A Class Of Diameter Six Trees with Graceful Labeling

Debdas Mishra ${ }^{1}$, Amaresh Chandra Panda ${ }^{2}$ and Rajani Ballav Dash ${ }^{3}$
${ }^{1},{ }^{2}$ Department of Mathematics
C. V. Raman College of Engineering
Bidya Nagar, Mahura, Janala
Bhubaneswar - 752054, Khurda, Orissa
${ }^{3}$ Department of Mathematics
Ravenshaw University, Cuttack, Odisha
e-mail: debdasmishra@gmail.com ${ }^{1}$ amareshchandrapanda@yahoo.co.in ${ }^{2}$

Abstract

Here we denote a diameter six tree by $\left(a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right)$, where a_{0} is the center of the tree; $a_{i}, \quad i=1,2, \ldots, m, \quad b_{j}, \quad j=1,2, \ldots, n$, and $c_{k}, k=1,2, \ldots, r$ are the vertices of the tree adjacent to a_{0}; each a_{i} is the center of a diameter four tree, each b_{j} is the center of a star, and each c_{k} is a pendant vertex. Here we give graceful labelings to some new classes of diameter six trees $\left(a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; \quad b_{1}, b_{2}, \ldots, \quad b_{n} ; \quad c_{1}, c_{2}, \ldots, c_{r}\right)$ in which we find diameter four trees consisting of four different combinations of odd, even, and pendant branches with the total number of branches odd. Here by a branch we mean a star, i.e. we call a star an odd branch if its center has an odd degree and an even branch if its center has an even degree.

Keywords: graceful labeling, diameter six tree, component moving transformation, transfers of the first and second types, BD8TF

1 Introduction

Definition 1.1. A diameter six tree is a tree which has a representation of the form
$\left(a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right)$, where a_{0} is the center of the tree; $a_{i}, i=$ $1,2, \ldots, m, b_{j}, j=1,2, \ldots, n$, and $c_{k}, k=$ $1,2, \ldots, r$ are the vertices of the tree adjacent to a_{0}; each a_{i} is the center of a diameter four tree, each b_{j} is the center of a star, and each c_{k} is a pendant vertex. We observe that in a diameter six tree with above representation $m \geq 2$, i.e. there should be at least two (vertices) a_{i} s adjacent to c which are the centers of diameter four trees. Here we use the notation D_{6} to denote a diameter six tree. In the literature $[1,3,5,7,6,8,9,10,17,23]$
we find that all trees up to diameter five are graceful. As far as diameter six trees are concerned only banana trees are graceful $[2,4,5,7,9,11$, $12,13,19,20,17,22,21,24]$. From literature [4] a banana tree is a tree obtained by connecting a vertex v to one leaf of each of any number of stars (v is not in any of the stars). Chen et.al. [4] conjectured that banana trees are graceful. Bhat-Nayak and Deshmukh [2], Murugan and Arumugam [13, 12] and Vilfred [22, 21] gave graceful labelings to different classes of banana trees. Sethuraman and Jesintha $[9,11,19,20]$) proved that all banana trees and extended banana trees (graphs obtained by joining a vertex to one leaf of each of any number of stars by a path of length of at least two) are graceful. Here we give graceful labelings to some new classes of diameter six trees $\left.a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right)$ in which the branches of some diameter four tree are all even, whereas the branches of the remaining diameter four trees are all odd. Here by a branch we mean a star, i.e. we call a star an odd branch if its center has an odd degree and an even branch if its center has an degree.

2 Preliminaries

Definition 2.1. [14, 15, 16] For an edge $e=$ $\{u, v\}$ of a tree T, we define $u(T)$ as that connected component of $T-e$ which contains the vertex u. Here we say $u(T)$ is a component incident on the vertex v. If a and b are vertices of a tree $T, u(T)$ is a component incident on a, and $b \notin u(T)$ then deleting the edge $\{a, u\}$ from T and making b and u adjacent is termed as the component $u(T)$ has been transferred or moved from a to b. In this paper by the label of the
component " $u(T)$ " we mean the label of the vertex u. Let T be a tree and a and b be two vertices of T. By $a \rightarrow b$ transfer we mean that some components from a have been moved to b. If we consider successive transfers $a_{1} \rightarrow a_{2}, a_{2} \rightarrow a_{3}, a_{3} \rightarrow a_{4}$, ... we simply write $a_{1} \rightarrow a_{2} \rightarrow a_{3} \rightarrow a_{4} \ldots$ transfer. In the transfer $a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{n-1} \rightarrow a_{n}$, each vertex $a_{i}, i=1,2, \ldots, n-1$ is called a vertex of transfer. Let T be a labelled tree with a labeling f. We consider the vertices of T whose labels form the sequence ($a, b, a-1, b+1, a-2, b+2$) (respectively, $(a, b, a+1, b-1, a+2, b-2))$. Let a be adjacent to some vertices having labels different from the above labels. The $a \longrightarrow b$ transfer is called a transfer of the first type if the labels of the transferred components constitute a set of consecutive integers. The $a \longrightarrow b$ transfer is called a transfer of the second type if the labels of the transferred components can be divided into two segments, where each segment is a set of consecutive integers. A sequence of eight transfers of the first type $a \rightarrow b \rightarrow a-1 \rightarrow b+1 \rightarrow$ $a \rightarrow b \rightarrow a-1 \rightarrow b+1 \rightarrow a-2$ (respectively, $a \rightarrow$ $b \rightarrow a+1 \rightarrow b-1 \rightarrow a \rightarrow b \rightarrow a+1 \rightarrow b-1 \rightarrow a+2$), is called a backward double 8 transfer of the first type or BD8TF a to $a-2$ (respectively, a to $a+2$).

