$$(\in, \in \lor q)$$
 -Fuzzy ideals of d-algebra

(\in , \in \vee q) -Fuzzy ideals of d-algebra

S. R. Barbhuiya 1, K. Dutta. Choudhury 2

Department of Mathematics, Srikishan Sarda College, Hailakandi, -788151, Assam, India 2 Department of Mathematics, Assam University, Silchar-788011, Assam, India

Abstract— Here we defined $(\in, \in \lor q)$ -fuzzy ideal of d-algebra and investigated some of its properties. AMS Subject Classification (2010): 06F35, 03G25, 08A72, 03B52.

Keywords— d-algebra, fuzzy d-ideal, $(\in, \in \lor g)$ - fuzzy ideal.

I. INTRODUCTION

In 1991, Xi [1] applied the concept of fuzzy sets to BCK-algebras which were introduced by Imai and Iseki [2]. In 1996, J. Neggers and H. S. Kim [3] introduced the class of d-algebras which is a generalisation of BCK-algebras and investigated relation between d-algebras and BCK-algebras. M. Akram and K. H. Dar [4] introduced the concepts fuzzy d-algebra, fuzzy subalgebra and fuzzy d-ideals of d- algebras. S. K. Bhakat and P. Das [5] used the relation of "belongs to" and "quasi coincident with" between fuzzy point and fuzzy set to introduce the concept of $(\in, \in \vee q)$ -fuzzy subgroup and $(\in, \in \vee q)$ fuzzy subring. D. K. Basnet and L. B. Singh [6] introduced $(\in, \in \lor q)$ -fuzzy ideals of BG-algebra in 2010. In this paper, we define $(\in, \in \lor q)$ -fuzzy ideals of d-algebra and got some interesting results.

II. PRELIMINARIES

Definition 2.1. A d-algebra is a non empty set X with a binary operation * satisfying following axioms.

- (i) x * x = 0
- (ii) 0 * x = 0
- (iii) x * y = 0 and $y * x = 0 \Rightarrow x = y \forall x, y \in X$

Definition 2.2. Let S be a non empty subset of a d-algebra X. Then S is called a subalgebra of X if $x * v \in S \forall x, v \in X$

Definition 2.3. A non empty subset I of a d-algebra X is called d-ideal of X if it satisfies the following conditions.

- (i) $0 \in I$
- (ii) $x * y \in I \text{ and } y \in I \Rightarrow x \in I$
- (iii) $x \in I$ and $y \in X \Rightarrow x * y \in I$

Definition 2.4. A fuzzy subset μ of a d-algebra X is called fuzzy d-ideal of X if it satisfies following conditions.

- (i) $\mu(0) \ge \mu(x)$
- (ii) $\mu(x) \ge \min \{ \mu(x * y), \mu(y) \}$
- (iii) $\mu(x * y) \ge \min \{\mu(x), \mu(y)\}$

Example 2.5. Consider a d-algebra $X = \{0, a, b, c\}$ with the following cayley table.

*	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	b	0	0
С	c	c	c	0

Define
$$\mu$$
: X \rightarrow [0, 1] by μ (0) = 0.9, μ (a) = 0.6, μ (b) = 0.5, μ (c) = 0.3

Then it is easy to verify that μ is a fuzzy d-ideal X.

III.
$$(\in, \in \lor q)$$
-FUZZY IDEALS OF d-ALGEBRA

Definition 3.1.A fuzzy set μ of the form

$$\mu(y) = \begin{cases} t & \text{if} \quad y = x, \ t \in (0,1] \\ 0 & \text{if} \quad y \neq x \end{cases}$$

Is called a fuzzy point with support x and value t and it is denoted by x_t .

Definition 3.2. A fuzzy point x_t is said to belong to (respectively be quasi coincident with) a fuzzy set μ written as $x_t \in \mu$ (respectively $x_t \neq \mu$) if $\mu(x) \geq t$ (respectively $\mu(x) + t > 1$) if $x_t \in \mu$ or $x_t \neq \mu$ then we write $x_t \in \forall \neq \mu$

(Note $\in \lor q$ means $\in \lor q$ does not hold)

Definition 3.3.A fuzzy subset μ of a d-algebra X is said to be $(\in, \in \vee q)$ -fuzzy ideal of X if

- (i) $(x * y)_t$, $y_s \in \mu \Rightarrow x_{m(t,s)} \in \forall q \mu$
- (ii) $x_t, y_s \in \mu \Rightarrow (x * y)_{m(t,s)} \in \forall q \mu \text{ for all } x, y \in X \text{ where } m(t, s) = min\{t, s\}$

Definition 3.4. A fuzzy subset μ of a d-algebra X is said to be (α, β) -fuzzy ideal of X if

- (i) $(x * y)_t$, $y_s \alpha \mu \Rightarrow x_{m(t, s)} \beta \mu$
- (ii) $x_t, y_s \alpha \mu \Rightarrow (x * y)_{m(t, s)} \beta \mu$ for all $x, y \in X$ where $m(t, s) = min\{t, s\}$ and $\alpha, \beta \in \{\in, g, \in v \mid g, \in \land g\}$ and $\alpha \neq \in \land g$

Theorem 3.5. A fuzzy subset μ of a d-algebra X is a fuzzy ideal iff μ is a (\subseteq , \subseteq)-fuzzy ideal of X.

Proof- Let μ be a fuzzy ideal of X. To prove that μ is (\in, \in) -fuzzy ideal.

