Generalized Hyers-Ulam Stability of a Sextic Functional Equation in Paranormed Spaces

K. Ravi ${ }^{1}$ And S. Sabarinathan ${ }^{2}$
${ }^{1}$ Department of Mathematics, Sacred Heart College, Tirupattur-635 601, TamilNadu, India
${ }^{2}$ Research scholar,
Department of Mathematics, Sacred Heart College, Tirupattur-635 601, TamilNadu, India.

Abstract

In this paper, we obtain the general solution and prove the generalized Hyers-Ulam stability of a new sextic functional equation in paranormed spaces. We also present a counterexample for singular case.

1. Introduction

In 1940, S.M.Ulam [15] while he was giving a series of lectures in the University of Wisconsin; he raised a question concerning the stability of homomorphism.
"Let G_{l} be a group and let G_{2} be a metric group with the metric $d(.,$.$) . Given \varepsilon>0$ does there exist a $\delta>0$ such that if a mapping $\mathrm{h}: G_{l} \rightarrow G_{2}$ satisfies the inequality $d(h(x y), h(x) h(y))<\delta$ for all $x, y \in G_{l}$. Then a homomorphism $H: G_{l} \rightarrow G_{2}$ exists with $d(h(x), H(x))<\varepsilon$ for all $x \in \mathrm{G}_{1}$?

2000 Mathematics Subject Classi cation. : 39B82, 39B72.
Key words and phrases. : Paranormed Spaces, Sextic functional equation, Hyers-Ulam Stability.

The first partial solution to Ulam's question was provided by D.H. Hyers [3]. Indeed, he proved the following celebrated theorem.

Theorem 1.1. Assume that X and Y are Banach spaces. If a function $f: X \rightarrow Y$ satisfies the inequality
$\|f(x+y)-f(x)-f(y)\| \leq \varepsilon$
for some $\varepsilon \geq 0$ and for all $x \in X$, then the limit
$a(x)=\lim _{n \rightarrow \infty} 2^{-n} f\left(2^{n} x\right)$
exist for each x in X and a : $X \rightarrow Y$ is the unique additive function such that
$\|f(x)-a(x)\| \leq \varepsilon$
for any $x \in X$. Moreover, if $f(t x)$ is continuous in t for each led $x \in E$, then a is linear.
From the above case, we say that the additive functional equation $f(x+y)=$ $f(x)+f(y)$ has the Hyers-Ulam stability on (X, Y). D.H. Hyers explicity constructed the additive function $a: X \rightarrow Y$ directly from the given function f. This method is called a direct method and it is a powerful tool for studying stability of functional equations.

Th.M.Rassias [14] proved the following substantial generalization of the result of Hyers:

Theorem 1.2. Let X and Y be Banach spaces, let $\theta \in[0 ; \infty)$, and let $\mathrm{P} \in[0 ; 1)$. If a functional equation $f: X \rightarrow Y$ satisfies
$\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)$
for all $x, y \in X$, then there is a unique additive mapping $A: X \rightarrow Y$
$\|f(x)-A(x)\| \leq \frac{2 \theta}{2-2^{p}}\|f(x)\|^{p}$
for all $x \in X$. If in addition, $f(t x)$ is continuous in t for each fixed $x \in X$, then A is linear.

Due to this fact, the Cauchy functional equation $f(x+y)=f(x)+f(y)$ is said to have the Hyers-Ulam-Rassias stability property on (X, Y).