Figure 1: The graceful trees in (b), (c), d), and (e) are obtained from the graceful tree in (a) by applying transfers of the first type $22 \rightarrow 1$, the transfer of second type $22 \rightarrow 2$, BD8TF 22 to 20 , and a sequence of transfers consisting of $22 \rightarrow 1 \rightarrow 21$ transfers of the first type,
followed by the BD8TF 21 to 19 , followed by $19 \rightarrow 4$ transfer of the first type, and finally $4 \rightarrow 18 \rightarrow 5$ transfers of the second type, respectively.

Theorem 2.2. [14, 15, 16] In a graceful labeling f of a graceful tree T, let a and b be the labels of two vertices. Let a be attached to a set A of vertices (or components) having labels $n, n+1, n+2, \ldots, n+p$ (different from the above vertex labels), which satisfy $(n+1+i)+(n+p-i)=a+b, i \geq 0$ (respectively, $(n+i)+(n+p-1-i)=a+b, i \geq 0)$. Then the following hold.
(a) By making a transfer $a \rightarrow b$ of first type we can keep an odd number of components at a from the set A and move the rest to b, and the resultant tree thus formed will be graceful.
(b) If A contains an even number of elements, then by making a sequence of transfers of the second type $a \rightarrow b \rightarrow a-1 \rightarrow b+1 \rightarrow a-2 \rightarrow b+2 \rightarrow \ldots$ (respectively, $a \rightarrow b \rightarrow a+1 \rightarrow b-1 \rightarrow a+2 \rightarrow$ $b-2 \rightarrow \ldots$), an even number of elements from A can be kept at each vertex of the transfer, and the resultant tree thus formed is graceful.
(c) By a BD8TF a to $b+1$ (respectively, $b-1$), we can keep an even number of elements from A at $a, b, a-1$, and $b+1$ (respectively, $a, b, a+1$, and $b-1$), and move the rest to $a-2$ (respectively, $a+2$). The resultant tree formed in each of the above cases is graceful.
(d) Consider the transfer $R: a \rightarrow b \rightarrow a-1 \rightarrow$ $b+1 \rightarrow \ldots \rightarrow z$ (respectively, $a \rightarrow b \rightarrow a+1 \rightarrow$ $b-1 \rightarrow \ldots \rightarrow z)$, with $z=a-p_{1}$ or $b+p_{2}$ (respectively, $a+r_{1}$ or $b-r_{2}$), such that R is partitioned as $R: T_{1} \rightarrow T_{2} \rightarrow T_{3} \rightarrow \ldots \rightarrow T_{n}$, where each $T_{i}, 1 \leq i \leq n$, is either a transfer of the first type or BD8TF. Construct a tree T^{*} from T by carrying out the transfer R by successively carrying out the transfers T_{1}, T_{2}, $T_{3}, \ldots T_{n}$. The tree T^{*} is graceful.
(e) Consider the transfer $R^{\prime}: a \rightarrow b \rightarrow a-1 \rightarrow$ $b+1 \rightarrow \ldots \rightarrow \ldots$ (respectively, $a \rightarrow b \rightarrow$ $a+1 \rightarrow b-1 \rightarrow \ldots \rightarrow \ldots$), such that R^{\prime} is partitioned as $R^{\prime}: T^{\prime}{ }_{1} \rightarrow T^{\prime}{ }_{2}$, where T_{1}^{\prime} is sequence of transfers consisting of the transfers of
the first type and BD 8 TF and T_{2}^{\prime} is a sequence of transfer of the second type. The tree $T^{* *}$ obtained from T by making the transfer R^{\prime} is graceful.

Lemma 2.3. [10] If g is a graceful labeling of a tree T with n edges then the labeling g_{n} defined as $g_{n}(x)=n-g(x)$, for all $x \in V(T)$, called the inverse transformation of g is also a graceful labeling of T.

3 Results

Theorem
 3.1. (a) $D_{6}=$

$\left\{a_{0} ; a_{1}, a_{2}, \quad \ldots, \quad a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right\}$, with degree of a_{i}, b_{j} are even $i=1,2, \ldots, m ; j=$ $1,2, \ldots, n$. If the branches incident on the center a_{i}, $i=1,2, \ldots, m_{1}, m_{1}<m$ are odd and branches incident on the center $a_{i}, i=m_{1}+1, m_{1}+2, \ldots, m$ are even branches. Then D_{6} has a graceful labeling. (b) $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n}\right\}$, with degree of a_{i}, b_{j} are even for $i=1,2, \ldots, m, j=$ $1,2, \ldots, n$. If the branches incident on the center a_{i}, $i=1,2, \ldots, m_{1}, m_{1}<m$ are odd and branches incident on the center $a_{i}, i=m_{1}+1, m_{1}+2, \ldots, m$ are even branches. Then D_{6} has a graceful labeling. (c) $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; c_{1}, c_{2}, \ldots, c_{r}\right\}$, with m odd, degree of a_{i}, are even for $i=1,2, \ldots, m$. If the branches incident on the center $a_{i}, i=$ $1,2, \ldots, m_{1}, m_{1}<m$ are odd and branches incident on the center $a_{i}, i=m_{1}+1, m_{1}+2, \ldots, m$ are even branches. Then D_{6} has a graceful labeling. (d) $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m}\right\}$, with either m is odd or $m_{o} \geq 2$, degree of a_{i} are even for $i=1,2, \ldots, m$. If the branches incident on the center $a_{i}, i=1,2, \ldots, m_{1}, m_{1}<m$ are odd and branches incident on the center $a_{i}, i=$ $m_{1}+1, m_{1}+2, \ldots, m$ are even branches. Then D_{6} has a graceful labeling.