Let x, y \in X, such that $(x * y)_t$, $y_s \in \mu$ where t, $s \in (0, 1)$, then $\mu(x * y) \ge t$, $\mu(y) \ge s$

Now $\mu(x) \ge \min \{ \mu(x * y), \mu(y) \} \ge \min \{ t, s \} = m (t, s)$

 $\Rightarrow x_{m(t,s)} \in \mu$

Again let $x_t \in \mu$, $y_s \in \mu$ then $\mu(x) \ge t$, $\mu(y) \ge s$

Now $\mu(x * y) \ge \min \{\mu(x), \mu(y)\}$

$$\geq \min\{t, s\} = m(t, s)$$

$$\Rightarrow$$
 (x * y) $_{m(t,s)} \in \mu$

```
\therefore \mu is (\in, \in)-fuzzy ideal of X.
Conversely,
let \mu be a (\in, \in)-fuzzy ideal of X. To prove that \mu is a fuzzy ideal of X.
Let x, y \in X and t = \mu(x * y), s = \mu(y) then \mu(x * y) \ge t, \mu(y) \ge s
i.e. (x * y)_t \in \mu, y_s \in \mu \Rightarrow x_{m(t,s)} \in \mu by given condition
i.e. \mu(x) \ge m (t, s) \ge \min \{ \mu(x * y), \mu(y) \}
Again let t = \mu(x), s = \mu(y) then \mu(x) \ge t, \mu(y) \ge s
\Rightarrow x_t \in \mu, y_s \in \mu
\Rightarrow (x * y)_{m(t,s)} \in \mu by given condition
\Rightarrow \mu(x * y) \ge m(t, s) = m\{\mu(x), \mu(y)\}
Again taking y = x, we get
\mu(x * x) \ge m \{\mu(x), \mu(x)\} = \mu(x)
\Rightarrow \mu(0) \ge \mu(x)
Hence µ is a fuzzy ideal.
Theorem 3.6. If \mu is a (q,q)-fuzzy ideal of a d-algebra X, then it is also a (\subseteq, \subseteq)-fuzzy ideal of X.
Proof: Let \mu be a (q,q)-fuzzy ideal of a d-algebra X. Let x, y \in X such that (x * y)_t, y_s \in \mu
\Rightarrow \mu(x * y) \ge t \text{ and } \mu(y) \ge s
\Rightarrow \mu(x * y) + \delta > t \text{ and } \mu(y) + \delta > s \text{ for any } \delta > 0.
\Rightarrow \mu(x * y) + \delta - t + 1 > 1 \text{ and } \mu(y) + \delta - s + 1 > 1
\Rightarrow (x * y)<sub>\delta-t+1</sub> q \mu and (y)<sub>\delta-s+1</sub> q \mu [since \mu is a (q q)-fuzzy ideal X].
. We have x_{m(\delta-t+1,\delta-s+1)} q \mu
\Rightarrow \mu(x) + m(\delta - t + 1, \delta - s + 1) > 1
\Rightarrow \mu(x) + \delta + 1 - M(t, s) > 1, where M(t, s) = \max\{t, s\}
\Rightarrow
       \mu(x) > M(t, s) - \delta
      \mu(x) \ge M(t, s), since \delta is arbitrary
\Rightarrow
\Rightarrow
      \mu(x) \ge M(t, s) \ge m(t, s)
\Rightarrow x_{m(t,s)} \in \mu
Again let x_t, y_s \in \mu
\Rightarrow \mu(x) \ge t \text{ and } \mu(y) \ge s
\Rightarrow \mu(x) + \delta > t and \mu(y) + \delta > s, where \delta > 0 is arbitrary.
\Rightarrow \mu(x) + 1 + \delta - t > 1 and \mu(y) + 1 + \delta - s > 1
\Rightarrow x_{(1+\delta-t)} q \mu and (y)_{(1+\delta-s)} q \mu
                                                   [ Since \mu is (q, q)-fuzzy ideal].
\Rightarrow (x * y)_{m(1+\delta-t,1+\delta-s)}q\mu
\Rightarrow \mu(x * y) + m(1 + \delta - t, 1 + \delta - s) > 1
\Rightarrow \mu(x * y) + 1 + \delta - M(t, s) > 1
\Rightarrow \mu(x * y) + \delta - M(t, s) > 0
\Rightarrow \mu(x * y) > M(t, s) - \delta \ge M(t, s) \ge m(t, s), since \delta > 0 is arbitrary.
\therefore (x * y)_{m(t,s)} \in \mu
Hence \mu is (\subseteq, \subseteq)-fuzzy ideal of X.
```

Remark 3.7. Converse of above is not true i.e. every (\subseteq, \subseteq) -fuzzy ideal is not a (q, q)-fuzzy ideal as shown in the following example.

Example 3.8. Consider d-algebra $X = \{0, a, b, c\}$ with the following cayley table.

*	Λ		1	
4	0	a	b	С
0	0	0	0	0
a	a	0	0	a
b	b	b	0	0
С	С	С	c	0

Define μ : X \rightarrow [0, 1] by μ (0) =0.7, μ (a) = 0.6, μ (b) = 0.4, μ (c) = 0.3 then it is east to verify that μ is a (\subseteq , \subseteq)-fuzzy d-ideal X. But it is not a (q, q)-fuzzy ideal of X because if x = b, y = c, t = 0.35, s = 0.75 then (x * y)_t q μ , y_s q μ but μ (x) + m(t, s) = μ (b) + m(0.35, 0.75) = 0.4 + 0.35 = 0.75 < 1

Theorem 3.9. A fuzzy subset μ of a d-algebra X is a (\in , \in \forall q)-fuzzy ideal of X iff