Recently, Ch. Park and D.Y Shin [8] proved the Hyers-Ulam stability of the Cauchy additive functional equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \tag{1.1}
\end{equation*}
$$

the quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.2}
\end{equation*}
$$

the cubic functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) \tag{1.3}
\end{equation*}
$$

and the quartic functional equation
$f(2 x+y)+f(2 x-y)=4 f(x+y)+4 f(x-y)+24 f(x)-6 f(y)$
in paranormed spaces.
C. Park [9] proved the Hyers-Ulam stability of an additive-quadratic-cubic-quartic functional equation

$$
\begin{gather*}
f(x+2 y)+f(x-2 y)=4 f(x+y)+4 f(x-y)-6 f(x) \\
+f(2 y)+f(-2 y)-4 f(y)-4 f(-y) \tag{1.5}
\end{gather*}
$$

in paranormed spaces using the fixed point method and direct method.
K. Ravi, J.M. Rassias and B.V. Senthil Kumar [11] investigated the generalized HyersUlam stability of the reciprocal difference functional equation

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right)-f(x+y)=\frac{f(x) f(y)}{f(x)+f(y)} \tag{1.6}
\end{equation*}
$$

and the reciprocal adjoint functional equation

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right)+f(x+y)=\frac{3 f(x) f(y)}{f(x)+f(y)} \tag{1.7}
\end{equation*}
$$

in paranormed spaces using fixed point method and direct method.
In this paper, we obtain the general solution and prove the generalized Hyers-Ulam stability of a sextic functional equation

$$
\begin{align*}
f(n x+y) & +f(n x-y)+f(x+n y)+f(x-n y) \\
& =\left(n^{4}+n^{2}\right)[f(x+y)+f(x-y)]+2\left(n^{6}-n^{4}-n^{2}+1\right)[f(x)+f(y)] \tag{1.8}
\end{align*}
$$

in paranormed spaces. For a given mapping f, we define

$$
\begin{aligned}
D_{s} f(x, y) & =f(n x+y)+f(n x-y)+f(x+n y) f(x-n y) \\
& -\left(n^{4}+n^{2}\right)\left[f(x+y)+f(x-y)+2\left(n^{6}-n^{2}-n^{2}+1\right)[f(x)+f(y)] .\right.
\end{aligned}
$$

Throughout this paper, let (X, P) be a Fréchet space and that $(Y,\|\cdot\|)$ be a Banach space.

2.GENERALIZED HYERS-ULAM STABILITY OF EQUATION (1.8)

Theorem 2.1. Let $\varphi: Y \times Y \rightarrow[0, \infty)$ be a function satisfying

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{1}{n^{6 i}} \varphi\left(n^{i} x, n^{i} y\right)<\infty \tag{2.1}
\end{equation*}
$$

for all $x, y \in Y$. If an even function $f: Y \rightarrow X$ with the condition $f(0)=0$ satisfies the functional inequality

$$
\begin{equation*}
P\left(D_{s} f(x, y)\right) \leq \varphi(x, y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in Y$, then there exists a unique sextic mapping $S: Y \rightarrow X$ which satisfies (1.8) and the inequality

$$
\begin{equation*}
\mathrm{P}(f(x)-S(x)) \leq \frac{1}{n^{6}} \sum_{i=0}^{\infty} \frac{1}{n^{6 i}} \varphi\left(\mathrm{n}^{i} \mathrm{x}, 0\right) \tag{2.3}
\end{equation*}
$$

for all $x \in Y$.
Proof. Letting $y=0$ in (2.2) and dividing by n^{6}, we get

$$
\begin{equation*}
\mathrm{P}\left(\frac{1}{n^{6}} f(n x)-f(x)\right) \leq \frac{1}{n^{6}} \varphi(\mathrm{x}, 0) \tag{2.4}
\end{equation*}
$$

for all $x \in Y$. Now, replacing x by $n x$ in (2.4), dividing by n^{6} and adding the resulting inequality with (2.4), we obtain

$$
\mathrm{P}\left(\frac{1}{n^{12}} f\left(n^{2} x\right)-f(x)\right) \leq \frac{1}{n^{6}} \sum_{i=0}^{1} \frac{1}{n^{6 i}} \varphi\left(\mathrm{n}^{i} \mathrm{x}, 0\right)
$$

