
Step 3. Create a new time series  ' ' '

1 2, ,..., NX X X  that is generated by p0 AR terms and a random sample 

of normal innovations. Let ,  1,  2,...,  iB i k  be the blocks of this time series defined by BCB procedure. 
Step 4. Sample with replacement from the set ,  1,  2,...,  iB i k  and lay the resampled blocks end to end 

so producing the bootstrap sample  * * *
1 2, ,..., NX X X  (also called as pseudoseries). 
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Step 5. From the pseudoseries calculate the bootstrap test statistic ( )qV N    following equation (8) 

with truncation lag (9), (10) or (11), but using jX   instead of jX . 
Step 6. Repeat steps 4 to 5 Q times and the bootstrap p-value, p*, is calculated by equation (12) or (13). 
Step 7. For a nominal significance level α, the null hypothesis H0 is rejected only if p* < α. 

IV. SIMULATION STUDY 

A. Experiment Design 
In a Monte Carlo experiment, we consider a wide class of models from the ARFIMA(p, d, q) processes, 

given by equation (4), to test for the LRD. The null hypothesis is that the data series has no long memory. 
The Monte Carlo experiment covers first order autoregressions and moving averages as well as 

autoregressive fractionally integrated series of lengths N = 100, 200, 300, 500, and 1000. The empirical 
size of the tests are examined for the AR(1) and MA(1) processes, whilst the empirical power of the test are 
examined against ARFIMA(0, d, 0) and ARFIMA(1, d, 0) processes. We consider eight AR(1), eight MA(1), 
five ARFIMA(0, d, 0) and four ARFIMA(1, d, 0). The AR(1) model is defined by equation 1t t tX X   , 

the MA(1) model by 1t t tX    , the ARFIMA(0, d, 0) by  1 d
t tB X    and the ARFIMA(1, d, 0) 

model by   1 1 d
t tB B X    , where B  is the back-shift operator,  

0

1 d k

k

d
B B

k





 
   

 
  is the 

generalized binomial expansion, and  t  is a white noise process with zero mean and finite variance 2
 . 

The considered coefficients are 1,  4,  5 and 9     for AR(1) and MA(1) models. For the fractionally 
integrated noise, we consider the values 0.05,  0.25,  0.30,  1/ 3,  and 0.45d   in order to investigate 
different intensities of the LRD. For the ARFIMA(1, d, 0) models, all combinations of 0.5,  0.9   and 

0.3,  0.45d   are considered. Using the “fracdiff” package in R, we generate an artificial time series from 
each model under consideration with 300 first terms removed in order to reduce the effect of initial values. 
The white noise process  t  is generated from the standard normal distribution. For each combination of 
the parameters we apply both the symmetric and the equal-tail bootstrap p-values. The autoregressive 
order p0 of the fitted AR(p0) model is derived using AIC and BIC information criteria. Then, in each 
simulated case we calculate the empirical size or power of the original and bootstrap tests, based on 1000 
Monte Carlo replications. The nominal size (type I error) of the test is chosen to be 0.01,  0.05,  0.10  . 
We use Q = 1000 bootstrap replications. We set the average block length approximately at order 0.5( )O N  
using different numbers of cycles per block. 
B. Results 

Table I presents the empirical size of the tests, at a nominal 0.05   level of significance, for AR(1) 
models. BIC criteria is used (AIC and BIC criteria yielded similar results). Numbers in bold face denote 
significant evidence for the nominal size of 0.05  . Under the null hypothesis of no LRD, the 95% 
confidence interval of the rejection percentage is ]3.6, 6.4[, for the 0.05   nominal significance level of 
the test. Results suggest that, in general, the bootstrap testing procedure is able to improve the tests. 
Moreover, each one of bootstrap tests has, in most of cases, better size properties than the corresponding 
original tests. It is more evident for AR(1) models with negative coefficients or with moderate positive 
coefficients. It is true also for the MA(1) models (not reported in this paper) when the truncation lag (11) is 
used. Exception is the case of MA(1) model with 0.9   . We note that for MA(1) model with 0.9    
all original tests overestimate the nominal size, whereas, the bootstrap tests underestimate the nominal size 
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when the symmetric p-value (12) is used and overestimate the nominal size when the equal-tail p-value 
(13) is used. 