$$\mu(x) \ge m \ (\mu(x * y), \ \mu(y), \ 0.5)$$

 $\mu(x * y) \ge m \ (\mu(x), \ \mu(y), \ 0.5)$ $\forall \ x, \ y \in X$

Proof. First let μ be a $(\in, \in Vq)$ -fuzzy ideal of X Case I. Let m $(\mu(x * y), \mu(y)) < 0.5 \forall x, y \in X$ then $m(\mu(x * y), \mu(y), 0.5) = m(\mu(x * y), \mu(y))$ If possible $\mu(x) < m \ (\mu(x * y), \ \mu(y))$. Choose a real number t such that $\mu(x) \le t \le m \ (\mu(x * y), \ \mu(y)), \ \text{then} \ (x * y)_t, \ (y)_t \in \mu$ but $\mu(x) < t$ i.e. $x_t \notin \mu$. Also $\mu(x) + t < 2t$ i.e. $\mu(x) + t < 2m (\mu(x * y), \mu(y)) < 2 \times 0.5 = 1$ $\Rightarrow \mu(x) + t < 1$ Which contradicts the fact that μ is a $(\in, \in Vq)$ -fuzzy ideal of X $\mu(x) \ge m \ (\mu(x * y), \ \mu(y)) = m \ (\mu(x * y), \ \mu(y), \ 0.5)$ Case II. Let m $(\mu(x * y), \mu(y)) \ge 0.5$ Then $m(\mu(x * y), \mu(y), 0.5) = 0.5$. If possible $\mu(x) < m(\mu(x * y), \mu(y), 0.5) = 0.5$ Then $\mu(x * y) \ge 0.5$ and $\mu(y) \ge 0.5$ $(x * y)_{0.5}, y_{0.5} \in \mu \text{ but } \mu(x) < 0.5$ $x_{0.5} \notin \mu \text{ and } \mu(x) + 0.5 < 0.5 + 0.5 = 1$ Which is again a contradiction to the fact that μ is a $(\in, \in Vq)$ -fuzzy ideal of X. Hence we must have $\mu(x) \ge m \ (\mu(x * y), \ \mu(y), \ 0.5)$ Case III. Let m $(\mu(x), \mu(y)) < 0.5 \ \forall x, y, \in X$, therefore m $(\mu(x), \mu(y), 0.5) = m(\mu(x), \mu(y))$ If possible $\mu(x * y) < m(\mu(x), \mu(y))$ choose a real number t such that $\mu(x * y) < t < m (\mu(x), \mu(y))$ then $x_t \in \mu, y_t \in \mu$ But $\mu(x * y) < t \Rightarrow (x * y)_t \notin \mu$ Again $\mu(x * y) + t < 2t < 2m (\mu(x), \mu(y)) < 2 \times 0.5 = 1$ $\Rightarrow \mu(x * y) + t < 1$ Which contradict the fact that μ is $(\in, \in Vq)$ -fuzzy ideal Case IV. Let $m(\mu(x), \mu(y)) \ge 0.5$ then $m(\mu(x), \mu(y), 0.5) = 0.5$ If possible $\mu(x * y) < m \ (\mu(x), \mu(y), 0.5) = 0.5$, then $\mu(x) \ge 0.5$, $\mu(y) \ge 0.5$ i.e. $x_{0.5} \in \mu$, $y_{0.5} \in \mu$. But $\mu(x * y) < 0.5$ i.e. $(x * y)_{0.5} \notin \mu$ and $\mu(x * y) + 0.5 < 0.5 + 0.5 = 1$, which is again a contradiction. \therefore u is $(\in, \in Vq)$ -fuzzy ideal.

Conversely,

let
$$\mu(x) \ge m \ (\mu(x * y), \ \mu(y), \ 0.5)$$
 (3.1)

Let $x, y \in X$, such that $\mu(x * y) = t$ and $\mu(y)$. Then $(x * y)_t, y_s \in \mu$

Hence $\mu(x) \ge m$ (t, s, 0.5) [By (3.1)]

Now if m
$$(t, s) \le 0.5$$
 then m $(t, s, 0.5) = m(t, s)$ therefore, $\mu(x) \ge m(t, s)$ i.e. $x_{m(t,s)} \in \mu$ (3.2)

Again if m (t, s) > 0.5 then m (t, s, 0.5) = 0.5 $\therefore \mu(x) \ge m$ (t, s, 0.5) = 0.5

i.e.
$$\mu(x) + m(t, s) > 0.5 + 0.5 = 1$$

$$\Rightarrow x_{m(t,s)}q \mu$$
 (3.3)

(3.2) and (3.3) $\Rightarrow x_{m(t,s)} \in \forall q \mu$. Hence μ is a $(\in, \in \forall q)$ -fuzzy ideal.

Again Let
$$\mu(x * y) \ge m (\mu(x), \mu(y), 0.5)$$

(3.4)

Let x, y \in X so that $\mu(x) = t$ and $\mu(y)$. Then $x_t, y_s \in \mu$

Therefore m $(\mu(x), \mu(y)) \ge m$ (t, s)

By (3.4), $\mu(x * y) \ge m(t, s, 0.5)$

Now, if $m(t, s) \le 0.5$ then $\mu(x * y) \ge m(t, s, 0.5) \ge m(t, s)$

$$\Rightarrow (x * y)_{m(t,s)} \in \mu \tag{3.5}$$

Again if m (t, s) \geq 0.5 then μ (x * y) \geq m (t, s, 0.5) = 0.5

$$\Rightarrow$$
 $\mu(x * y) + m(t, s) > 0.5 + 0.5 = 1$

$$\Rightarrow (x * y)_{m(t,s)} q\mu \tag{3.6}$$

From (3.5) and (3.6)

 $(x * y)_{m(t,s)} \in Vq \mu$. Therefore μ is $(\in, \in \lor q)$ -fuzzy ideal of X.

Remark 3.10. A (\in, \in) -fuzzy ideal is always a $(\in, \in \lor q)$ -fuzzy ideal of X but not conversely which can be seen from the following example.

Example 3.11. Consider d-algebra $X = \{0, a, b, c\}$ with the following cayley table.

*	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	b	0	0
c	c	С	a	0

Define
$$\mu: X \to [0, 1]$$
 by $\mu(0) = 0.58$, $\mu(a) = \mu(b) = 0.75$, $\mu(c) = 0.55$

Then it is easy to verify that μ is $(\in, \in \lor q)$ -fuzzy ideal by above theorem.

But $a_{0.7} = (c * b)_{0.7}$, $b_{0.7} \in \mu$ but $c_{0.7} \notin \mu$ also $a_{0.7}$, $b_{0.7} \in \mu$ but $(a * b)_{0.7} = 0_{0.7} \notin \mu$

Remark 3.12. Every (\subseteq, q) -fuzzy ideal of d-algebra X is always a $(\in, \in \forall q)$ -fuzzy ideal of X

Theorem 3.13. If a fuzzy subset μ of a d-algebra X is a $(\in, \in \lor q)$ -fuzzy ideal of X and $\mu(x) < 0.5$

 $\forall x \in X$, then μ is also a (\in , \in)-fuzzy ideal of X.