Proof: (a) Case - I Let $m+n$ be odd. Let $\left|E\left(D_{6}\right)\right|=q$ and $\operatorname{deg}\left(a_{0}\right)=m+n=2 k+1$. Let us remove the pendant vertices adjacent to a_{0} and represent the new graceful tree by $D_{6}^{(1)}$. Consider the graceful tree G as represented in Figure 2.

Let $A=\{k+1, k+2, \ldots, q-k-r-1\}$. Observe that $(k+i)+(q-r-k-i)=q-r$. Consider the sequence of transfer $T_{1}: q-r \rightarrow 1 \rightarrow q-r-1 \rightarrow$ $2 \rightarrow q-r-2 \rightarrow \ldots \rightarrow k \rightarrow q-r-k \rightarrow k+1$ of the first type of the vertex levels in the set A. Observe that the transfer T_{1} and the set A satisfy the properties of Theorem 2.2. We execute the transfer T_{1} by keeping an odd number of elements of A at each vertex of the transfer. In the transfer T_{1}, the first m vertices are designated as the vertices $a_{1}, a_{2}, \ldots, a_{m}$, respectively, and the remaining n vertices are designated as the vertices $b_{1}, b_{2}, \ldots, b_{n}$. Observe that

$$
\begin{gathered}
a_{i}=\left\{\begin{array}{ll}
q-r-\frac{i-1}{2} & \text { if } i \text { is odd } \\
\frac{i}{2} & \text { if } i \text { is even }
\end{array} \quad \text { and } b_{j}=\right. \\
\left\{\begin{array}{ll}
q-r-\frac{m+j-1}{2} & \text { if } j \text { is odd } \\
\frac{m+j}{2} & \text { if } i \text { is even }
\end{array} \text { if } m\right. \text { is even } \\
\left\{\begin{array}{ll}
\frac{m+j}{2} & \text { if } j \text { is odd } \\
q-r-\frac{m+j-1}{2} & \text { if } j \text { is even }
\end{array} \quad \text { if } m\right. \text { is odd }
\end{gathered}
$$

Let A_{1} be the set of vertex labels of A which have come to the vertex $k+1$ after the transfer T_{1}. Since each transfer in T_{1} is a transfer of 1st type, the elements of A_{1} are the consecutive integers. Next consider the transfer $T_{2}: k+1 \rightarrow q-r-k-1 \rightarrow k+2 \rightarrow$ $q-r-k-2 \rightarrow k+3 \rightarrow q-r-k-3 \rightarrow \ldots, \rightarrow r$, where
$r=\left\{\begin{array}{l}k+k_{1}+1 ; \quad \text { if } m \text { is odd } \\ q-r-k-k_{1} ; \quad \text { if } m \text { is even }\end{array} \quad, \quad k_{1}=\right.$ $\sum_{i=1}^{m} \operatorname{deg}\left(a_{i}\right)$

Observe that the vertices of transfer T_{2} and the elements of A_{1} satisfy the hypothesis of Theorem 2.2. Excluding a_{0} let the sum of number of neighbours of $a_{1}, a_{2}, \ldots, a_{m_{1}}$ be s_{1} and the sum of number of neighbours of $a_{m_{1}+1}, a_{m_{1}+2}, \ldots, a_{m}$ be s_{2}. As per Theorem 2.2 the first s_{1} vertices of T_{2} lie on $a_{i}, 1 \leq i \leq m_{1}$ and they are the centers of odd branches and the remaining $s_{2}-1$ vertices of T_{2} lie on $a_{i}, m_{1}+1 \leq i \leq m$ and they are the centers of
even branches. So T_{2} consists of s_{1} transfers of the first type (for keeping desired odd number of vertices of A_{1} at each vertex of transfer) followed by $s_{2}-1$ transfers of the second type (for keeping desired even number of vertices of A_{1} at each vertex of transfer) so that we get back the tree $D_{6}^{(1)}$ and by Theorem 2.2 it is graceful. Attach the vertices $c_{1}, c_{2}, \ldots, c_{r}$ to a_{0} and assign them the labels $q-r+1, q-r+2$, $q-r+3, \ldots, q$ so as to get back D_{6} with a graceful labeling.