 
TABLE I 

EMPIRICAL SIZE OF THE LO’S TESTS FOR AR(1) MODELS (α = 0.05) 

φ N qL lags (9) qW lags (10) qM lags (11) 
Orig. Symm. Equal. Orig. Symm. Equal. Orig. Symm. Equal. 

-.9 

100 5.1 22.8 16.7 0.7 13.5 8.2 3.5 3.4 13.3 
200 1.2 12.3 7.7 1.1 8.2 4.5 0.5 6.6 6.3 
300 0.3 8.6 5.0 1.0 6.5 4.2 9.8 1.9 8.1 
500 0.1 6.3 3.8 2.6 5.9 4.6 2.9 4.2 4.5 

1000 0.3 4.6 3.6 3.7 6.2 4.9 13.6 2.7 6.8 

-.5 

100 0.7 6.3 4.8 10.5 6.1 6.0 0.2 6.3 6.7 
200 1.2 4.4 3.7 6.9 4.4 4.6 0.3 4.0 3.4 
300 1.9 5.5 4.2 6.2 5.5 4.6 1.7 5.3 4.4 
500 3.4 6.7 6.4 7.4 5.9 6.2 3.1 6.5 6.2 

1000 3.2 5.6 4.5 6.7 5.7 5.2 3.1 5.4 4.7 

-.4 

100 2.2 4.8 5.2 10.8 4.8 5.5 0.3 4.7 4.4 
200 2.3 5.3 4.9 7.9 5.4 5.8 1.1 4.4 5.0 
300 2.0 4.5 4.3 7.7 5.6 4.7 1.1 4.4 3.7 
500 4.2 6.3 5.7 8.9 7.3 6.5 3.5 6.5 5.2 

1000 3.9 4.3 4.0 6.3 5.2 5.1 3.4 4.3 4.8 

-.1 

100 7.4 7.4 8.9 10.9 7.8 8.8 0.5 5.9 5.0 
200 5.6 5.5 5.5 8.8 5.2 5.9 0.9 4.9 5.0 
300 5.5 6.5 6.9 8.0 6.2 7.5 1.5 5.9 5.3 
500 6.1 4.2 5.5 8.0 4.0 6.2 3.8 4.3 5.3 

1000 5.3 4.2 4.9 6.8 4.1 5.5 3.6 4.4 4.8 

.1 

100 5.8 7.8 7.4 5.3 11.0 8.3 0.9 3.9 4.8 
200 5.4 9.2 7.5 6.1 12.0 9.1 1.4 7.1 6.3 
300 5.4 8.3 6.9 5.7 10.2 7.9 2.6 6.4 5.7 
500 5.3 7.5 6.4 5.3 9.0 7.2 2.6 6.4 5.0 

1000 6.1 6.9 6.2 6.2 7.3 6.9 4.0 5.6 5.8 

.4 

100 3.4 7.7 6.9 5.7 9.5 8.4 2.0 5.0 5.8 
200 4.9 7.8 6.6 6.8 8.7 8.6 2.5 6.9 6.7 
300 3.4 6.0 5.4 5.8 7.0 5.5 2.6 5.4 4.9 
500 3.9 6.0 4.9 5.6 6.2 5.9 2.6 5.4 4.3 

1000 5.3 5.9 5.5 6.6 6.2 5.6 4.6 5.3 5.3 

.5 

100 2.7 6.7 5.8 4.1 9.1 8.4 1.9 4.2 4.5 
200 2.9 7.8 6.0 6.8 9.0 7.5 2.3 7.6 5.5 
300 2.6 4.9 4.5 5.9 7.5 5.5 2.7 4.5 4.9 
500 3.5 6.6 5.6 7.1 6.7 6.5 3.3 6.3 5.8 