Proof. Let μ is $(\subseteq, \subseteq V_q)$ -fuzzy ideal of X and $\mu(x) < 0.5$ and $\mu(x * y) < 0.5 \forall x, y \in X$

Let $(x * y)_t \in \mu, y_s \in \mu$

Therefore $t \le \mu(x * y) < 0.5$ and $s \le \mu(x) < 0.5$

m(t, s) < 0.5 also $\mu(x) + m(t, s) < 0.5 + 0.5 = 1$

Since, μ is (\in , \in Vq)-fuzzy ideal of X i.e. $\mu(x) \ge m$ (t, s) or $\mu(x) + m$ (t, s) > 1

```
So, we must have x_{m(t,s)} \subseteq \mu
                                                                                                                                   (3.7)
Again, let x_t \in \mu, y_s \in \mu
t \le \mu(x) < 0.5 and s \le \mu(y) < 0.5
\therefore m (t, s) < 0.5 also \mu(x*y) + m(t, s) < 0.5 + 0.5 = 1
Since \mu is (\subseteq, \subseteq Vq)-fuzzy ideal of X so \mu(x^*y) \ge m(t, s) or \mu(x^*y) + m(t, s) > 1
Therefore we must have \mu(x^*y) \ge m (t, s) i.e. (x^*y)_{m(t,s)} \in \mu
                                                                                                                                    (3.8)
(3.7) and (3.8) \Rightarrow \mu is (\subseteq, \subseteq)-fuzzy ideal.
Theorem 3.14. A fuzzy set \mu in a d-algebra X is an (\in, \in \vee q)-fuzzy ideals of X iff the set
\mu_t = \{x \in X \mid \mu(x) \ge t\} is an ideal of X for all t \in (0, 0.5).
Proof: Assume \mu is an (\in, \in \lor q)-fuzzy ideal of X and t \in (0, 0.5].
Let x, y \in X such that x*y, y \in \mu_t
 Therefore \mu(x * y) \ge t, \mu(y) \ge t,
 Now by theorem 3.9
 \mu(x) \ge m \; (\mu(x * y), \; \mu(y), \; 0.5) \ge m \; (t, \, t, \, 0.5) = t
 \Rightarrow \mu(x) \ge t \Rightarrow x \in \mu_t
Therefore, x^*y, y \in \mu_t \Rightarrow x \in \mu_t
                                                                                                                                   (3.9)
 Again, let x, y \in \mu_t
Therefore \mu(x) \ge t, \mu(y) \ge t
 Again by theorem 3.9
 \mu(x^*y) \ge m (\mu(x), \mu(y), 0.5) \ge m (t, t, 0.5) = t
\Rightarrow \mu(x^*y) \ge t \Rightarrow x^*y \in \mu_t
Therefore x, y \in \mu_t \Rightarrow x^*y \in \mu_t
                                                                                                                                 (3.10)
 From (3.9) and (3.10) \mu_t is an ideal of X.
Conversely,
Let \mu be a fuzzy set in X and \mu_t = \{x \in X \mid \mu(x) \ge t\} be an ideal of X, to prove \mu is \{e, e \lor q\}-
fuzzy ideal X. Suppose \mu is not an (\in, \in \vee q)-fuzzy ideal of X, then there exist a, b \in X such that at
least one of \mu(a) < m(\mu(a * b), \mu(b), 0.5) and \mu(a * b) < m(\mu(a), \mu(b), 0.5) hold.
Suppose \mu(a) < m(\mu(a * b), \mu(b), 0.5) holds. Let t = [\mu(a) + m(\mu(a * b), \mu(b), 0.5)]/2, then t \in (0, 0.5)
and
               \mu(a) < t < m (\mu(a * b), \mu(b), 0.5)
                                                                                                                                  (3.11)
                \mu (a * b) > t, \mu (b) > t
     i.e.
                 \Rightarrow a * b \in \mu_t, b \in \mu_t
                 \Rightarrow a \in \mu_t [since \mu_t is ideal]
                 Therefore \mu (a) > t, which contradict (3.11)
Hence we must have \mu(x) \ge m (\mu(x * y), \mu(y), 0.5)
Next let \mu(a * b) < m(\mu(a), \mu(b), 0.5) holds. Let t = [\mu(a*b) + m(\mu(a), \mu(b), 0.5)]/2, then t \in (0, 0.5)
                \mu (a*b) < t < m (\mu (a), \mu (b), 0.5)
And
                                                                                                                                  (3.12)
i e
               \mu (a) > t, \mu (b) > t
             \Rightarrow a \in \mu_t, b \in \mu_t \Rightarrow a*b \in \mu_t \text{ [since } \mu_t \text{ is ideal]}
                Therefore \mu (a*b) > t, which contradict (3.12)
Therefore we must have \mu(x^*y) \ge m(\mu(x), \mu(y), 0.5)
Hence \mu is an (\in, \in \vee q)-fuzzy ideal of X.
Theorem 3.15. Let S be a subset of a d-algebra X. Consider the fuzzy set \mu_s in X defined by
\mu_s = \begin{cases} 1 & \text{if } x \in S, \\ 0 & \text{otherwise} \end{cases}
```

```
Then S is an ideal of X iff \mu_s is an (\in, \in \lor q)-fuzzy ideal X.
```

Proof. Let S be an ideal of X. Now $(\mu_s)_t = \{ x \in X \mid \mu_s(x) \ge t \} = S$, which is an ideal.

Hence by theorem 3.14, μ_s is an $(\in, \in \lor q)$ -fuzzy ideal X.

Conversely, assume that μ_s is an $(\in, \in \lor q)$ -fuzzy ideal X, to prove S is an ideal of X.

Let
$$x^*y$$
, $y \in S$. Then $\mu_s(x) \ge m(\mu_s(x * y), \, \mu_s(y), \, 0.5) = m(1, \, 1, \, 0.5) = 0.5 \Rightarrow \mu_s(x) \ge 0.5 \Rightarrow \mu_s(x) = 1 \Rightarrow x \in S$.

Next let
$$x, y \in S$$
. Then $\mu_s(x^*y) \ge m \; (\mu_s(x), \; \mu_s(y), \; 0.5) = m \; (1, \, 1, \, 0.5) = 0.5 \Rightarrow \mu_s(x^*y) \ge 0.5$

 $\Rightarrow \mu_s(x^*y) = 1 \Rightarrow x^*y \in S$. Hence S is an ideal of X.