for all $x \in Y$: Hence by mathematical induction, we arrive

$$
\begin{equation*}
\mathrm{P}\left(\frac{1}{n^{6 m}} f\left(n^{m} x\right)-f(x)\right) \leq \frac{1}{n^{6}} \sum_{i=0}^{n-1} \frac{1}{n^{6 i}} \varphi\left(\mathrm{n}^{i} \mathrm{x}, 0\right) \tag{2.5}
\end{equation*}
$$

for all $x \in Y$. For any non-negative integers l, m with $l>m$, we obtain by using the triangle inequality

$$
\begin{align*}
\mathrm{P}\left(\frac{1}{n^{6 l}} f\left(n^{l} x\right)-\frac{1}{n^{6 m}} f\left(n^{m} x\right)\right) & \leq \mathrm{P}\left(\frac{1}{n^{6 l}} f\left(n^{l} x\right)-f(x)\right)+\mathrm{P}\left(f(x)-\frac{1}{n^{6 m}} f\left(n^{m} x\right)\right) \\
& \leq \frac{1}{n^{6}} \sum_{i=0}^{l-1} \frac{1}{n^{6 i}} \varphi\left(\mathrm{n}^{i} \mathrm{x}, 0\right)+\frac{1}{n^{6}} \sum_{i=0}^{m-1} \frac{1}{n^{6 i}} \varphi\left(\mathrm{n}^{i} \mathrm{x}, 0\right) \\
& \leq \frac{1}{n^{6}} \sum_{i=m}^{n-1} \frac{1}{n^{6 i}} \varphi\left(\mathrm{n}^{i} \mathrm{x}, 0\right) \tag{2.6}
\end{align*}
$$

for all $x \in Y$. Taking the limit as $m \rightarrow \infty$ in (2.6) and considering (2.1), it follows that the sequence $\left\{\frac{1}{n^{6 m}} f\left(n^{m} x\right)\right\}$ is a Cauchy sequence for each $x \in Y$. Since X is complete, we can define $S: Y \rightarrow X$ by

$$
\begin{equation*}
S(x)=\lim _{m \rightarrow \infty} \frac{1}{n^{6 m}} f\left(n^{m} x\right) \tag{2.7}
\end{equation*}
$$

To show that S satisfies (1.8), replacing ($x ; y$) by ($n^{m} x, n^{m} y$) in (2.2) and dividing by $\mathrm{n}^{6 \mathrm{~m}}$, we obtain

$$
\begin{equation*}
P\left(\frac{1}{n^{6 m}} D_{s} f\left(n^{m} x, n^{m} y\right)\right) \leq \frac{1}{n^{6 m}} \varphi\left(n^{m} x, n^{m} y\right) \tag{2.8}
\end{equation*}
$$

for all $x ; y \in Y$, for all positive integer n. Using (2.1) and (2.5) in (2.8), we see that S satisfies (1.8), for all $x, y \in Y$. Taking limit $\mathrm{m} \rightarrow \infty$ in (2.5), we arrive (2.3). Now, we have to show that S is the unique sextic mapping. Let $s: Y \rightarrow X$ be
another sextic mapping which satisfies (1.8) and the inequality (2.3). Then we have

$$
\begin{align*}
P(s(x)-S(x)) & =P\left(\frac{1}{n^{6 m}} s\left(n^{m} x\right)-\frac{1}{n^{6 m}} S\left(n^{m} x\right)\right) \\
& \leq P\left(\frac{1}{n^{6 m}} s\left(n^{m} x\right)-\frac{1}{n^{6 m}} f\left(n^{m} x\right)\right)+P\left(\frac{1}{n^{6 m}} f\left(n^{m} x\right)-\frac{1}{n^{6 m}} S\left(n^{m} x\right)\right) \\
& \leq 2 \sum_{i=0}^{\infty} \frac{1}{n^{6(n+i)}} \varphi\left(\mathrm{n}^{m+i} \mathrm{x}, 0\right) \\
& \leq 2 \sum_{i=0}^{\infty} \frac{1}{n^{6 i}} \varphi\left(\mathrm{n}^{i} \mathrm{x}, 0\right) \tag{2.9}
\end{align*}
$$

