Detour Distant Divisor Graphs

S. SARAVANAKUMAR
Department of Mathematics, Sri S.R.N.M.College, Sattur - 626 203, Tamil Nadu, India,
sskmaths85@gmail.com
K. NAGARAJAN
Department of Mathematics, Sri S.R.N.M.College, Sattur - 626 203, Tamil Nadu, India.
k_nagarajan_srnmc@yahoo.co.in

Abstract

Let $G=(V, E)$ be a (p, q) - graph. The longest path P is called a detour distant divisor path if $l(P)$ is a divisor of q. A detour distant divisor graph $D D(G)$ of graph $G=(V, E)$ has the vertex set $V=V(G)$ and two vertices in $D D(G)$ are adjacent if they have the detour distant divisor path in G. In this paper, we deal with the detour distant divisor graph of standard graphs such as path, cycle, star, wheel, complete graph, complete bipartite graph and corona of a complete graph etc.

Key words: Distance, Detour distance, Detour distant divisor path, Detour distant divisor graph, Antipodal graph.

AMS subject classification: $05 \mathrm{C} 12,05 \mathrm{C} 76$.

1 Introduction

By a graph, we mean a finite undirected graph without loops and multiple edges. For terms not defined here, we refer to Harary[7].

Distance between the two vertices in a graph is the length of the shortest path between them. Graph Theory [4, 7] has a strong communication with Number Theory $[1,6]$. Using the divisibility concept in Number Theory, we introduced a
new concept called distant divisor graph[10]. In that paper[10], we found the distant divisor graphs of some standard graphs such as path, cycle, wheel, star, complete graph, complete bipartite graph etc. It was found that there were some properties and characterizations for distant divisor graphs.

Here, the definitions of some Number theoretic functions are given.

Notations 1.1. Let G be a (p, q)-graph,
(i) $k_{1}, k_{2}, \ldots, k_{\tau}$ denote the positive divisors of q with $k_{1}=1$ and $k_{\tau}=q$ and $k_{1}<k_{2}<, \ldots,<k_{\tau}$. For $q=12, k_{1}=1, k_{2}=2, k_{3}=3, k_{4}=4, k_{5}=6$ and $k_{6}=12$

Definition 1.2. [3] Two vertices of a graph are said to be antipodal to each other if the distance between them is equal to the diameter of a graph.

Definition 1.3. [3] The antipodal graph of a graph G, denoted by $A(G)$, has the vertex set as in G and two vertices are adjacent in $A(G)$ if and only if they are antipodal in G.

Definition 1.4. [8] Two vertices of a graph are said to be radial to each other if the distance between them is equal to the radius of the graph.

Definition 1.5. [5] For vertices u and v in a connected graph G, the detour distance $D(u, v)$ is the length of the longest $u-v$ path in G.

Theorem 1.6. [2] For a cycle $C_{p}, A\left(C_{p}\right) \cong\left\{\begin{array}{l}\frac{p}{2} K_{2}, \text { if } p \text { is even. } \\ C_{p}, \text { if } p \text { is odd }\end{array}\right.$
In this paper, we are going to find the structure of the detour distant divisor graph of graphs such as path, cycle, star, wheel, complete graph, complete bipartite graph and corona of a complete graph.

2 Main Results

Definition 2.1. Let $G=(V, E)$ be a (p, q) - graph. The longest path P is called detour distant divisor path if $l(P)$ is a divisor of q.

Example 2.2. Consider the graph,

Here $q=8$, clearly the path $v_{1} v_{2} v_{6} v_{5} v_{3}$ is a detour distant divisor path.

Next, we define detour distant divisor graph of a graph.
Definition 2.3. Let $G=(V, E)$ be a (p, q) - graph. The detour distant divisor graph $D D(G)$ of the graph G has the vertex set $V=V(G)$ and two vertices in $D D(G)$ are adjacent if they have the detour distant divisor path in G.

The following example illustrates the concept of detour distant divisor graph of a graph.