Theorem 3.16. Let S be an ideal of X, then for every $t \in (0, 0.5]$ there exists $(\in, \in \lor q)$ -fuzzy ideal μ of X such that $\mu_t = S$.

Proof. Let u be a fuzzy set in X defined by

$$\mu(x) = \begin{cases} 1 & \text{if } x \in S, \\ s & \text{Otherwise} \end{cases}$$

Where $s < t \in (0, 0.5]$. Therefore $\mu_t = \{x \in X \mid \mu(x) \ge t\} = S$ and hence μ_t is an ideal. Now if μ is not an $(\in, \in \lor q)$ -fuzzy ideal of X then there exist a, $b \in X$ such that at least one of μ (a) < m (μ (a * b), μ (b),

0.5) and μ (a * b) < m (μ (a), μ (b), 0.5) hold.

Suppose μ (a) < m (μ (a * b), μ (b), 0.5) holds. Then choose a real number $t \in (0, 1)$ such that

$$\mu$$
 (a) < t < m (μ (a * b), μ (b), 0.5) (3.13)

i.e.
$$\mu (a * b) > t, \mu (b) > t$$

 $\Rightarrow a*b \in \mu_t, b \in \mu_t$

 \Rightarrow a $\in \mu_t = S$ [since μ_t is ideal]

Therefore $\mu(a) = 1 > t$, which contradicts (3.13)

Hence we must have $\mu(x) \ge m (\mu(x * y), \mu(y), 0.5)$

Again if μ (a * b) < m (μ (a), μ (b), 0.5) holds then choose a real number t \in (0, 1)

and $\mu(a*b) < t < m(\mu(a), \mu(b), 0.5)$ (3.14)

i.e. $\mu(a) > t, \mu(b) > t$

 $\Rightarrow a \in \mu_t \ , b \in \mu_t \Rightarrow a*b \in \mu_t = S \ [\ since \ \mu_t \ is \ ideal]$

Therefore μ (a*b) =1 > t, which contradicts (3.14)

Hence we must have $\mu(x^*y) \ge m (\mu(x), \mu(y), 0.5)$

Thus, μ is an $(\in, \in \lor q)$ -fuzzy ideal X.

Definition 3.17 Let μ be a fuzzy set in d-algebra X and $t \in (0,1]$, then let

$$\mu_t = \{ x \in X \mid x_t \in \mu \} = \{ x \in X \mid \mu(x) \ge t \}$$

$$<\mu>_t = \{x \in X \mid x_t \neq \mu \} = \{x \in X \mid \mu(x) + t > 1\}$$

$$[\mu]_{t} = \{ x \in X \mid x_{t} \in \vee q \mu \} = \{ x \in X \mid \mu(x) \ge t \text{ or } \mu(x) + t > 1 \}$$

Where μ_t is called t level set of μ , $<\mu>_t$ is called q level set of μ and $[\mu]_t$ is called $\in \vee$ q level set of μ Clearly, $[\mu]_t = <\mu>_t \cup \mu_t$

Theorem 3.18. Let μ be a fuzzy set in d-algebra X, then μ is an $(\in, \in \lor q)$ -fuzzy ideal X iff $[\mu]_t$ is an ideal of X for all $t \in (0,1]$. We call $[\mu]_t$ as $\in \lor q$ level ideal of μ .

Proof. Assume that μ is an $(\in, \in \lor q)$ -fuzzy ideal X, to prove $[\mu]_t$ is an ideal of X.