for all $x \in Y$. Allowing $n \rightarrow \infty$ in (2.9), we see that S is unique. This completes the proof.
Corollary 2.2. Let $f: Y \rightarrow X$ be a mapping satisfying

$$
\begin{equation*}
\mathrm{P}\left(\mathrm{D}_{\mathrm{s}} \mathrm{f}(\mathrm{x}, \mathrm{y})\right) \leq \in \tag{2.10}
\end{equation*}
$$

for all $x, y \in Y$. Then there exists a unique sextic mapping $S: Y \rightarrow X$ satisfying (1.8) and

$$
\begin{equation*}
P(f(x)-S(x)) \leq \frac{\epsilon}{n^{6}-1} \tag{2.11}
\end{equation*}
$$

for every $x \in Y$.
Proof. This Corollary can be proved by choosing $\varphi(x ; y)=\epsilon$, for all $x ; y \in Y$ in
Theorem 2.1.
Corollary 2.3. Let $f: Y \rightarrow X$ be a mapping and let there exist real numbers $\mathrm{p}<6$ and $k \geq 0$ such that

$$
\begin{equation*}
P\left(D_{s} f(x, y)\right) \leq k\left(\|x\|^{p}+\|y\|^{p}\right) \tag{2.12}
\end{equation*}
$$

for all $x, y \in Y$. Then there exists a unique sextic mapping $S: Y \rightarrow X$ satisfying (1.8) and

$$
\begin{equation*}
P(f(x)-S(x)) \leq \frac{k}{n^{6}\left(1-n^{p-6}\right)}\|x\|^{p} \tag{2.13}
\end{equation*}
$$

for every $x \in Y$.

Proof. It is easy to prove this Corollary by taking $\varphi(x, y)=k\left(\|x\|^{p}+\|y\|^{p}\right)$, for all $x, y \in Y$ in Theorem 2.1.

3. COUNTER-EXAMPLES

We present below a counter-example to show that the functional equation (1.8) is not stable for $p=6$ in Corollary 2.3.
Example 3.1. Let $\phi: \mathrm{R} \rightarrow \mathrm{R}$ be a mapping defined by

$$
\phi(x)=\left\{\begin{array}{lr}
\mu x^{6} & \text { for } x \in(-1,1) \\
\mu & \text { otherwise }
\end{array}\right.
$$

Where $\mu>0$ is a constant, and defined a mapping $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ by

$$
f(x)=\sum_{k=0}^{\infty} \frac{\phi\left(n^{k} x\right)}{n^{6 k}}, \text { for all } x \in R .
$$

Then the mapping f satisfies the inequality

$$
\begin{equation*}
\left|D_{S} f(x, y)\right| \leq \frac{2 \mu n^{6}\left(2 n^{6}-n^{4}-n^{2}+4\right)}{n^{6}-1}\left(|x|^{6}+|y|^{6}\right) \tag{3.1}
\end{equation*}
$$

for all $x \in R$. Therefore there do not exist a sextic mapping $S: R \rightarrow R$ and a constant $\lambda>0$ such that

$$
\begin{equation*}
|f(x)-S(x)| \leq \lambda|x|^{6} \tag{3.2}
\end{equation*}
$$

