Generalized Hyers-Ulam Stability of a Sextic Functional Equation in Paranormed Spaces

K. Ravi¹ And S. Sabarinathan² ¹Department of Mathematics, Sacred Heart College, Tirupattur-635 601, TamilNadu, India ²Research scholar, Department of Mathematics, Sacred Heart College, Tirupattur-635 601, TamilNadu, India.

Abstract. In this paper, we obtain the general solution and prove the generalized Hyers-Ulam stability of a new sextic functional equation in paranormed spaces. We also present a counter-example for singular case.

1. INTRODUCTION

In 1940, S.M.Ulam [15] while he was giving a series of lectures in the University of Wisconsin; he raised a question concerning the stability of homomorphism.

"Let G_1 be a group and let G_2 be a metric group with the metric d(.,.). Given $\varepsilon > 0$ does there exist a $\delta > 0$ such that if a mapping $h : G_1 \to G_2$ satisfies the inequality $d(h(xy), h(x)h(y)) < \delta$ for all $x, y \in G_1$. Then a homomorphism $H : G_1 \to G_2$ exists with $d(h(x), H(x)) < \varepsilon$ for all $x \in G_1$?"

²⁰⁰⁰ Mathematics Subject Classi cation. : 39B82, 39B72.

Key words and phrases. : Paranormed Spaces, Sextic functional equation, Hyers-Ulam Stability.

The first partial solution to Ulam's question was provided by D.H. Hyers [3]. Indeed, he proved the following celebrated theorem.

Theorem 1.1. Assume that X and Y are Banach spaces. If a function $f : X \to Y$ satisfies the inequality

$$\left\|f(x+y) - f(x) - f(y)\right\| \le \varepsilon$$

for some $\varepsilon \ge 0$ and for all $x \in X$, then the limit

$$a(x) = \lim_{n \to \infty} 2^{-n} f(2^n x)$$

exist for each x in X and a : $X \rightarrow Y$ is the unique additive function such that

$$\|f(x) - a(x)\| \le \varepsilon$$

for any $x \in X$. Moreover, if f(tx) is continuous in t for each led $x \in E$, then a is linear.

From the above case, we say that the additive functional equation f(x + y) = f(x) + f(y) has the Hyers-Ulam stability on (X, Y). D.H. Hyers explicitly constructed the additive function $a : X \to Y$ directly from the given function f. This method is called a direct method and it is a powerful tool for studying stability of functional equations.

Th.M.Rassias [14] proved the following substantial generalization of the result of Hyers:

Theorem 1.2. Let *X* and *Y* be Banach spaces, let $\theta \in [0; \infty)$, and let $P \in [0; 1)$. If a functional equation $f: X \to Y$ satisfies

$$\| f(x+y) - f(x) - f(y) \| \le \theta(\|x\|^p + \|y\|^p)$$

for all $x, y \in X$, then there is a unique additive mapping $A: X \rightarrow Y$

$$||f(x) - A(x)|| \le \frac{2\theta}{2 - 2^p} ||f(x)||^p$$

for all $x \in X$. If in addition, f(tx) is continuous in t for each fixed $x \in X$, then A is linear.

Due to this fact, the Cauchy functional equation f(x + y) = f(x) + f(y) is said to have the Hyers-Ulam-Rassias stability property on (X, Y).

Recently, Ch. Park and D.Y Shin [8] proved the Hyers-Ulam stability of the Cauchy additive functional equation

$$f(x + y) = f(x) + f(y);$$
 (1.1)

the quadratic functional equation

$$f(x + y) + f(x - y) = 2f(x) + 2f(y), \qquad (1.2)$$

the cubic functional equation

$$f(2x + y) + f(2x - y) = 2f(x + y) + 2f(x - y) + 12f(x) \quad (1.3)$$

and the quartic functional equation

$$f(2x + y) + f(2x - y) = 4f(x + y) + 4f(x - y) + 24f(x) - 6f(y) \quad (1.4)$$

in paranormed spaces.