Example 2.4. The graph G and its detour distant divisor graph $D D(G)$ are shown below.

we redraw the above $D D(G)$ as follows.

Note that $D D(G) \cong K_{4,2}$
First, we shall find the detour distant divisor graph of complete graph.

Theorem 2.5. For a graph $K_{p}, D D\left(K_{p}\right) \cong\left\{\begin{array}{l}K_{p}, \text { if } p \text { is even } \\ \overline{K_{p}}, \text { if } p \text { is odd }\end{array}\right.$
Proof. In $K_{p}, q=\frac{p(p-1)}{2}$ and $D\left(v_{i}, v_{j}\right)=p-1$ for all $i \neq j$.
Case (i) : Suppose p is even.
Then, $D\left(v_{i}, v_{j}\right)$ divides q for all $i \neq j$. Thus, there is a detour distant divisor path between any two vertices of K_{p}. Hence, in $D D\left(K_{p}\right)$ each vertex is adjacent to every other vertices.

Thus, $D D\left(K_{p}\right) \cong K_{p}$.
Case (ii): Suppose p is odd.
Then,$D\left(v_{i}, v_{j}\right)$ is not a divisor of q, for all $i \neq j$. Thus, there is no detour distant divisor path between any two vertices of K_{p}. Hence, in $D D\left(K_{p}\right)$ each vertex is isolated.

Thus, $D D\left(K_{p}\right) \cong \overline{K_{p}}$.

Next, we shall find the detour distant divisor graph of cycles.
Theorem 2.6. For a cycle $C_{p}, D D\left(C_{p}\right) \cong\left\{\begin{array}{l}A\left(C_{p}\right), \text { if } p \text { is even } \\ \overline{K_{p},} \text { if } p \text { is odd }\end{array}\right.$
Proof. Case (i): Suppose p is even.
Then $\frac{p}{2} \leq D\left(v_{i}, v_{j}\right) \leq p-1$, for all $i \neq j$.
Since $\frac{p}{2}$ is the only divisor of q and also in C_{p}, the number of vertices having detour distance $\frac{p}{2}$ from each v_{i} is $1, D D\left(C_{p}\right)$ is disconnected and degree of each vertex is one. Thus, $D D\left(C_{p}\right)$ is disconnected graph of $\frac{p}{2}$ components and each component is K_{2}. Hence, $D D\left(C_{p}\right) \cong \frac{p}{2} K_{2}$.

From the theorem 1.6 it follows that $A\left(\mathrm{C}_{p}\right) \cong \frac{p}{2} K_{2}$, if p is even.
Thus, $D D\left(C_{p}\right) \cong A\left(\mathrm{C}_{p}\right)$.
Case (i): Suppose p is odd.
Then $\frac{p+1}{2} \leq D\left(v_{i}, v_{j}\right) \leq p-1$, for all $i \neq j$.
For $i \neq j$, we observe that $D\left(v_{i}, v_{j}\right)$ is not a divisor of q.
Then, there is no detour distant divisor path between any two vertices of C_{p}. Hence, $D D\left(C_{p}\right) \cong \overline{K_{p}}$.

The Theorem 2.6 is illustrated by the following examples.

Example 2.7. Case(i): p is even, Consider the cycle C_{8},

Here $q=8$, the divisors of q are $1,2,4$ and 8 and $D\left(v_{1}, v_{5}\right)=4, D\left(v_{2}, v_{6}\right)=4$, $D\left(v_{3}, v_{7}\right)=4, D\left(v_{4}, v_{8}\right)=4$.
The detour distant divisor graph of C_{8} is given below.

Note that $D D\left(C_{8}\right) \cong 4 K_{2}$
Case(ii): p is odd. Consider the graph C_{9}.

Here $q=9$, the divisors of q are 1,3 and 9 but $D\left(v_{i}, v_{j}\right) \geq 5$, for all $i \neq j$.
The detour distant divisor graph of C_{9} is given below.