Case - II Let $m+n$ be even. Let us construct a tree G_{6} from D_{6} by removing the vertices $b_{n}, c_{1}, c_{2}, \ldots, c_{r}$. Obviously G_{6} is a diameter six tree with center a_{0} having odd degree. Let $\left|E\left(G_{6}\right)\right|=q_{1}$. Repeat the procedure in the proof for Case -I by replacing n with $n-1$ and $q-r$ with q_{1} and give a graceful labeling to G_{6}. Observe that the vertex a_{0} in the graceful tree G_{6} gets the label 0 . Attach $b_{n}, c_{1}, c_{2}, \ldots, c_{r}$ to a_{0} and assign the labels $q_{1}+1, q_{1}+2, \ldots, q_{1}+r, q_{1}+r+1$ to them. Obviously, the tree $G_{6} \cup\left\{b_{n}, c_{1}, c_{2}, \ldots, c_{r}\right\}$ is graceful with a graceful labeling, say g. Apply inverse transformation $g_{q_{1}+r+1}$ to $G_{6} \cup\left\{b_{n}, c_{1}, c_{2}, \ldots, c_{r}\right\}$ so that the label of the vertex b_{n} becomes 0 . By Lemma 2.3, $g_{q_{1}+r+1}$ is a graceful labeling of $G_{6} \cup\left\{b_{n}, c_{1}, c_{2}, \ldots, c_{r}\right\}$. Let there be p pendant vertices adjacent to b_{n} in D_{6}. Now attach these vertices to b_{n} and assign labels $q_{1}+r+2, q_{1}+r+$ $3, \ldots, q_{1}+r+p+1$ to them. Observe that we finally form the tree D_{6} and the labeling mentioned above is a graceful labeling of D_{6}.
(b) Proof follows if we set $r=0$ in the proof involving part (a).
(c) Proof follows if we set $n=0$ in the proof involving part (a).
(d) Case - I If m is odd then the proof follows immediately from the same involving part (b) by setting $n=0$.

Case - II Let m be even. Let us designate the vertices $a_{1}, a_{2}, \ldots, a_{m_{1}}$ such that $\operatorname{deg}\left(a_{1}\right) \leq$ $\operatorname{deg}\left(a_{2}\right) \geq \operatorname{deg}\left(a_{3}\right) \geq \ldots \geq \operatorname{deg}\left(a_{m_{1}}\right)$, i.e. the degree $a_{m_{1}}$ is minimum among all the neighbours of a_{0} which are the centers of diameter four trees containing only odd branches. Excluding a_{0} let there be $2 p_{i}+1$ neighbours of $a_{i}, i=1,2, \ldots, m_{1}$ in
D_{6}. Remove $a_{m_{1}}$ and all the components incident on it, i.e. construct the tree $D_{6} \backslash\left\{a_{m_{1}}\right\}$. Make any $2 p_{m_{1}}$ neighbours of $a_{m_{1}}$ adjacent to the vertex a_{2}. The resultant tree thus formed from D_{6} is obviously a diameter six tree and let it be denoted by G_{6}. Let $\left|E\left(G_{6}\right)\right|=q_{1}$. Repeat the procedure in the proof involving Case - I of part (a) by setting $n=0$ and $r=0$ and replacing m_{1} with $m_{1}-1$ and $q-r$ with q_{1} and give a graceful labeling to G_{6}. We observe that the vertex a_{2} gets label 1 , and the $2\left(p_{2}+p_{m_{1}}\right)+1$ neighbours of a_{2} get the labels $q_{1}-x, x+1+i, q_{1}-x-i, x=k+p_{1}+1$, $i=1,2, \ldots, p_{2}+p_{m_{1}}$. While labeling G_{6} we allot labels $x+i+2, q_{1}-x-i, i=1,2, \ldots, p_{m_{1}}$ to $2 p_{m_{1}}$ neighbours of $a_{m_{1}}$ that were shifted to a_{2} while constructing G_{6}. Next we attach the vertex $a_{m_{1}}$ to a_{0} and assign label $q_{1}+1$ to $a_{m_{1}}$. Now we move the vertices $x+i+2, q_{1}-x-i, i=1,2, \ldots, p_{m_{1}}$, to $a_{m_{1}}$. Since $(x+i+2)+\left(q_{1}-x-i\right)=q_{1}+2=1+\left(q_{1}+1\right)$, for $i=1,2, \ldots, p_{m_{1}}$, by Theorem 2.2 the resultant tree, say G_{1} thus formed is graceful with a graceful labeling, say g. Apply inverse transformation $g_{q_{1}+1}$ to G_{1} so that the label of the vertex $a_{m_{1}}$ becomes 0 . By Lemma 2.3, $g_{q_{1}+1}$ is a graceful labeling of G_{1}. Now attach one remaining vertex to $a_{m_{1}}$ and assign the label $q_{1}+2$ to it. Let this graceful labeling of the new tree, say G_{2} thus formed be g_{1}. Let there be p neighbours of $q_{1}+2$ in D_{6}. Apply inverse transformation $g_{q_{1}+2}$ to G_{2} so that the label of the vertex $q_{1}+2$ of G_{2} becomes 0 . By Lemma 2.3, $g_{q_{1}+2}$ is a graceful labeling of G_{2}. Now attach the p pendant vertices adjacent to the vertex labelled 0 and assign them the labels $q_{1}+3, q_{1}+4, \ldots, q_{1}+p+2$. Observe that we finally form the tree D_{6} and the labeling mentioned above is a graceful labeling of D_{6}.

Example 3.2. The diameter six tree in Figure 3 (a) is a graceful diameter six of the type in Theorem 3.1(b). Here $q=79, m=6$, and $n=3$.

Figure 3: A diameter six tree of the type in Theorem 3.1(b) with a graceful labeling.