C. Park [9] proved the Hyers-Ulam stability of an additive-quadratic-cubic-quartic functional equation

$$f(x + 2y) + f(x - 2y) = 4f(x + y) + 4f(x - y) - 6f(x) + f(2y) + f(-2y) - 4f(y) - 4f(-y)$$
(1.5)

in paranormed spaces using the fixed point method and direct method.

K. Ravi, J.M. Rassias and B.V. Senthil Kumar [11] investigated the generalized Hyers-Ulam stability of the reciprocal difference functional equation

$$f\left(\frac{x+y}{2}\right) - f(x+y) = \frac{f(x)f(y)}{f(x) + f(y)}$$
(1.6)

and the reciprocal adjoint functional equation

$$f\left(\frac{x+y}{2}\right) + f(x+y) = \frac{3f(x)f(y)}{f(x) + f(y)}$$
(1.7)

in paranormed spaces using fixed point method and direct method.

In this paper, we obtain the general solution and prove the generalized Hyers-Ulam stability of a sextic functional equation

$$f(nx + y) + f(nx - y) + f(x + ny) + f(x - ny)$$

= $(n^4 + n^2) [f(x + y) + f(x - y)] + 2(n^6 - n^4 - n^2 + 1) [f(x) + f(y)]$ (1.8)

in paranormed spaces. For a given mapping f, we define

$$D_{s}f(x, y) = f(nx + y) + f(nx - y) + f(x + ny)f(x - ny)$$
$$-(n^{4} + n^{2})[f(x + y) + f(x - y) + 2(n^{6} - n^{2} - n^{2} + 1)[f(x) + f(y)].$$

Throughout this paper, let (X, P) be a Fréchet space and that $(Y, \|.\|)$ be a Banach space.

2.Generalized Hyers-ulam stability of equation (1.8)

Theorem 2.1. Let $\varphi: Y \times Y \to [0, \infty)$ be a function satisfying

$$\sum_{i=0}^{\infty} \frac{1}{n^{6i}} \varphi\left(n^{i} x, n^{i} y\right) < \infty$$
(2.1)

for all $x, y \in Y$. If an even function $f: Y \to X$ with the condition f(0) = 0 satisfies the functional inequality

$$P\left(D_{s}f(x, y)\right) \le \varphi\left(x, y\right) \tag{2.2}$$

for all $x, y \in Y$, then there exists a unique sextic mapping $S : Y \to X$ which satisfies (1.8) and the inequality

$$P(f(x) - S(x)) \le \frac{1}{n^6} \sum_{i=0}^{\infty} \frac{1}{n^{6i}} \varphi(n^i x, 0)$$
(2.3)

for all $x \in Y$.

Proof. Letting y = 0 in (2.2) and dividing by n^6 , we get

$$P\left(\frac{1}{n^{6}}f\left(nx\right)-f\left(x\right)\right) \leq \frac{1}{n^{6}}\varphi(x,0)$$
(2.4)

for all $x \in Y$. Now, replacing x by nx in (2.4), dividing by n⁶ and adding the resulting inequality with (2.4), we obtain

$$P\left(\frac{1}{n^{12}}f(n^{2}x)-f(x)\right) \le \frac{1}{n^{6}}\sum_{i=0}^{1}\frac{1}{n^{6i}}\phi(n^{i}x,0)$$

for all $x \in Y$: Hence by mathematical induction, we arrive

$$P\left(\frac{1}{n^{6m}}f\left(n^{m}x\right) - f\left(x\right)\right) \leq \frac{1}{n^{6}} \sum_{i=0}^{n-1} \frac{1}{n^{6i}} \phi(n^{i}x,0)$$
(2.5)

for all $x \in Y$. For any non-negative integers *l*, *m* with l > m, we obtain by using the triangle inequality

$$P\left(\frac{1}{n^{6l}}f\left(n^{l}x\right) - \frac{1}{n^{6m}}f\left(n^{m}x\right)\right) \leq P\left(\frac{1}{n^{6l}}f\left(n^{l}x\right) - f\left(x\right)\right) + P\left(f\left(x\right) - \frac{1}{n^{6m}}f\left(n^{m}x\right)\right)$$
$$\leq \frac{1}{n^{6}}\sum_{i=0}^{l-1}\frac{1}{n^{6i}}\phi(n^{i}x,0) + \frac{1}{n^{6}}\sum_{i=0}^{m-1}\frac{1}{n^{6i}}\phi(n^{i}x,0)$$
$$\leq \frac{1}{n^{6}}\sum_{i=m}^{n-1}\frac{1}{n^{6i}}\phi(n^{i}x,0)$$
(2.6)