Note that $D D\left(C_{p}\right) \cong \overline{K_{p}}$
Next, we shall find the detour distant divisor graph of a wheel graph.
Theorem 2.8. For a wheel $W_{p}, D D\left(W_{p}\right) \cong K_{p}$.
Proof. In $W_{p}, D\left(v_{i}, v_{j}\right)=p-1$, for all $i \neq j$ and $q=2(p-1)$.
Since $D\left(v_{i}, v_{j}\right)$ divides q, for all $i \neq j$, each vertex in $D D\left(W_{p}\right)$ is adjacent to every other vertices.

Hence, $D D\left(W_{p}\right) \cong K_{p}$.
It is found that the detour distant divisor graph and distant divisor graph of a tree are the same.

Theorem 2.9. For a tree $T, D D(T) \cong D(T)$.

Proof. For a tree, $d_{T}\left(v_{i}, v_{j}\right)=D_{T}\left(v_{i}, v_{j}\right)$, for all $i \neq j$, the result follows.

Corollary 2.10. For a star $K_{1, p}, D D\left(K_{1, p}\right) \cong D\left(K_{1, p}\right)$.
Corollary 2.11. For a path $P_{p}, D D\left(P_{p}\right) \cong D\left(P_{p}\right)$.
Next, we find the structure of the detour distant divisor graph of complete bipartite graph.

Theorem 2.12. For a graph $K_{m, n}, m<n, D D\left(K_{m, n}\right)$ is either $K_{m} \cup \overline{K_{n}}$ or $K_{m, n}$ or $K_{n} \cup \overline{K_{m}}$ or $K_{m}+\overline{K_{n}}$ or $K_{n}+\overline{K_{m}}$ or $K_{m} \cup K_{n}$ or K_{m+n} or $\overline{K_{m+n}}$.

Proof. Let $X=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $Y=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the bipartition of $V\left(K_{m, n}\right)$ and $|X|<|Y|$.

In $K_{m, n}$, we observe that
(i) $D\left(u_{i}, u_{j}\right)=2(m-1)$, for all $i \neq j$.
(ii) $D\left(v_{i}, v_{j}\right)=2 m$, for all $i \neq j$.
(iii) $D\left(u_{i}, v_{j}\right)=2 m-1$, for $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$.

Note that $K_{m, n}$ has $m+n$ vertices and $m n$ edges.

Then, we check only the numbers $2(m-1), 2 m$ and $2 m-1$ if they are the divisors of $m n$.

Case (i) : Suppose $m n \cong 0(\bmod (2(m-1)))$ and $m n \not \approx 0(\bmod (2 m-1))$ and $m n \nsupseteq$ $0(\bmod (2 m))$.
Then, the divisor of $m n$ is only $2(m-1)$. Since $D\left(u_{i}, u_{j}\right)=2(m-1)$, for all $i \neq j$, in $D D\left(K_{m, n}\right)$, we join each u_{i} to every u_{j}, and v_{i} 's are isolated.

Thus, $D D\left(K_{m, n}\right) \cong K_{m} \cup \overline{K_{n}}$.
Case $(i i)$: Suppose $m n \nsupseteq 0(\bmod (2(m-1)))$ and $m n \cong 0(\bmod (2 m-1))$ and $m n \not \approx 0(\bmod (2 m))$.
Then, the divisor of $m n$ is only $2 m-1$. Since $D\left(u_{i}, v_{j}\right)=2 m-1$ for all $i \neq j$, in $D D\left(K_{m, n}\right)$, we join each u_{i} to every v_{j}, and u_{i} is not adjacent to u_{j} for all $i \neq j$ and also v_{i} is not adjacent to v_{j} for all $i \neq j$.
Hence, $D D\left(K_{m, n}\right) \cong K_{m, n}$.
Case $(i i i)$: Suppose $m n \not \approx 0(\bmod (2(m-1)))$ and $m n \nsubseteq 0(\bmod (2 m-1))$ and $m n \cong 0(\bmod (2 m))$.