Notation 3.3. Let $D_{6}=$ $\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right\}$ be diameter six tree. For next couple of results we will consistently use the following notations.
$n_{e}=$ Number of stars adjacent to a_{0} with center having odd degree.
$n_{o}=$ Number of stars adjacent to a_{0} with center having even degree, i.e. $n=n_{e}+n_{o}$.
$m_{o}^{o}=$ Number of diameter four trees adjacent to a_{0} containing only odd branches and centers having even degree.
$m_{o}^{e}=$ Number of diameter four trees adjacent to a_{0} containing only even branches and centers having even degree.
$m_{e}^{o}=$ Number of diameter four trees adjacent to a_{0} containing only odd branches and centers having odd degree.
$m_{e}^{e}=$ Number of diameter four trees adjacent to a_{0} containing only even branches and centers having odd degree, i.e. $m=m_{o}^{o}+m_{o}^{e}+m_{e}^{o}+m_{e}^{e}$.

Theorem 3.4. If $m_{e}^{o} \cong 0 \bmod 4, m_{e}^{e} \cong 0 \bmod 4$, and $n_{e} \cong 0 \bmod 4, m+n$ is odd then
(a) $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right\}$ has a graceful labeling.
(b) $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n}\right\}$ has a graceful labeling.

Proof: Let us first prove part (a). Let $\left|E\left(D_{6}\right)\right|=$ q and $\operatorname{deg}\left(a_{0}\right)=m+n=2 k+1$. Remove r pendant vertices adjacent to a_{0} and denote the new diameter six tree thus formed by $D_{6}^{(1)}$. Form the graceful tree as G (Figure 2), the set A, and the transfer T_{1} as in the proof involving Case - I of Theorem 3.1(a). Suppose that the vertices $a_{1}, a_{2}, \ldots, a_{m_{o}^{o}}$ are the centers of m_{o}^{o} diameter four trees adjacent to a_{0} with even degree and each is attached to an odd branches, $a_{m_{o}^{o}+1}, a_{m_{o}^{o}+2}, \ldots, a_{m_{o}}$ are the centers of m_{e}^{o} diameter four trees adjacent to a_{0} with even degree and each is attached to odd branches, $a_{m_{o}+1}, a_{m_{o}+2}, \ldots, a_{m_{o}+m_{e}^{e}}$ are the centers of m_{e}^{e} diameter four trees adjacent to a_{0} with odd degree and each is attached to even branches, and $a_{m_{o}+m_{e}^{e}+1}, a_{m_{o}+m_{e}^{e}+2}, \ldots, a_{m}$ are the centers of m_{o}^{e} diameter four trees adjacent to a_{0} with odd degree and each is adjacent to odd branches. Suppose that the centers $b_{1}, b_{2}, \ldots, b_{n_{e}}$ are the centers of stars adjacent to a_{0} with odd degree and
$b_{n_{e}+1}, b_{n_{e}+2}, \ldots, b_{n}$ are the centers of stars adjacent to a_{0} with even degree. Here T_{1} consists of $m_{o_{o}}^{o}$ successive transfers of the first type, followed by $\frac{m_{e}^{o}+m_{e}^{e}}{4}$ successive BD8TF, followed by $m_{o}^{e}+n_{o}$ successive transfers of the first type, and finally $\frac{n_{e}}{4}$ successive BD8TF. Carry out the transfer T_{1} by keeping desired number of elements of A at each vertex of the transfer. Then repeat the remaining procedure in the proof of Theorem 3.1 and get the results. The proof for part(b) follows by setting $r=0$ in the proof involving part (a).

Example 3.5. The diameter six tree in Figure 4 (a) is a diameter six of the type in Theorem 3.4. Here $q=127, m=10$, and $n=5$. We first form the graceful diameter six tree G_{6} as in Figure (b) by removing all the pendant vertices adjacent to a_{0}. Finally, the graceful tree D_{6} in Figure (c) which is obtained from the graceful tree in (b) by attaching two pendant vertices to a_{0} and assigning them the labels 126 and 127.

Figure 4: A diameter six tree of the type in Theorem 3.4(b) with a graceful labeling.

Theorem 3.6. If $m_{e}^{o} \cong 0 \bmod 4, m_{e}^{e} \cong 0 \bmod 4$, $n_{e} \cong 0 \bmod 4, m+n$ is even, and $n_{o} \geq 1$ then
(a) $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right\}$ has a graceful labeling.
(b) $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n}\right\}$ has a graceful labeling.

Theorem 3.7. If $m_{e}^{o} \cong 0 \bmod 4, m_{e}^{e} \cong 0 \bmod 4$, and $n_{e} \cong 1 \bmod 4$, and $m+n$ is even then
(a) $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right\}$ has a graceful labeling.
(b) $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n}\right\}$ has a graceful labeling.

Proof of Theorems 3.6 and 3.7: Let us designate the vertex b_{n} as the center of a star with even degree if D_{6} is a diameter six tree in Theorem 3.6 and as the center of a star with odd degree if D_{6} is a diameter six tree in Theorem 3.7. Construct a tree G_{6} from D_{6} by removing the vertices $c_{1}, c_{2}, \ldots, c_{r}$, and the star with center b_{n} as we have done in the proof of Case - II of Theorem 3.1(a). Then we proceed as in the proof involving Case - II of Theorem 3.1(a) so as to get back D_{6} with a graceful labeling.

Theorem 3.8. If $m_{e}^{o} \cong 1 \bmod 4, m_{e}^{e} \cong 0 \bmod 4$, and $n_{e} \cong 0 \bmod 4, m+n$ is even, $m_{o}^{o}+m_{e}^{o} \geq 3$, and the degree of center of at least one diameter four tree whose center has odd degree consists of only odd branches ≥ 4, then
(a) $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right\}$ has a graceful labeling.
(b) $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n}\right\}$ has a graceful labeling.