for all $x \in Y$. Taking the limit as $m \to \infty$ in (2.6) and considering (2.1), it follows that the sequence $\{\frac{1}{n^{6m}}f(n^mx)\}$ is a Cauchy sequence for each $x \in Y$. Since X is complete, we can define $S: Y \to X$ by

$$S(x) = \lim_{m \to \infty} \frac{1}{n^{6m}} f(n^m x).$$
(2.7)

To show that S satisfies (1.8), replacing (x; y) by $(n^m x, n^m y)$ in (2.2) and dividing by n^{6m} , we obtain

$$P\left(\frac{1}{n^{6m}}D_sf\left(n^mx,n^my\right)\right) \le \frac{1}{n^{6m}}\varphi\left(n^mx,n^my\right)$$
(2.8)

for all $x; y \in Y$, for all positive integer n. Using (2.1) and (2.5) in (2.8), we see that S satisfies (1.8), for all $x, y \in Y$. Taking limit $m \to \infty$ in (2.5), we arrive (2.3). Now, we have to show that S is the unique sextic mapping. Let $s: Y \to X$ be

another sextic mapping which satisfies (1.8) and the inequality (2.3). Then we have

$$P(s(x)-S(x)) = P\left(\frac{1}{n^{6m}}s(n^{m}x) - \frac{1}{n^{6m}}S(n^{m}x)\right)$$

$$\leq P\left(\frac{1}{n^{6m}}s(n^{m}x) - \frac{1}{n^{6m}}f(n^{m}x)\right) + P\left(\frac{1}{n^{6m}}f(n^{m}x) - \frac{1}{n^{6m}}S(n^{m}x)\right)$$

$$\leq 2\sum_{i=0}^{\infty}\frac{1}{n^{6(n+i)}}\phi(n^{m+i}x,0)$$

$$\leq 2\sum_{i=0}^{\infty}\frac{1}{n^{6i}}\phi(n^{i}x,0)$$
(2.9)

for all $x \in Y$. Allowing $n \to \infty$ in (2.9), we see that *S* is unique. This completes the proof. **Corollary 2.2.** Let $f: Y \to X$ be a mapping satisfying

$$P(D_s f(x, y)) \le \in \tag{2.10}$$

for all $x, y \in Y$. Then there exists a unique sextic mapping $S: Y \to X$ satisfying (1.8) and

$$P(f(x)-S(x)) \le \frac{\epsilon}{n^6 - 1}$$
(2.11)

for every $x \in Y$.

Proof. This Corollary can be proved by choosing $\varphi(x; y) = \epsilon$, for all $x; y \in Y$ in

Theorem 2.1.

Corollary 2.3. Let $f: Y \to X$ be a mapping and let there exist real numbers p < 6 and $k \ge 0$ such that

$$P(D_s f(x, y)) \le k (||x||^p + ||y||^p)$$
(2.12)

for all $x, y \in Y$. Then there exists a unique sextic mapping $S: Y \to X$ satisfying (1.8) and

$$P(f(x)-S(x)) \le \frac{k}{n^{6}(1-n^{p-6})} ||x||^{p}$$
(2.13)

for every $x \in Y$.

Proof. It is easy to prove this Corollary by taking $\varphi(x, y) = k(||x||^p + ||y||^p)$, for all $x, y \in Y$ in Theorem 2.1.

3. COUNTER-EXAMPLES

We present below a counter-example to show that the functional equation (1.8) is not stable for p = 6 in Corollary 2.3.