Let $x, y \in [\mu]_t$ for $t \in (0,1]$

Then $x_t \in \forall q \mu$ and $y_t \in \forall q \mu$

i.e. $\mu(x) \ge t$ or $\mu(x) + t > 1$ and $\mu(y) \ge t$ or $\mu(y) + t > 1$

Since, μ is an $(\in, \in \lor q)$ -fuzzy ideal X

$$\mu(x * y) \ge m (\mu(x), \mu(y), 0.5) \quad \forall x, y \in X$$

```
Now we have the following cases.
Case I : \mu(x) \ge t, \mu(y) \ge t, let t > 0.5
Then \mu(x * y) \ge m (\mu(x), \mu(y), 0.5) \ge m (t, t, 0.5) = 0.5
         \mu(x * y) \ge 0.5 \Rightarrow \mu(x * y) + t > 0.5 + 0.5 = 1 \Rightarrow (x * y)_t q \mu
Again if t \le 0.5, then \mu(x * y) \ge m(\mu(x), \mu(y), 0.5) \ge m(t, t, 0.5) = t
        \mu(x * y) \ge t \Rightarrow (x * y)_t \in \mu
Hence (x * y)_t \in \forall q \mu
\Rightarrow x * y \in [\mu]_t
Case II : \mu(x) \ge t, \mu(y) + t > 1, let t > 0.5
Then \mu(x * y) \ge m (\mu(x), \mu(y), 0.5) > m (t, 1-t, 0.5) = 1-t
        \mu(x * y) > 1-t \Rightarrow \mu(x * y) + t > 1 \Rightarrow (x * y)_t q \mu
Again if t \le 0.5, then \mu(x * y) \ge m(\mu(x), \mu(y), 0.5) \ge m(t, 1-t, 0.5) = t
         \mu(x * y) \ge t \Rightarrow (x * y)_t \in \mu
Hence (x * y)_t \in \forall q \mu i.e. x * y \in [\mu]_t
Case III : \mu(x) + t > 1, \mu(y) \ge t
           This is similar to case II
Case IV : \mu(x) + t > 1, \mu(y) + t > 1, let t > 0.5
Then \mu(x * y) \ge m (\mu(x), \mu(y), 0.5) > m (1-t, 1-t, 0.5) = 1-t
        \mu(x * y) > 1 \text{-}t \Rightarrow \mu(x * y) + t > 1 \Rightarrow (x * y)_t \neq \mu
Again if t \le 0.5, then \mu(x * y) \ge m(\mu(x), \mu(y), 0.5) \ge m(1-t, 1-t, 0.5) = 0.5 \ge t
        \mu(x * y) \ge t \Rightarrow (x * y)_t \in \mu
Hence (x * y)_t \in \vee q \mu \Rightarrow x * y \in [\mu]_t
Hence from above four cases x, y \in [\mu]_t \Rightarrow x * y \in [\mu]_t
Again let x^*y, y \in [\mu]_t for t \in (0,1],
Then (x * y)_t \in \vee q \mu and y_t \in \vee q \mu
i.e \mu(x * y) \ge t or \mu(x * y) + t > 1 and \mu(y) \ge t or \mu(y) + t > 1
Since \mu is an (\in, \in \vee q)-fuzzy ideal X
   \mu(x) \ge m (\mu(x), \mu(y), 0.5) \quad \forall x, y \in X
Case I : \mu(x * y) \ge t, \mu(y) \ge t, let t > 0.5
Then \mu(x) \ge m \ (\mu(x * y), \ \mu(y), \ 0.5) \ge m \ (t, t, 0.5) = 0.5
        \mu(x) \ge 0.5 \Rightarrow \mu(x) + t > 0.5 + 0.5 = 1 \Rightarrow x_t q \mu
Again if t \le 0.5, then \mu(x) \ge m (\mu(x * y), \mu(y), 0.5) \ge m (t, t, 0.5) = t
        \mu(x) \ge t \Rightarrow x_t \in \mu
Hence x_t \in \vee q \ \mu \Rightarrow x \in [\mu]_t
Case II : \mu(x * y) \ge t, \mu(y) + t > 1, let t > 0.5
Then \mu(x) \ge m \ (\mu(x * y), \ \mu(y), \ 0.5) > m \ (t, \ 1-t, \ 0.5) = 1-t
        \mu(x) > 1-t \Rightarrow \mu(x) + t > 1 \Rightarrow x_t \neq \mu
Again if t \le 0.5, then \mu(x) \ge m (\mu(x * y), \mu(y), 0.5) \ge m (t, 1-t, 0.5) = t
        \mu(x) \ge t \Rightarrow x_t \in \mu
Hence x_t \in \vee q \mu \Rightarrow x \in [\mu]_t
Case III : \mu(x) + t > 1, \mu(y) \ge t
           This is similar to case II
Case IV: \mu(x * y) + t > 1, \mu(y) + t > 1, let t > 0.5
Then \mu(x) \ge m (\mu(x * y), \mu(y), 0.5) > m (1-t, 1-t, 0.5) = 1-t
         \mu(x) > 1-t \Rightarrow \mu(x) + t > 1 \Rightarrow x_t \neq \mu
Again if t \le 0.5, then \mu(x) \ge m (\mu(x * y), \mu(y), 0.5) \ge m (1-t, 1-t, 0.5) = 0.5 \ge t
         \mu(x) \ge t \Rightarrow x_t \in \mu
```

```
Hence x_t \in \vee q \mu \Rightarrow x \in [\mu]_t
```

Hence from above four cases $x * y, y \in [\mu]_t \Rightarrow x \in [\mu]_t$

Hence [u] is an ideal of X.

Conversely

Let μ be a fuzzy set in X and $t \in (0, 1]$ be such that $[\mu]_t$ is an ideal of X, to prove μ is an $(\in, \in \lor q)$ -fuzzy

ideal X. If μ is not an $(\in, \in \lor q)$ -fuzzy ideal X, then there exist a, b \in X such that at least one of

 μ (a) < m (μ (a * b), μ (b), 0.5) and μ (a * b) < m (μ (a), μ (b), 0.5) must hold.

Suppose μ (a) < m (μ (a * b), μ (b), 0.5) is true, then choose $t \in (0,\,1]$ such that

$$\mu$$
 (a) < t < m (μ (a * b), μ (b), 0.5)

Then μ (a * b) \geq t, μ (b) \geq t \Rightarrow a *b, b \in μ _t \subset $[\mu]_t$ which is an ideal

Therefore $a \in [\mu]_t \Rightarrow \mu(a) \ge t$ or $\mu(a) + t > 1$ which contradict (3.15)

Again if μ (a* b) < m (μ (a), μ (b), 0.5) is true, then choose t \in (0, 1] such that

$$\mu$$
 (a*b) < t < m (μ (a), μ (b), 0.5)

(3.16)

(3.15)

Then μ (a) \geq t, μ (b) \geq t \Rightarrow a, b \in μ _t \subset $[\mu]_t$ which is an ideal

therefore $a*b \in [\mu]_t \Rightarrow \mu(a*b) \ge t$ or $\mu(a*b) + t > 1$ which contradict (3.16)

hence we must have

 $\mu(x) \ge m (\mu(x * y), \mu(y), 0.5)$

$$\mu(x * y) \ge m (\mu(x), \mu(y), 0.5) \quad \forall x, y \in X$$

Hence μ is an $(\in, \in \lor q)$ -fuzzy ideal X

Theorem 3.19. Every $(\in \lor q, \in \lor q)$ -fuzzy ideal is an $(\in, \in \lor q)$ -fuzzy ideal.

Proof. It follows from definition.

Theorem 3.20. Let μ_1 and μ_2 be two $(\in, \in \lor q)$ -fuzzy ideals of a d-algebra X. Then $\mu_1 \cap \mu_2$ is also a

 $(\in, \in \vee q)$ -fuzzy ideal of X.

Proof. Let $x, y \in X$. Now

We have $(\mu_1 \cap \mu_2)(x) = \min{\{\mu_1(x), \mu_2(x)\}} = m{\{\mu_1(x), \mu_2(x)\}}$

Again ($\mu_1 \cap \mu_2$)(x) = m{ μ_1 (x), μ_2 (x)}

$$\geq m \; \{ m \; \{ \mu_1(x \; * \; y), \; \mu_1(y), \; 0.5 \}, \; m \; \{ \mu_2(x \; * \; y), \; \mu_2(y), \; 0.5 \} \} \; [\mu_1 \, \text{is} \left(\in, \in \vee q \right) - \text{fuzzy ideal}]$$

= m {m {
$$\mu_1(x * y), \mu_2(x * y)$$
}, m { $\mu_1(y), \mu_2(y)$ }, 0.5}

$$= m \{ (\mu_1 \cap \mu_2) (x * y), (\mu_1 \cap \mu_2) (y), 0.5 \}$$
(3.17)