Proof: Let us first prove the part (a). Let us designate the vertices $a_{1}, a_{2}, \ldots, a_{m}$ in such a way that a_{2} is the center of a diameter four tree which contains only odd branches and $\operatorname{deg}\left(a_{2}\right) \geq 4$. Excluding a_{0} let there be $2 p_{i}+1$ neighbours of a_{i}, for $i=1,2, \ldots, m_{o}^{o}$ and there be $2 p_{i}$ neighbours of a_{i}, for $i=m_{o}^{o}+1, m_{o}^{o}+2, \ldots, m_{o}^{o}+m_{e}^{o}$ in D_{6}. Remove $c_{1}, c_{2}, \ldots, c_{r}$, and the diameter four tree with center $a_{m_{o}^{o}+m_{e}^{o}}$, i.e. construct the
tree $D_{6} \backslash\left\{c_{1}, c_{2}, \ldots, c_{r}, a_{m_{o}^{o}+m_{e}^{o}}\right\}$. Make all, say $2 p_{m_{o}^{o}+m_{e}^{o}}$ neighbours of $a_{m_{o}^{o}+m_{e}^{o}}$ adjacent to the vertex a_{2}. The resultant tree thus formed from D_{6} is obviously a diameter six tree and let it be denoted by G_{6}. Let $\left|E\left(G_{6}\right)\right|=q_{1}$. Repeat the procedure in the proof of Theorem 3.4 (a) by replacing m_{e}^{o} with $m_{e}^{o}-1$ and q with q_{1} and give a graceful labeling to G_{6}. Observe that the vertex a_{2} gets label 1, and the $2\left(p_{2}+p_{m_{o}^{o}+m_{e}^{o}}\right)+1\left(\right.$ or $\left.2\left(p_{2}+p_{m_{o}^{o}+m_{e}^{o}}\right)\right)$ neighbours of a_{2} get the labels $q_{1}-x, x+1+i, q_{1}-x-i$, $x=k+p_{1}+1, i=1,2, \ldots, p_{2}+p_{m_{o}^{o}+m_{e}^{o}}$ (or $q_{1}-x, x+1+i, q_{1}-x-i, x=k+p_{1}+1, i=$ $1,2, \ldots, p_{2}+p_{m_{o}^{o}+m_{e}^{o}}$, and one more vertex). While labeling G_{6} we allot labels $x+i+2, q_{1}-x-i, i=$ $1,2, \ldots, p_{m_{o}^{o}+m_{e}^{o}}$ to $2 p_{m_{o}^{o}+m_{e}^{o}}$ neighbours of $a_{p_{m_{o}^{o}+m_{e}^{o}}}$ that were shifted to a_{2} while constructing G_{6}. Next we attach the vertex $a_{p_{m_{o}^{o}+m_{e}^{o}}}$ to a_{0} and assign label $q_{1}+1$ to $a_{p_{m_{o}^{o}+m e}^{o}}$. Now we move the vertices $x+i+2, q_{1}-x-i, i=1,2, \ldots, p_{p_{m_{o}^{o}+m_{e}^{o}}}$, to $a_{p_{m_{o+m}^{o}}}$. Since $(x+i+2)+\left(q_{1}-x-i\right)=q_{1}+2=1+\left(q_{1}+1\right)$, for $i=1,2, \ldots, p_{p_{m_{o}^{o}+m_{e}^{o}}}$, by Theorem 2.2 the resultant tree, say G_{1} thus formed is graceful with a graceful labeling, say g. Finally, attach the pendant vertices $c_{1}, c_{2}, \ldots, c_{r}$ to a_{0} and assign them the labels $q_{1}+2, q_{1}+3, \ldots, q_{1}+r+1$. Observe that we finally form the tree D_{6} and the labeling mentioned above is a graceful labeling of D_{6}. The proof of part (b) follows if we set $r=0$ in the proof of part (b).

Example 3.9. The diameter six tree in Figure 5 (a) is a diameter six of the type in Theorem 3.8. Here $q=149, m=12$, and $n=7$. We first form the graceful diameter six tree G_{6} as in Figure (b) by removing all the pendant vertices and one star adjacent to a_{0}. Figure (c) represents the tree obtained from the graceful tree in (b). Here we attach five vertices to a_{0} and assign them the labels 142, 143, 144, 145, and 146. Shift the components 11 and 131 incident on 1 to the vertex whose label is 142. The graceful tree in Figure (d) is obtained by applying inverse transformation to the graceful tree in Figure (c). Finally, the graceful tree D_{6} in Figure (e) is obtained from the graceful tree in Figure (d) when we attach three vertices to the vertex labelled 0 and assign them the labels 147,148 , and 148.