for all $x \in R$.
Proof. $|f(x)|=\left|\sum_{k=0}^{\infty} \frac{\phi\left(n^{k} x\right)}{n^{6 k}}\right| \leq \sum_{k=0}^{\infty} \frac{\left|\phi\left(n^{k} x\right)\right|}{\left|n^{6 k}\right|} \sum_{k=0}^{\infty} \frac{\mu}{n^{6 k}}=\mu\left(1-\frac{1}{n^{6}}\right)^{-1}=\frac{\mu n^{6}}{n^{6}-1}$.
Hence f is bounded by $\frac{\mu n^{6}}{n^{6}-1}$. If $\left(|x|^{6}+|y|^{6}\right) \geq 1$, then the left hand side of (3.1) is less than 2μ $\left(2 \mathrm{n}^{6}-\mathrm{n}^{4}-\mathrm{n}^{2}+4\right)$. Now, suppose that $0<\left(|x|^{6}+|y|^{6}\right)<1$. Then there exists a positive integer k such that

$$
\begin{equation*}
\frac{1}{n^{6 k}} \leq\left(|\mathrm{x}|^{6}+|y|^{6}\right)<\frac{1}{n^{6(k-1)}} \tag{3.3}
\end{equation*}
$$

Hence $\left(|x|^{6}+|y|^{6}<\frac{1}{n^{6(k-1)}}\right.$ implies

$$
n^{6(k-1)} x^{6}<1, n^{6(k-1)} y^{6}<1
$$

$$
\text { or } \quad n^{k-1} x<1, n^{k-1} y<1
$$

and consequently

$$
\begin{gathered}
n^{k-1} x, n^{k-1} y, n^{k-1}(x+y), n^{k-1}(x-y), n^{k-1}(n x+y), n^{k-1}(n x-y), \\
n^{k-1}(x+n y), n^{k-1}(x-n y) \in(-1,1) .
\end{gathered}
$$

Therefore, for each value of $\mathrm{m}=0,1,2, \ldots, \mathrm{k}-1$, we obtain

$$
\begin{gathered}
n^{m} x, n^{m} y, n^{m}(x+y), n^{m}(x-y), n^{m}(n x+y), n^{m}(n x-y), \\
n^{m}(x+n y), n^{m}(x-n y) \in(-1,1) .
\end{gathered}
$$

and

$$
\begin{aligned}
\phi\left(n^{m}(n x+y)\right)+ & \phi\left(n^{m}(n x-y)\right)+\phi\left(n^{m}(x+n y)\right)+\phi\left(n^{m}(x-n y)\right) \\
-n^{4}+n^{2}[& \left.\phi\left(n^{m}(x+y)\right)+\left(n^{m}(x y)\right)\right] \\
& -2\left(n^{6}-n^{4}-n^{2}+1\right)\left[\phi\left(n^{m} x\right)+\phi\left(n^{m} y\right)\right]=0
\end{aligned}
$$

for $\mathrm{m}=0,1,2, \ldots, \mathrm{~m}-1$. Using (3.3) and the definition of f, we obtain

$$
\left.\left.\begin{array}{l}
\frac{\left|D_{s} f(x, y)\right|}{\left(|x|^{6}+|y|^{6}\right)} \\
\leq \sum_{m=0}^{\infty} \frac{1}{n^{6 m}\left(|x|^{6}+|y|^{6}\right)}\left\{\phi\left(n^{m}(n x+y)\right)+\phi\left(n^{m}(n x-y)\right)\right. \\
\quad+\quad \phi\left(n^{m}(n x+y)\right)+\phi\left(n^{m}(n x-y)\right) \\
\quad-\left(n^{4}+n^{2}\right)\left[\phi\left(n^{m}(x-y)\right)+\phi\left(n^{m}(x-y)\right)\right] \\
\quad-2\left(n^{6}-n^{4}-n^{2}+1\right)\left[\phi\left(n^{m}(x-y)\right)\right]
\end{array}\right] \begin{array}{r}
\left.\quad-2\left(n^{6}-n^{4}-\mathrm{n}^{2}+1\right)\left[\phi\left(n^{m} x\right)+\left(n^{m} y\right)\right]\right\}
\end{array}\right\} \begin{aligned}
& \leq \sum_{m=k}^{\infty} \frac{2 \mu\left(2 n^{6}-n^{4}-n^{2}+4\right)}{n^{6 m}\left(|x|^{6}+|y|^{6}\right)} \\
& \leq \frac{2 \mu\left(2 n^{6}-n^{4}-n^{2}+4\right)}{\left(|x|^{6}+|y|^{6}\right)} \sum_{m=k}^{\infty} \frac{1}{n^{6 m}} \\
& \leq \frac{2 \mu\left(2 n^{6}-n^{4}-n^{2}+4\right)}{\left(|x|^{6}+|y|^{6}\right)} \frac{1}{n^{6 k}}\left(1-\frac{1}{n^{6}}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{2 \mu\left(2 n^{6}-n^{4}-n^{2}+4\right)}{\left(|x|^{6}+|y|^{6}\right)} \frac{1}{n^{6 k}}\left(\frac{n^{6}}{n^{6}-1}\right) \\
& \leq \frac{2 \mu n^{6}\left(2 n^{6}-n^{4}-n^{2}+4\right)}{\left(n^{6-1}\right)}
\end{aligned}
$$