And $(\mu_1 \cap \mu_2)(x^*y) = m\{\mu_1(x^*y), \mu_2(x^*y)\}\$

$$\geq$$
 m {m { $\mu_1(x), \mu_1(y), 0.5$ }, m { $\mu_2(x), \mu_2(y), 0.5$ }} [μ_2 is ($\in, \in \vee q$)-fuzzy ideal]

$$= m \; \{ m \; \{ \mu_1(x), \, \mu_2(x) \}, \, m \; \{ \mu_1(y), \, \mu_2(y) \}, \, 0.5 \}$$

$$= m \{ (\mu_1 \cap \mu_2)(x), (\mu_1 \cap \mu_2)(y), 0.5 \}$$
(3.18)

(3.17) and (3.18) $\Rightarrow \mu_1 \cap \mu_2$ is $(\in, \in \lor q)$ -fuzzy ideal of X.

The above theorem can be generalised as

Theorem 3.21. Let $\{\mu_i \mid i=1, 2, 3, \ldots\}$ be a family of $(\in, \in \vee q)$ -fuzzy ideals of a d-algebra X, then

 $\bigcap \ _{i=1}^n \ \mu_i \ \text{is also a} \ \left(\in, \in \vee q\right) \text{-fuzzy ideal of } X, \ \text{where} \ \bigcap \mu_i = \min\{\mu_i(x) : i=1,2,\dots\}.$

IV. CARTESIAN PRODUCT OF d-ALGEBRAS AND THEIR IDEALS

Theorem 4.1. Let X,Y be two d-algebras, then their Cartesian product $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$ is also a d-algebra under the binary operation * defined in $X \times Y$ by (x, y)*(p, q)=(x*p, y*q) for all (x, y), $(p, q) \in X \times Y$.

```
Proof. Clearly 0 \in X, 0 \in Y therefore (0,0) \in X \times Y

Let (x, y), (p, q) \in X \times Y

Now

(i) (x, y)^*(x, y) = (x^*x, y^*y) = (0, 0) \in X \times Y

(ii) (0, 0)^*(x, y) = (0^*x, 0^*y) = (0, 0) \in X \times Y

(iii) (x, y)^*(p, q) = (0, 0) and (p, q)^*(x, y) = (0, 0)

\Rightarrow (x^*p, y^*q) = (0, 0) and (p^*x, q^*y) = (0, 0)

\Rightarrow x^*p = 0 y*q=0 and p^*x = 0 q*y=0

\Rightarrow x^*p = 0 and p^*x = 0, y*q=0 and q^*y = 0

\Rightarrow x = p, y = q

(x, y) = (p, q)

Which shows that (X \times Y, (0, 0), ^*) is a d-algebra.
```

Definition 4.2. Let μ_1 and μ_2 be two $(\in, \in \vee q)$ -fuzzy ideals of a d-algebra X. Then their Cartesian product $\mu_1 \times \mu_2$ is defined by $(\mu_1 \times \mu_2)$ $(x, y) = \min \{\mu_1(x), \mu_2(y)\}$ where $(\mu_1 \times \mu_2)$: $X \times X \to [0 \ 1] \ \forall x, y \in X$. Theorem 4.3. Let μ_1 and μ_2 be two $(\in, \in \vee q)$ -fuzzy ideals of d-algebra X. Then $\mu_1 \times \mu_2$ is also a $(\in, \in \vee q)$ -fuzzy ideal of $X \times X$.

Proof. Similar to theorem 3.14.

V. HOMOMORPHISM OF d-ALGEBRAS AND FUZZY IDEALS

```
Definition 5.1. Let X and X' be two d-algebras, then a mapping f: X \to X' is said to be homomorphism
if f(x * y) = f(x) * f(y) \forall x, y \in X.
Theorem 5.2. Let X and X' be two d-algebras and f: X \to X' be homomorphism. If \mu be a (\in, \in \vee q)-
fuzzy ideal of X', then f^{-1}(\mu) is (\in, \in \vee q)-fuzzy ideal of X.
Proof. f^{-1}(\mu) is defined as f^{-1}(\mu)(x) = \mu(f(x)) \forall x \in X. Let \mu be a \{\in, \in \lor q\}-fuzzy ideal of X'
Let x, y \in X such that (x * y)_t, y_s \in f^{-1}(\mu) then f^{-1}(\mu)(x * y) \ge t and f^{-1}(\mu)(y) \ge s
\mu(f(x * y)) \ge t \text{ and } \mu(f(y)) \ge s
\Rightarrow (f(x * y))_t \in \mu \text{ and } f(y)_s \in \mu
       (f(x) * f(y))_t \in \mu and f(y)_s \in \mu [Since f is a homomorphism]
\Rightarrow
       ((f(x))_{m(t,s)} \in \forall q \mu \text{ [Since } \mu \text{ is a } (\in, \in \forall q) \text{- fuzzy ideal of } X']
       ((f(x))_{m(t,s)} \in \mu \text{ or } \mu(f(x)) + m(t,s) > 1
\Rightarrow
        \mu(f(x)) \ge m(t, s) \text{ or } \mu(f(x)) + m(t, s) > 1
       f^{-1}(\mu)(x) \ge m(t, s) \text{ or } f^{-1}(\mu)(x) + m(t, s) > 1
\Rightarrow
       x_{m(t,s)} \in f^{-1}(\mu) \text{ or } x_{m(t,s)} q f^{-1}(\mu)
\Rightarrow
       x_{m(t,s)} \in \forall q f^{-1}(\mu)
                                                                                                                                                     (5.1)
Again, let x, y \in X such that x_t, y_s \in f^{-1}(\mu) then f^{-1}(\mu)(x) \ge t, f^{-1}(\mu)(y) \ge s
       \mu(f(x)) \ge t and \mu(f(y)) \ge s
\Rightarrow f(x)<sub>t</sub> \in \mu and f(y)<sub>s</sub> \in \mu
\Rightarrow [f (x) * f (y)]<sub>m(t,s)</sub> \in \mu or [f (x) * f (y)]<sub>m(t,s)</sub> q \mu [Since \mu be a (\in, \in \vee q)- fuzzy ideal of X']
i.e. \mu[f(x) * f(y)] \ge m(t, s) or \mu[f(x) * f(y)] + m(t, s) > 1
       \mu[f(x * y)] \ge m(t, s) \text{ or } \mu[f(x * y)] + m(t, s) > 1
\Rightarrow f<sup>-1</sup>(\mu)(x * y) \geq m(t, s) or f<sup>-1</sup>(\mu)(x * y) + m(t, s) > 1
\Rightarrow (x * y)_{m(t,s)} \in f^{-1}(\mu) \text{ or } (x * y)_{m(t,s)} \neq f^{-1}(\mu)
\Rightarrow (x * y)_{m(t,s)} \in Vq f^{-1}(\mu)
                                                                                                                                                    (5.2)
```