Example 3.1. Let $\phi : \mathbb{R} \to \mathbb{R}$ be a mapping defined by

$$\phi(x) = \begin{cases} \mu x^6 & \text{for } x \in (-1,1) \\ \mu & \text{otherwise} \end{cases}$$

Where $\mu > 0$ is a constant, and defined a mapping $f : R \rightarrow R$ by

$$f(x) = \sum_{k=0}^{\infty} \frac{\phi(n^k x)}{n^{6k}}, \text{ for all } x \in \mathbb{R}.$$

Then the mapping f satisfies the inequality

$$\left| D_{s}f(x,y) \right| \leq \frac{2\mu n^{6} \left(2n^{6} - n^{4} - n^{2} + 4 \right)}{n^{6} - 1} \left(\left| x \right|^{6} + \left| y \right|^{6} \right)$$
(3.1)

for all $x \in R$. Therefore there do not exist a sextic mapping $S : R \to R$ and a constant $\lambda > 0$ such that

$$f(x) - \mathbf{S}(x) \leq \lambda |x|^{6}$$
(3.2)

for all $x \in R$.

Proof.
$$|f(x)| = \left| \sum_{k=0}^{\infty} \frac{\phi(n^k x)}{n^{6k}} \right| \le \sum_{k=0}^{\infty} \frac{\left| \phi(n^k x) \right|}{\left| n^{6k} \right|} \sum_{k=0}^{\infty} \frac{\mu}{n^{6k}} = \mu (1 - \frac{1}{n^6})^{-1} = \frac{\mu n^6}{n^6 - 1}.$$

Hence *f* is bounded by $\frac{\mu n^6}{n^6-1}$. If $(|\mathbf{x}|^6 + |\mathbf{y}|^6) \ge 1$, then the left hand side of (3.1) is less than 2μ ($2\mathbf{n}^6 - \mathbf{n}^4 - \mathbf{n}^2 + 4$). Now, suppose that $0 < (/x/^6 + /y/^6) < 1$. Then there exists a positive integer *k* such that

$$\frac{1}{n^{6k}} \le (|\mathbf{x}|^6 + |\mathbf{y}|^6) < \frac{1}{n^{6(k-1)}}.$$
(3.3)

Hence $(|x|^6 + |y|^6 < \frac{1}{n^{6(k-1)}}$ implies

$$n^{6(k-1)}x^6 < 1, n^{6(k-1)}y^6 < 1$$

or
$$n^{k-1} x < 1$$
, $n^{k-1} y < 1$

and consequently

$$n^{k-1}x, n^{k-1}y, n^{k-1}(x + y), n^{k-1}(x - y), n^{k-1}(nx + y), n^{k-1}(nx - y),$$

 $n^{k-1}(x + ny), n^{k-1}(x - ny) \in (-1, 1).$

Therefore, for each value of m = 0, 1, 2, ..., k - 1, we obtain

$$n^{m}x, n^{m}y, n^{m}(x + y), n^{m}(x - y), n^{m}(nx + y), n^{m}(nx - y),$$

 $n^{m}(x + ny), n^{m}(x - ny) \in (-1, 1).$

and

$$\phi(n^{m}(nx + y)) + \phi(n^{m}(nx - y)) + \phi(n^{m}(x + ny)) + \phi(n^{m}(x - ny))$$

- n⁴ + n² [\phi(n^{m}(x + y)) + (n^{m}(x y))]
- 2 (n⁶ - n⁴ - n² + 1) [\phi(n^{m}x) + \phi(n^{m}y)] = 0

for m = 0, 1, 2, ..., m - 1. Using (3.3) and the definition of f, we obtain

$$\begin{aligned} \frac{|D_{s}f(x,y)|}{(|x|^{6} + |y|^{6})} \\ &\leq \sum_{m=0}^{\infty} \frac{1}{n^{6m}(|x|^{6} + |y|^{6})} \Big\{ \phi(n^{m}(nx+y)) + \phi(n^{m}(nx-y)) \\ &\quad + \phi(n^{m}(nx+y)) + \phi(n^{m}(nx-y)) \\ &\quad + \phi(n^{m}(nx+y)) + \phi(n^{m}(x-y)) \\ &\quad - (n^{4} + n^{2}) \left[\phi(n^{m}(x-y)) + \phi(n^{m}(x-y)) \right] \\ &\quad - 2(n^{6} - n^{4} - n^{2} + 1) \left[\phi\left(n^{m}x\right) + \left(n^{m}y\right) \right] \Big\} \\ &\leq \sum_{m=k}^{\infty} \frac{2\mu \left(2n^{6} - n^{4} - n^{2} + 4\right)}{n^{6m} \left(|x|^{6} + |y|^{6}\right)} \\ &\leq \frac{2\mu \left(2n^{6} - n^{4} - n^{2} + 4\right)}{\left(|x|^{6} + |y|^{6}\right)} \sum_{m=k}^{\infty} \frac{1}{n^{6m}} \\ &\leq \frac{2\mu \left(2n^{6} - n^{4} - n^{2} + 4\right)}{\left(|x|^{6} + |y|^{6}\right)} \frac{1}{n^{6k}} \left(1 - \frac{1}{n^{6}}\right)^{-1} \end{aligned}$$