Then, the divisor of $m n$ is only $2 m$. Since $D\left(v_{i}, v_{j}\right)=2 m$, for all $i \neq j$, we join each v_{i} to every v_{j}, and all u_{i} 's are isolated.

Hence, $D D\left(K_{m, n}\right) \cong K_{n} \cup \overline{K_{m}}$.
Case $(i v)$: Suppose $m n \cong 0(\bmod (2(m-1)))$ and $m n \cong 0(\bmod (2 m-1))$ and $m n \not \approx 0(\bmod (2 m))$.
Then, the divisors of $m n$ are $2(m-1)$ and $2 m-1$. Since $D\left(u_{i}, u_{j}\right)=2(m-1)$, for all $i \neq j$ and $D\left(u_{i}, v_{j}\right)=2 m-1$, for all $i \neq j$ in $D D\left(K_{m, n}\right)$, we join each u_{i} to every u_{j} and v_{j}, and no two v_{i} 's are adjacent..
Hence, $D D\left(K_{m, n}\right) \cong K_{m}+\overline{K_{n}}$.
Case (v) : Suppose $m n \nsubseteq 0(\bmod (2(m-1)))$ and $m n \cong 0(\bmod (2 m-1))$ and $m n \cong 0(\bmod (2 m))$.

Then, the divisors of $m n$ are $2 m-1$ and $2 m$. Since $D\left(u_{i}, v_{j}\right)=2 m-1$, for all $i \neq j$ and $D\left(v_{i}, v_{j}\right)=2 m$, for all $i \neq j$ in $D D\left(K_{m, n}\right)$, we join each v_{i} to every v_{j} and u_{j}, and no two u_{i} 's are adjacent.
Hence, $D D\left(K_{m, n}\right) \cong K_{n}+\overline{K_{m}}$.
Case $(v i)$: Suppose $m n \cong 0(\bmod (2(m-1)))$ and $m n \nsubseteq 0(\bmod (2 m-1))$ and $m n \cong 0(\bmod (2 m))$.

Then, the divisor of $m n$ are $2(m-1)$ and $2 m$. Since $D\left(u_{i}, u_{j}\right)=2(m-1)$, for all $i \neq j$ and $D\left(v_{i}, v_{j}\right)=2 m$, for all $i \neq j$ in $D D\left(K_{m, n}\right)$, we join each u_{i} to every u_{j} and each v_{i}, to every v_{j} and no two u_{i} 's and v_{j} 's are adjacent.
Hence, $D D\left(K_{m, n}\right) \cong K_{m} \cup K_{n}$.

Case $(v i i)$: Suppose $m n \cong 0(\bmod (2(m-1)))$ and $m n \cong 0(\bmod (2 m-1))$ and $m n \cong 0(\bmod (2 m))$.
Then, the divisors of $m n$ are $2(m-1), 2 m-1$ and $2 m$. From (i), (ii) and (iii), it is understood that in $D D\left(K_{m, n}\right)$, each vertex is adjacent to every other vertices.

Hence, $D D\left(K_{m, n}\right) \cong K_{m+n}$.
Case (viii) : Suppose $m n \not \approx 0(\bmod (2(m-1)))$ and $m n \nsupseteq 0(\bmod (2 m-1))$ and $m n \nsupseteq 0(\bmod (2 m))$.

Then, $m n$ is not divisible by $2(m-1), 2 m-1$ and $2 m$. So, in $D D\left(K_{m, n}\right)$, each vertex is isolated.

Hence, $D D\left(K_{m, n}\right) \cong \overline{K_{m+n}}$.
The Theorem 2.12 is illustrated by the following examples.

Example 2.13. Case(i): Consider the graph $K_{2,5}$.

The divisors of $q=10$ are $1,2,5$ and 10 and $D\left(u_{1}, u_{2}\right)=2, D\left(u_{i}, v_{j}\right)=3$ and $D\left(v_{i}, v_{j}\right)=4$, for all $i \neq j$.