(5.1) and (5.2) \Rightarrow f⁻¹ (μ) is a (\in , \in $\vee q$)-fuzzy ideal of X. Theorem 5.3. Let X and X' be two d- algebras and $f: X \to X'$ be an onto homomorphism. If μ be a fuzzy subset of X' such that $f^{-1}(\mu)$ is a $(\in, \in \lor q)$ -fuzzy ideal of X then μ is also $(\in, \in \lor q)$ -fuzzy ideal Proof. Let x', $y' \in X'$ such that $(x'*y')_t$, $y_s \in \mu$ where $t, s \in [0, 1]$ then $\mu(x'*y') \ge t$ and $\mu(y') \ge s$. Since f is on to so there exists x, y \in X such that f(x) = x', f(y) = y' also f is homomorphism so f(x * y) = f(x) * f(y) = x' * y'So, μ (f (x * y)) \geq t and μ ((f (y)) \geq s \Rightarrow $f^{-1}(\mu)(x * y) \ge t$ and $f^{-1}(\mu)(y) \ge s$ $f^{-1}(\mu)(x) \ge m(t, s)$ or $f^{-1}(\mu)(x) + m(t, s) > 1$ [Since $f^{-1}(\mu)$ is a $(\in, \in \lor q)$ -fuzzy ideal of X] $\mu(f(x)) \ge m(t, s) \text{ or } \mu(f(x)) + m(t, s) > 1$ $\mu(x') \ge m(t, s) \text{ or } \mu(x') + m(t, s) > 1$ \Rightarrow $x'_{m(t,s)} \in \mu \text{ or } x'_{m(t,s)} q \mu$ $\Rightarrow x_{m(t,s)} \in Vq \mu$ (5.3)Again, let x', $y' \in X$ such that x'_t , $y'_t \in \mu$ $\mu(x') \ge t$ and $\mu(y') \ge s$ \Rightarrow $\mu(f(x)) \ge t$ and $\mu(f(x)) \ge s$ $\Rightarrow f^{-1}(\mu)(x) \ge t \text{ and } f^{-1}(\mu)(y) \ge s$ \Rightarrow x_t \in f^{-1}(\mu) and y_s \in f^{-1}(\mu)

⇒ $x_t ∈ f^{-1}(\mu)$ and $y_s ∈ f^{-1}(\mu)$ ⇒ $(x * y)_{m(t, s)} ∈ Vq f^{-1}(\mu)$ [Since $f^{-1}(\mu)$ is a (∈, ∈ ∨q) -fuzzy ideal of X] ⇒ $(x * y)_{m(t, s)} ∈ f^{-1}(\mu)$ or $(x * y)_{m(t, s)} q f^{-1}(\mu)$ ⇒ $f^{-1}(\mu)(x * y) ≥ m(t, s)$ or $f^{-1}(\mu)(x * y) + m(t, s) > 1$

⇒ $\mu(f(x * y)) \ge m(t, s) \text{ or } \mu(f(x * y)) + m(t, s) > 1$ ⇒ $\mu(f(x * y)) \ge m(t, s) \text{ or } \mu(f(x) * f(y)) + m(t, s) > 1$

 $\Rightarrow \quad \mu(x' * y') \ge m(t, s) \text{ or } \mu(x' * y') + m(t, s) > 1$ $\Rightarrow \quad (x' * y')_{m(t,s)} \in \mu \text{ or } ((x' * y')_{m(t,s)} \in q\mu$

 $\Rightarrow (x' * y)_{m(t,s)} = \mu \text{ of } ((x * y)_{m(t,s)} = q\mu$ $\Rightarrow (x' * y)_{m(t,s)} \in \forall q\mu$ (5.4)

(5.3) and (5.4) $\Rightarrow \mu$ is a $(\in, \in \lor q)$ -fuzzy ideal of X'

VI. CONCLUSIONS

In this paper, we have introduced the concept of $(\in, \in \lor q)$ -fuzzy ideals of d- algebra and investigated some of their useful properties. In my opinion, these definitions and results can be extended to other algebraic systems also. In the notions of (α, β) -fuzzy ideals we can define twelve different types of ideals by three choices of α and four choices of β . In the present paper, we have mainly discussed $(\in, \in \lor q)$ -type fuzzy ideal. In future, the following studies may be carried out : (1) $(\in, \in \lor q)$ -intuitionistic fuzzy ideals of d-algebra (2) $(\in, \in \lor q)$ -doubt fuzzy ideals of d-algebra.

REFERENCES

- [1] O.G. Xi: Fuzzy BCK algebras, Math Japonica, 36(1991),935-942.
- [2] Y. Imai and K. Iseki : On Axiom System of Propositional Calculi 15, Proc. Japan Academy, 42(1966), 19-22.
- [3] J. Neggers and H.S. Kim: on d-algebras, Math. Slovaca, 49(1996), 19-26.
- [4] M. Akram, K. H. Dhar: On fuzzy d-algebras, Punjab University Journal of Mathematics (ISSN 1016-2526)Vol.37(2005) pp.61-76
- [5] S. K. Bhakat and P. Das: $(\in , \in \lor q)$ -fuzzy subgroup, Fuzzy sets and systems, 80(1996), 359-368.
- [6] D. K. Basnet, L. B. Singh: (\in , \in $\vee q$) fuzzy ideal of BG -algebra, International Journal of Algebra, Vol. 5, 2011, no. 15, 703 708