International Journal of Mathematics Trends and Technology – Volume 9 Number 1 – May 2014

9

Solution and Stability of quadratic functional equation in Paranormed spaces

$$\leq \frac{2\mu \left(2n^{6}-n^{4}-n^{2}+4\right)}{\left(\left|x\right|^{6}+\left|y\right|^{6}\right)}\frac{1}{n^{6k}}\left(\frac{n^{6}}{n^{6}-1}\right)$$
$$\leq \frac{2\mu n^{6} \left(2n^{6}-n^{4}-n^{2}+4\right)}{\left(n^{6-1}\right)}$$

for all $x, y \in \mathbb{R}$. That is, the inequality (3.1) holds true. We claim that the sextic functional equation (1.8) is not stable for p = 6 in Corollary 2.3. Suppose on the contrary that there exist a sextic mapping $S : \mathbb{R} \to \mathbb{R}$ and a constant $\lambda > 0$ satisfying (3.2). Since f is bounded and continuous for all $x \in \mathbb{R}$, S is bounded on any open interval containing the origin and continuous at the origin. Thus we obtain that

$$\left|f\left(x\right)\right| \le \left(\lambda + 1\right)\left|x\right|^{6}.$$
(3.4)

But we can choose a positive integer r with $r\mu > \lambda + 1$. If $x \in \left(0, \frac{1}{n^{6(m-1)}}\right)$, then $n^{6m} x \in (0, 1)$

for all $m = 0; 1, 2, \dots, r-1$ and therefore

$$\left| f(x) \right| = \sum_{m=0}^{\infty} \frac{\phi(n^m x)}{n^{6m}} \ge \sum_{m=0}^{r-1} \frac{\mu n^{6m} x^6}{n^{6m}} = \tau \mu x^6 > (\lambda + 1) x^6$$

which contradicts (3.4). Therefore, the sextic functional equation (1.8) is not stable for p = 6 in Corollary 2.3.

REFERENCE

- [1] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
- [2] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
- [3] **D.H. Hyers**, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
- [4] S. Karakus, Statistical convergence on probabilistic normed spaces, Math. Commun. 12 (2007), 11-23.
- [5] E. Kolk, The statistical convergence in Banach spaces, Tartu Ul. Toime. 928, (1991), 41-52.
- [6] **M. Mursaleen**, λ*-statistical convergence*, Math. Slovaca 50 (2000), 111-115.
- [7] M. Mursaleen and S.A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J.
 Computat. Anal. Math. 233 (2009), 142-149.
- [8] Ch. Park and D.Y. Shin, Functional equations in paranormed spaces, Adv. differences equations, 2012, 2012:123 (23 pages).
- [9] Ch. Park, Stability of an AQCQ-functional equation in paranormed space, Adv. differences equations, 2012, 2012:148 (19 pages).
- [10] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-130.
- [11] K. Ravi, J.M. Rassias and B.V. Senthil Kumar, Stability of reciprocal difference and adjoint functional equations in paranormed spaces: Direct and fixed point methods, Functional Analysis, Approximation and Computation, 5(1), (2013), 57-72.
- [12] T. Salat, On the statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150.
- [13] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-34.
- [14] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- [15] S.M. Ulam, A collection of mathematical problems, Interscience Publishers, Inc. New York, 1960.
- [16] A. Wilansky, Modern Methods in TOpological vector space, McGraw-Hill International Book Co., New York (1978).