1000 3.7 4.2 4.5 5.1 4.7 5.3 3.8 4.2 4.3 

.9 

100 1.0 3.0 2.9 0.5 7.8 5.6 0.5 10.7 7.2 
200 1.4 5.8 4.1 1.7 11.3 8.9 4.5 15.3 10.4 
300 2.0 5.1 4.0 3.4 8.0 5.8 9.8 10.2 8.2 
500 2.1 4.5 4.8 6.2 7.9 7.0 15.8 10.3 7.9 

1000 2.3 5.0 4.3 6.5 6.9 5.7 12.6 8.2 6.0 
Note: Orig. denotes the original test, Symm. denotes the corresponding bootstrap test with 
symmetric bootstrap p-value and Equal. denotes that one with equal-tail p-value.  
The fitted model is AR(p) with p selected using BIC criterion. 

 
Over all the parameter values, the dispersion of the sizes for each bootstrap test is smaller than that of 

the original test. For example, there are only ten out of forty bootstrap empirical sizes that differ 
significantly from the nominal size for the Lo statistic with truncation lag (9) and with p-value (13), 
compared to twenty four significant deviations for the corresponding original test (see third and fifth 
columns to table I). On the other hand the size underestimates encountered by the original tests for AR(1) 
models with 0.5   and 0.9   are adjusted by the bootstrap procedure. 



International Journal of Mathematics Trends and Technology – Volume 8  Number 3 – April  2014 

ISSN: 2231-5373                         http://www.ijmttjournal.org Page 171 
 

 
TABLE II 

EMPIRICAL POWER OF THE LO’S TESTS FOR ARFIMA(0, d, 0) MODELS (α = 0.05) 

d N qL lags (9) qW lags (10) qM lags (11) 
Orig. Symm. Equal. Orig. Symm. Equal. Orig. Symm. Equal. 

.05 

100 4.0 12.3 9.9 6.2 14.9 10.5 0.3 6.2 5.9 
200 5.8 14.6 11.4 7.0 16.0 12.4 1.1 7.6 5.6 
300 6.0 14.9 10.6 7.8 17.1 12.6 1.6 9.1 6.1 
500 7.5 17.3 11.7 9.1 19.5 14.2 3.4 10.0 6.3 

1000 10.4 18.6 12.6 11.7 21.6 13.5 5.3 12.5 8.5 

.25 

100 3.8 25.8 17.2 19.5 35.3 26.5 0.8 9.5 6.3 
200 17.1 36.0 26.6 40.3 44.8 35.0 3.2 24.2 16.0 
300 24.6 39.3 29.4 48.4 48.6 39.0 8.4 28.7 20.5 
500 38.0 48.4 37.9 64.4 59.8 48.2 22.7 39.8 30.3 

1000 54.9 60.6 51.8 79.9 68.9 60.2 39.0 52.3 41.8 

.3 

100 3.5 25.0 17.6 23.9 36.8 28.2 0.8 10.1 6.7 
200 13.3 31.4 23.4 43.3 44.2 33.6 3.5 24.0 16.9 
300 27.6 44.9 33.4 61.0 53.4 45.0 14.3 35.4 25.4 
500 42.1 51.2 41.4 71.3 60.3 51.1 30.6 46.8 35.4 

1000 58.5 63.6 53.4 84.3 72.1 63.7 47.7 58.4 48.4 

1/3 

100 3.3 25.8 17.3 30.0 39.5 28.7 0.5 13.1 7.1 
200 13.5 35.7 26.7 48.6 48.1 38.2 4.5 29.6 19.7 
300 26.2 42.9 32.9 62.8 54.2 44.5 16.3 36.1 27.0 
500 41.5 51.6 40.6 73.2 61.9 52.9 32.4 46.5 36.5 

1000 61.5 66.5 55.9 87.8 75.1 66.9 55.4 62.6 53.7 

.45 

100 1.0 18.8 11.9 32.3 37.5 28.2 0.7 16.1 10.9 
200 6.4 33.3 23.6 56.3 49.9 38.0 9.3 35.7 25.3 
300 18.6 40.1 30.8 68.3 55.1 45.5 28.8 43.8 34.9 
500 39.4 53.3 41.3 81.8 66.2 57.2 52.6 57.6 48.6 

1000 65.1 69.3 61.5 92.9 79.6 72.6 75.9 75.1 65.2 
See note to Table I 

 
Table II and table III report the power of the tests. In bold face is printed the greatest value of all 

empirical powers of a case study. The simulation results verify that the power values of the bootstrap tests, 
with truncation lag (9), are greater than those of the asymptotic tests. It is also true for other two truncation 
lags, (10) and (11), for small sample sizes (always for N = 100 and almost always for N = 200, 300). 