for $i=1,2, \ldots, p_{p_{m_{o}^{o}+m_{e}^{o}}}$, by Theorem 2.2 the resultant tree, say G_{1} thus formed is graceful with a graceful labeling, say g. Apply inverse transformation $g_{q_{1}+1}$ to G_{1} so that the label of the vertex $a_{p_{m o+m^{o}}^{o}}$ becomes 0 . By Lemma 2.3, $g_{q_{1}+1}$ is a graceful labeling of G_{1}. Now attach one remaining vertex to $a_{p_{m o+m e}^{o}}$ and assign the label $q_{1}+2$ to it. Let this graceful labeling of the new tree, say G_{2} thus formed be g_{1}. Let there be p neighbours of $q_{1}+2$ in D_{6}. Apply inverse transformation $g_{q_{1}+2}$ to G_{2} so that the label of the vertex $q_{1}+2$ of G_{2} becomes 0 . By Lemma 2.3, $g_{q_{1}+2}$ is a graceful labeling of G_{2}. Now attach the p pendant vertices adjacent to the vertex labelled 0 and assign them the labels $q_{1}+3, q_{1}+4, \ldots, q_{1}+p+2$. Observe that we finally form the tree D_{6} and the labeling mentioned above is a graceful labeling of D_{6}.
Example 3.11. The diameter six tree in Figure 6 (a) is a diameter six of the type in Theorem 3.10. Here $q=140, m=10$, and $n=6$. We first form the graceful diameter six tree G_{6} as in Figure (b) by removing one diameter four tree and one star adjacent to a_{0} and shifting all except one branches of the removed diameter four tree to the vertex labelled 1 in G_{6}. Figure (c) represents the tree obtained from the graceful tree in (b) by attaching a new vertex to a_{0}, assigning it the label 134 , and shifting the branches with centers with labels 10 and 125 from the vertex 1 to the vertex 134. The graceful tree in Figure (d) is obtained by applying inverse transformation to the graceful tree in Figure (c). The graceful tree in Figure (e) is obtained from the graceful tree in Figure (d) when we attach one vertex to the vertex labelled 0 and assign the label 135. The graceful tree in Figure (f) is obtained by applying inverse transformation to the graceful tree in Figure (e). Finally, the graceful tree D_{6} in Figure (g) is obtained from the graceful tree in Figure (f) when we attach five vertices to the vertex labelled 0 and assign them the labels $136,137,138,139$, and 148.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 6: A diameter six tree of the type in Theorem 3.10 with a graceful labeling.

Theorem 3.12. If $m_{e}^{o} \cong 1 \bmod 4, m_{e}^{e} \cong$ $0 \bmod 4, n_{e} \cong 1 \bmod 4$, and $m+n$ is odd then
(a) $\quad D_{6}$
$\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right\}$ has a graceful labeling.
(b) $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n}\right\}$ has a graceful labeling.

Theorem 3.13. If $m_{e}^{o} \cong 1 \bmod 4, m_{e}^{e} \cong$ $0 \bmod 4, n_{e} \cong 0 \bmod 4, n_{o} \geq 1$, and $m+n$ is odd then
(a) $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right\}$ has a graceful labeling.
(b) $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n}\right\}$ has a graceful labeling.

Proof of Theorems 3.12 and 3.13: Let us designate the vertex a_{2} as the center of diameter four tree whose degree ≥ 4. Let there be $2 p_{m}$ branches adjacent to a_{m}. Construct a tree G_{6} from D_{6} by removing the vertices $c_{1}, c_{2}, \ldots, c_{r}$, one star with center b_{n}, where $\operatorname{deg}\left(b_{n}\right)$ is odd (respectively, even) for Theorem 3.13 (respectively, for Theorem 3.12), and one diameter four tree with center a_{m} such that degree of a_{m} is odd and the branches incident on it are all odd branches. Obviously G_{6} is a diameter six tree with center a_{0} having odd degree. Let $\left|E\left(G_{6}\right)\right|=q_{1}$. Repeat the procedure in the proof of Theorem 3.4 (a) by replacing m_{e}^{o} with $m_{e}^{o}-1$ (i.e. m with $m-1$), n with $n-1$ and q with q_{1} and give a graceful labeling to G_{6}. Observe that the vertex a_{0} in the graceful tree G_{6} gets the label 0 and the vertex a_{2} gets label 1 , and the $2\left(p_{2}+p_{m}\right)+1$ neighbours of a_{2} get the labels $q_{1}-x, x+1+i, q_{1}-x-i$, $x=k+p_{1}+1, i=1,2, \ldots, p_{2}+p_{m}$ if $m_{o} \geq 2$
$\left(q_{1}-x, x+1+i, q_{1}-x-i, x=k+p_{1}+1\right.$, $i=1,2, \ldots, p_{2}+p_{m}-1$, and one more vertex if $m_{o} \leq 1$). While labeling G_{6} we allot labels $x+i+2, q_{1}-x-i, i=1,2, \ldots, p_{m}$ to $2 p_{m}$ neighbours of a_{m} that were shifted to a_{2} while construct$\operatorname{ing} G_{6}$. Attach vertices $c_{1}, c_{2}, \ldots, c_{r}, b_{n}$, and and a_{m} to a_{0} and assign the labels $q_{1}+2, q_{1}+3$, $\ldots, q_{1}+r+1, q_{1}+r+2$, and $q_{1}+1$, respectively. Obviously, the tree $G_{6} \cup\left\{a_{m}, c_{1}, c_{2}, \ldots, c_{r}, b_{n}\right\}$ is graceful with a graceful labeling, say g. Now we move the vertices $x+i+2, q_{1}-x-i, i=1,2, \ldots, p_{m}$, to a_{m}. Since $(x+i+2)+\left(q_{1}-x-i\right)=q_{1}+2=$ $1+\left(q_{1}+1\right)$, for $i=1,2, \ldots, p_{m}$, by Theorem 2.2 the resultant tree, say G_{1} thus formed is graceful with a graceful labeling, say g. Apply inverse transformation $g_{q_{1}+r+2}$ to G_{1} so that the label of the vertex b_{n} becomes 0 . By Lemma 2.3, $g_{q_{1}+r+2}$ is a graceful labeling of G_{2}. Let there be p pendant vertices adjacent to b_{n} in D_{6}. Now attach these vertices to b_{n} and assign labels $q_{1}+r+3, q_{1}+r+4, \ldots, q_{1}+r+p+2$ to them. Observe that we finally form the tree D_{6} and the labeling mentioned above is a graceful labeling of D_{6}. Proof of part(b) follows if we set $r=0$ in the proof of part (a).