for all $x, y \in \mathrm{R}$. That is, the inequality (3.1) holds true. We claim that the sextic functional equation (1.8) is not stable for $p=6$ in Corollary 2.3. Suppose on the contrary that there exist a sextic mapping $S: R \rightarrow R$ and a constant $\lambda>0$ satisfying (3.2). Since f is bounded and continuous for all $x \in \mathrm{R}, S$ is bounded on any open interval containing the origin and continuous at the origin. Thus we obtain that

$$
\begin{equation*}
|f(x)| \leq(\lambda+1)|x|^{6} . \tag{3.4}
\end{equation*}
$$

But we can choose a positive integer r with $r \mu>\lambda+1$. If $x \in\left(0, \frac{1}{n^{6(m-1)}}\right)$, then $\mathrm{n}^{6 \mathrm{~m}} x \in(0,1)$ for all $m=0 ; 1,2, \ldots, r-1$ and therefore

$$
|f(x)|=\sum_{m=0}^{\infty} \frac{\phi\left(n^{m} x\right)}{n^{6 m}} \geq \sum_{m=0}^{r-1} \frac{\mu n^{6 m} x^{6}}{n^{6 m}}=\tau \mu x^{6}>(\lambda+1) x^{6}
$$

which contradicts (3.4). Therefore, the sextic functional equation (1.8) is not stable for $p=6$ in Corollary 2.3.

Reference

[1] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
[2] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
[3] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[4] S. Karakus, Statistical convergence on probabilistic normed spaces, Math. Commun. 12 (2007), 11-23.
[5] E. Kolk, The statistical convergence in Banach spaces, Tartu Ul. Toime. 928, (1991), 41-52.
[6] M. Mursaleen, λ-statistical convergence, Math. Slovaca 50 (2000), 111-115.
[7] M. Mursaleen and S.A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Computat. Anal. Math. 233 (2009), 142-149.
[8] Ch. Park and D.Y. Shin, Functional equations in paranormed spaces, Adv. differences equations, 2012, 2012:123 (23 pages).
[9] Ch. Park, Stability of an AQCQ-functional equation in paranormed space, Adv. differences equations, 2012, 2012:148 (19 pages).
[10] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-130.
[11] K. Ravi, J.M. Rassias and B.V. Senthil Kumar, Stability of reciprocal difference and adjoint functional equations in paranormed spaces: Direct and fixed point methods, Functional Analysis, Approximation and Computation, 5(1), (2013), 57-72.
[12] T. Salat, On the statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150.
[13] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-34.
[14] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[15] S.M. Ulam, A collection of mathematical problems, Interscience Publishers, Inc. New York, 1960.
[16] A. Wilansky, Modern Methods in TOpological vector space, McGraw-Hill International Book Co., New York (1978).