In general, the bootstrap tests with symmetric p-value (12) yield better powers than those of the 
bootstrap tests with equal-tail p-value (13). For the mixed ARFIMA(1, d, 0) models with φ = 0.9, the 
powers are in general low. Original or bootstrap tests with truncation lag (11) perform better in these cases. 

We note that the original test statistic (8) using the truncation lag (10), proposed by [14], performs well 
for AR(1) and MA(1) models with positive coefficients. It also has good powers for ARFIMA(0, d, 0) 
models with moderate or large values of d. That is not true for mixed ARFIMA(1, d, 0) models. However, 
the bootstrap procedure always improves the performance of the tests for sample size of 100 observations. 

V. CONCLUSIONS 

In this paper we investigate a bootstrap hypothesis testing procedure. From results obtained by the 
Monte Carlo study, we conclude that the block bootstrap method, with blocks composed of cycles, 
provides a practical and effective testing procedure for detecting the LRD, especially for short time series. 
This bootstrap testing procedure, based in modified R/S statistic, has in general better size properties than 
the corresponding asymptotic test without losing significant power. 
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TABLE III 
EMPIRICAL POWER OF THE LO’S TESTS FOR ARFIMA(1, d, 0) MODELS (α = 0.05) 

d 
(φ) N qL lags (9) qW lags (10) qM lags (11) 

Orig. Symm. Equal. Orig. Symm. Equal. Orig. Symm. Equal. 

.3 
(.5) 

100 1.0 7.9 5.7 3.0 16.9 11.8 1.0 13.3 9.4 
200 0.7 11.6 6.7 14.1 23.4 16.9 4.2 22.1 15.5 
300 1.0 18.2 11.6 26.2 32.5 23.2 14.1 29.6 22.3 
500 5.1 26.2 19.5 39.5 37.3 30.7 32.0 37.0 29.7 

1000 20.9 41.3 32.0 56.8 56.8 47.2 50.3 54.8 45.3 

.3 
(.9) 

100 0.6 6.5 8.7 1.0 4.8 5.6 0.3 17.8 14.0 
200 0.3 6.7 7.4 0.9 7.6 8.2 14.6 18.3 15.4 
300 0.2 5.3 5.1 1.2 8.7 7.8 32.5 15.0 11.2 
500 0.4 3.4 3.5 0.9 8.3 6.4 52.6 13.7 9.4 

1000 0.6 4.6 4.6 1.5 14.3 9.2 67.0 18.4 14.6 

.45 
(.5) 

100 0.6 3.2 2.5 0.3 10.1 6.9 0.5 14.9 9.3 
200 0.4 8.0 4.9 5.8 24.8 17.7 10.7 28.5 21.6 
300 0.5 10.8 5.7 15.4 30.0 21.3 30.4 34.2 26.8 
500 0.6 18.3 10.8 37.7 42.1 33.2 55.0 45.9 37.6 

1000 5.2 36.8 26.6 59.9 59.7 50.8 73.3 63.9 55.4 

.45 
(.9) 

100 1.5 10.2 17.0 0.8 4.8 7.2 0.2 22.0 18.7 
200 1.0 10.6 18.7 1.2 9.3 11.4 25.2 21.4 20.6 
300 0.5 9.2 14.6 0.8 7.0 7.0 49.0 21.2 18.6 
500 0.1 5.5 8.7 1.2 7.4 6.5 70.2 17.0 14.4 

1000 0.0 2.2 5.3 0.7 13.6 10.0 85.8 20.3 15.7 
See note to Table I 
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