The detour distant divisor graph of $K_{2,5}$ is given below.

Note that $D D\left(K_{2,5}\right) \cong K_{2} \cup \overline{K_{5}}$.
Case(ii): Consider the graph $K_{3,5}$.
The divisors of $q=15$ are $1,3,5$ and 15 and $D\left(u_{i}, u_{j}\right)=4, D\left(u_{i}, v_{j}\right)=5$ and $D\left(v_{i}, v_{j}\right)=6$, for all $i \neq j$.

Thus, the detour distant divisor graph of $K_{3,5}$ is isomorphic to itself.
Case(ii): Consider the graph $K_{3,6}$.

The divisors of $q=18$ are $1,2,3,6,9$ and 18 and $D\left(u_{i}, u_{j}\right)=4, D\left(u_{i}, v_{j}\right)=5$ and $D\left(v_{i}, v_{j}\right)=6$, for all $i \neq j$.
The detour distant divisor graph of $K_{3,6}$ is given below.

Now, the above graph is redrawn below.

Note that $D D\left(K_{3,6}\right) \cong K_{6} \cup \overline{K_{3}}$.
Case(iv): Consider the graph $K_{2,3}$.

The divisors of $q=6$ are $1,2,3$ and 6 and $D\left(u_{1}, u_{2}\right)=2, D\left(u_{i}, v_{j}\right)=3$ and $D\left(v_{i}, v_{j}\right)=4$, for all $i \neq j$.

The detour distant divisor graph of $K_{2,3}$ is given below.

Note that $D D\left(K_{2,3}\right) \cong K_{2}+\overline{K_{3}}$.
Case(v): Consider the graph $K_{4,14}$.
The divisors of $q=56$ are $1,2,4,7,8,14,28$ and 56 and $D\left(u_{i}, u_{j}\right)=6, D\left(u_{i}, v_{j}\right)=$ 7 and $D\left(v_{i}, v_{j}\right)=8$, for all $i \neq j$.
Thus, the detour distant divisor graph of $K_{4,14}$ is $K_{14}+\overline{K_{4}}$.
Case(vi): Consider the graph $K_{3,4}$.

The divisors of $q=12$ are $1,2,3,4,6$ and 12 and $D\left(u_{i}, u_{j}\right)=4, D\left(u_{i}, v_{j}\right)=5$ and $D\left(v_{i}, v_{j}\right)=6$.
The detour distant divisor graph of $K_{3,4}$ is given below.

Note that $D D\left(K_{3,4}\right) \cong K_{3} \cup K_{4}$.
Case(vii): Consider the graph $K_{2,6}$.
The divisors of $q=12$ are $1,2,3,4,6$ and 12 and $D\left(u_{1}, u_{2}\right)=2, D\left(u_{i}, v_{j}\right)=3$ and $D\left(v_{i}, v_{j}\right)=4$, for all $i \neq j$.
Thus, the detour distant divisor graph of $K_{2,6}$ is $K_{2+6}=K_{8}$.
Case(viii): Consider the graph $K_{3,9}$.
The divisors of $q=27$ are $1,3,9$ and 27 and $D\left(u_{i}, u_{j}\right)=4, D\left(u_{i}, v_{j}\right)=5$ and $D\left(v_{i}, v_{j}\right)=6$, for all $i \neq j$.
Thus, the detour distant divisor graph of $K_{3,9}$ is $\overline{K_{3+9}}=\overline{K_{12}}$.
Corollary 2.14. For a graph $K_{m, m}, D D\left(K_{m, m}\right) \cong \overline{K_{2 m}}$.
Proof. Let $X=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $Y=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be the bipartition of $V\left(K_{m, n}\right)$ and $|X|=|Y|$.