Example 3.14. The diameter six tree in Figure 7 (a) is a diameter six of the type in Theorem 3.13. Here $q=139, m=11$, and $n=6$. We first form the graceful diameter six tree G_{6} as in Figure (b) by removing all the pendant vertices and one diameter four tree adjacent to a_{0}. Figure (c) represents the tree obtained from the graceful tree in (b). First we attach a vertex to a_{0} and assign the label 128 and shift the components incident on the vertices 118 and 11 adjacent to the vertex labeled 1 in G_{6} to the vertex 128 . Then we attach four pendant vertices to a_{0} and assign them the labels 129, 130, 131, 132. Next we apply inverse transform and attach the pendant vertices to the vertex labeled 0 which acts as the center of the star which was removed while constructing G_{6} from D_{6}. Assign labels 133, 134, $135,136,137$, and 138 to the vertices adjacent to 0 .

Figure 7: A diameter six tree of the type in Theorem 3.13 with a graceful labeling.

References

[1] G. S. Bloom, A chronology of the Ringel - Kotzig conjecture and the continuing quest to call all trees graceful, Annals of New York Academy of Science, 326 (1979), $32-51$.
[2] V. Bhat-Nayak and U. Deshmukh,New families of graceful banana trees, Proc. Indian Acad. Sci. Math. Sci., 106 (1996) 201-216.
[3] I. Cahit, Status of graceful tree conjecture in 1989, in Topics in Combinatorics and Graph Theory, R. Bodendiek and R. Henn (eds), PhysicaVerlag, Heidelberg 1990.
[4] W. C. Chen, H. I. Lu, and Y. N. Lu, Operations of Interlaced Trees and Graceful Trees, South East Asian Bulletin of Mathematics 4 (1997), 337 348.
[5] M. Edwards and L. Howard, A survey of graceful trees, Atlantic Electronic Journal of Mathematics, 1 (2006) 5-30.
[6] J. A. Gallian, A survey: recent results, conjectures and open problems on labeling graphs, Journal of Graph Theory, 13 (1989) 491-504.
[7] J. A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics, DS6, Sixteenth edition, December 20, 2013, url:http://www.combinatorics.org/Surveys/.
[8] P. Hrnciar and A. Havier, All Trees of Diameter Five Are Graceful, Discrete Mathematics, 233 (2001), 133-150.
[9] J. Jeba Jesintha,New Classes of Graceful Trees, Ph. D. Thesis, Anna University, Chennai, India, 2005.
[10] D. J. Jin, F. H. Meng, and J. G. Wang, The gracefulness of trees with diameter 4 , Acta science Natur. Univ. Jilin (1993), 17-22.
[11] J. Jeba Jesintha and G. Sethuraman,All Arbitrarily Mixed Generalized Banana Trees Are Graceful, preprint.
[12] M. Murugan and G. Arumugan, An algorithm to find graceful numberings of a Spl. class of banana trees, preprint (2000).
[13] M. Murugan and G. Arumugam, Are banana trees graceful?, Math. Ed. (Siwan) 35 (2001), 18 - 20.
[14] D. Mishra and A. C. Panda, Some New Transformations And Their Applications Involving Graceful Tree Labeling, International Journal of Mathematical Sciences and Engineering Aplications, Vol. 7, No. 1 (2013), pp. 239-254
[15] D. Mishra and P. Panigrahi, A New Class of Graceful lobsters obtained from Diameter Four Trees, Utilitus Mathematica, 80 (2009), pp. 183 - 209.
[16] D. Mishra and P. Panigrahi, Some Graceful Lobsters with All Three Types of Branches Incident on the Vertices of the Central Path, Computers and Mathematics with Applications 56 (2008), 1382 - 1394.
[17] Elina Robeva,An Extensive Survey Of Graceful Trees, Udergraduate Honours Thesis, Standford University, USA, June -2011.
[18] A. Rosa, On certain valuations of the vertices of a graph, in Theórie des Graphes, (ed. P. Rosenstiehl), Dunod, Paris (1968), 349-355, MR 36 - 6319.
[19] G. Sethuraman and J. Jesintha, All extended banana trees are graceful, Proc. Internat. Conf. Math. Comput. Sci., 1 (2009) 4-8.
[20] G. Sethuraman and J. Jesintha, All banana trees are graceful, Advances Appl. Disc. Math., 4 (2009) 53-64.
[21] V. Vilfred and T. Nicholas, Banana trees and unions of stars are integral sum graphs, Ars Combin., 102 (2011) 79-85
[22] V. Vilfred, Families of graceful banana trees, International Journal of management and Systems, (To appear).
[23] S. L. Zhao, All trees of diameter four are graceful, Ann. New York Acad. Sci. 576 (1989), 700-706.
[24] G. Zhenbin, The labelings of a variation of banana trees.,Ars Combin.,94(2010)175-181.