In $K_{m, m}$, we observe that
(i) $D\left(u_{i}, u_{j}\right)=2(m-1)$, for all $i \neq j$.
(ii) $D\left(v_{i}, v_{j}\right)=2(m-1)$, for all $i \neq j$.
(iii) $D\left(u_{i}, v_{j}\right)=2 m-1$, for all $i \neq j$.

Note that $K_{m, m}$ has $2 m$ vertices and m^{2} edges and we observe that q is not divisible by both $2(m-1)$ and $2 m-1$. Thus, there is no detour distant divisor path between any two vertices of $K_{m, m}$. Hence, in $D D\left(K_{m, m}\right)$ each vertex is isolated.

Hence, $D D\left(K_{m, m}\right) \cong \overline{K_{2 m}}$.

Next, we find the structure of the detour distant divisor graph of corona of a complete graph.

Theorem 2.15. For a graph $K_{p}^{+}, D D\left(K_{p}^{+}\right)$is either K_{p}^{+}or $K_{p, p}$ or $K_{p}+\overline{K_{p}}$.
Proof. Let $u_{1}, u_{2}, \ldots, u_{p}$ be the vertices of K_{p} and $v_{1}, v_{2}, \ldots, v_{p}$ be the pendent vertices attached to $u_{1}, u_{2}, \ldots, u_{p}$ respectively. Note that K_{p}^{+}has $2 p$ vertices and $\frac{p(p+1)}{2}$ edges.

In K_{p}^{+}, we observe that
(i) $D\left(u_{i}, u_{j}\right)=p-1$, for all $i \neq j$.
(ii) $D\left(v_{i}, v_{j}\right)=p+1$, for all $i \neq j$.
(iii) $D\left(u_{i}, v_{j}\right)=$ either 1 or p, for $i=1,2, \ldots, p$ and $j=1,2, \ldots, p$.

Then, we check only the numbers $1, p, p-1$ and $p+1$ if they are divisors of $\frac{p(p+1)}{2}$. The following table gives the number of vertices having the detour distance 1 or p or $p-1$ or $p+1$ from the vertices of K_{p}^{+}.

Vertex v	Detour Distance D	Number of vertices having detour distance D from v
u_{i}	1	1
	p	$p-1$
	$p-1$	$p-1$
	$p+1$	0
v_{i}	1	1
	p	$p-1$
	$p-1$	0
	$p+1$	$p-1$

From the table, it is found that in K_{p}^{+}, the number of vertices having detour distance 1 from u_{i} is 1 and that of detour distance p from u_{i} is $p-1$ and that of detour distance $p-1$ from u_{i} is $p-1$ and that of detour distance $p+1$ from u_{i} is 0.

The number of vertices having detour distance 1 from v_{i} is 1 and that of detour distance p from v_{i} is $p-1$ and that of detour distance $p-1$ from v_{i} is 0 and that of detour distance $p+1$ from v_{i} is $p-1$.

Since q is divisible by 1 , all pendent edges of K_{p}^{+}are detour distant divisor paths. Now, we deal this proof with either $p=3$ or $p>3$.
Suppose $p=3$, then q is divisible by both p and $p-1$ but not divisible by $p+1$. So, in this case $D D\left(K_{p}^{+}\right)$is $K_{p}+\overline{K_{p}}$.

Suppose $p>3$, then q is not divisible by $p-1$ and also not divisible by both p and $p+1$. So, q is divisible by either p or $p+1$.
Case (i) : Suppose $q \cong 0(\bmod p)$
Then, in $D D\left(K_{p}^{+}\right)$, two vertices are adjacent, if the detour distance between them in K_{p}^{+}is 1 or p. Since $D\left(u_{i}, u_{j}\right)=p-1$, for all $i \neq j$ and $D\left(v_{i}, v_{j}\right)=p+1$, for all $i \neq j$, then in $D D\left(K_{p}^{+}\right)$, each u_{i} is not adjacent to u_{j} and each v_{i} is not adjacent to v_{j}, for all $i \neq j$.

From the table it is clear that in K_{p}^{+}, the number of vertices having detour
distance 1 from u_{i} is 1 and that of detour distance p from u_{i} is $p-1$. So, in $D D\left(K_{p}^{+}\right)$, each vertex u_{i} is adjacent to p vertices. Similarly in $D D\left(K_{p}^{+}\right)$, each vertex v_{i} is adjacent to p vertices.

Thus, in $D D\left(K_{p}^{+}\right)$, degree of each u_{i} is p and degree of each v_{i} is p, and also all v_{i} 's and u_{j} 's are not adjacent.
Hence, $D D\left(K_{p}^{+}\right) \cong K_{p, p}$.
Case (ii): Suppose $q \cong 0(\bmod p+1)$
Then, in $D D\left(K_{p}^{+}\right)$, two vertices are adjacent if the detour distance between them in K_{p}^{+}is 1 or $p+1$. Since $D\left(u_{i}, u_{j}\right)=p-1$, for all $i \neq j$ and $D\left(v_{i}, v_{j}\right)=p+1$, for all $i \neq j$, then in $D D\left(K_{p}^{+}\right)$, each u_{i} is not adjacent to u_{j} and each v_{i} is adjacent to v_{j}, for all $i \neq j$.

From the table, it is clear that in K_{p}^{+}, the number of vertices having detour distance 1 from u_{i} is 1 and that of detour distance $p+1$ from u_{i} is 0 . So, in $D D\left(K_{p}^{+}\right)$, each vertex u_{i} is adjacent to only one v_{i}. Similarly from the table, it is clear that in K_{p}^{+}, the number of vertices having detour distance 1 from v_{i} is 1 and that of detour distance $p+1$ from v_{i} is $p-1$. So, in $D D\left(K_{p}^{+}\right)$, each v_{i} is adjacent to exactly p vertices. Thus, in $D D\left(K_{p}^{+}\right)$, degree of each u_{i} is 1 and that of v_{i} is p.

Hence, $D D\left(K_{p}^{+}\right) \cong K_{p}^{+}$.

The theorem 2.15 is illustrated by the following example.
Example 2.16. Consider the graph K_{3}^{+},

The divisors of $q=6$ are $1,2,3$ and 6 and $D\left(u_{i}, u_{j}\right)=2, D\left(u_{i}, v_{j}\right)=$ either 1 or 3 and $D\left(v_{i}, v_{j}\right)=4$.

The detour distant divisor graph of K_{3}^{+}is given below.

The above graph is redrawn below.

Note that $D D\left(K_{3}^{+}\right) \cong K_{3}+\overline{K_{3}}$.

References

[1] T.M.Apostol, Introduction to Analytic Number Theory, third edition, Narosa edition, 1991.
[2] R.Aravamudhan and B.Rajendran, Graph Equations involving antipodal graphs, Presented at the Seminar on Combinatorics and applications.ISI, Calcutta, 1984, 40-43.
[3] R.Aravamudhan and B.Rajendran. On antipodal graphs, Discrete Math.49, 1984, 193-195.
[4] J.A. Bondy and U.S.R.Murty, Graph theory with Applications, North Holland, 1983 Fifth Printing.
[5] F. Buckley and F. Harary, Distance in graphs, Addison - wesely, Reading, 1990.
[6] David M. Burton, Elementary Number Theory, Tata McGraw-Hill Publishing company Limited, 2006.
[7] F.Harary, Graph Theory, Addison-Wesley Publishing Company, Reading, Mass, 1972.
[8] K.M.Kathiresan and G.Marimuthu, A Study on radial graphs, Ars Combinatoria, 2010, 96, 353-360.
[9] S.Saravanakumar and K.Nagarajan, Distant Divisor Graphs, International Journal of Mathematical Sciences and Engineering Applications, 2013, Vol. 7 No.IV, 83-97.
[10] S.Saravanakumar and K.Nagarajan, Distant Divisor Graph of Subdivision of a Graph, International Journal of Mathematics and Soft Computing, Vol. 4 No.I 2014, 51-60.

