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Abstract—Since last few years, face Recognition has become
one of the most challenging task in the pattern recognition
field. The Face recognition plays very important role in many
applications like video surveillance, retrieval of an identity from
a database for criminal investigations and forensic applications.
The face is considered as good biometric for many reasons:
the acquisition process is nonintrusive and does not require
collaboration of the subject to be recognized. The acquisition
process of a face from a scene is simpler and cheaper than the
acquisition of other biometrics as the iris and the fingerprint. On
the other hand, many problems arise, because of the variability
of many parameters like face expression, pose, scale, lighting,
and other environmental parameters.

Face recognition involved in application like problem of recog-
nition of an identity in a scene. A system that automatically
recognizes a face in a scene, first detects it and normalize itwith
respect to the pose, lighting and scale. Then, the system tries to
associate the face to one or more faces stored in its database, and
gives the set of faces that are considered as nearest to the detected
face. This requires more computational resources and very robust
algorithms for detection, normalization and recognition. In this
paper we have implement different face recognition methods
like Principle component analysis, Linear discriminant analysis
and Fusion of PCA and LDA for face recognition. And better
recognition rate is achieved by implementing different similarity
measures between images.

I. I NTRODUCTION

In recent years Many face recognition systems have been
proposed. Each of them is based on a particular representation
of a face. Mainly “appearance-based” approaches and
“structural approaches” are used for face representation.
Methods of the first kind try to reduce the dimensionality
of the original face space due to huge dimensionality of a
face image and hence it may contain redundant or noisy
information. A feature reduction is performed by applying
some standard algorithms of pattern recognition. The most
known approach is the PCA representation or “eigenface”
approach, proposed by Turk and Pentland [9]: the face image
is projected in a space in which the correlation among the
components is zero. This space transformation is called

“Karhunen-Loeve transform”. Another “appearance-based”
approach is the LDA representation or “fisherface” approach,
proposed by Kriegmann et al. [10]: the face image is projected
in the Fisher space, in which the variability among the face-
vectors of the same class is minimized and the variability
among the face-vectors of different classes is maximized.

II. PRINCIPLE COMPONENT ANALYSIS FOR FACE
RECOGNITION

Any particular face can be represented in terms of
“eigenpictures”. Eigenpictures are eigenfunctions of the
averaged covariance of the ensemble of faces. In other words,
they showed that in principle, a collection of face images
can be approximately represented by a small set of standard
pictures with a small set of weights for each of the standard
pictures.

A. Method of Principle component analysis

A face image,I(x, y), is a two-dimensionalN by N matrix
of intensity values, which are usually quantized to 8- bit values.
Eachx and y pair denotes a position in the image. For the
purpose of exposition, it is convenient to represent the matrix
of intensity values as a vector, where each row is concatenated.
Now, instead of having a matrix of dimensionN by N , we
have a vector of dimensionN2.
As an example, a typical image with size 220 by 220 pixels
becomes a point in a 48400-dimensional space. To obtain the
Eigenfaces for a training set, first determine the mean vector,
deviation-from-mean vectors and the co-variance matrix for
the particular training set. Let the images in the training set
be represented by{T1, T2, T3, . . . , TM}, where eachTn is a
vector ofN2-dimension. The valueM is the number of images
in the training set. With this representation, the mean vector
is:

Ψ =
1

M

M
∑

n=1

Tn (1)
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The set of deviation-from-mean vectors,{Φ1Φ2Φ3 . . .ΦM}
contains the individual difference of each training image from
the mean vector. Kirby and Sirovich refer to these vectors as
caricatures. They are simply defined as:

Φi = Ti −Ψ (2)

As described previously, the Eigenfaces are the set of principal
components of the training set. To obtain the eigenface de-
scription of the training set, the training images are subjected
to Principal Component Analysis (PCA), which seeks a set
of vectors (the principal components)which significantly de-
scribes the variations of the data. Mathematically, the principal
components of the training set are the eigenvectors of the
covariance matrix of the training set [5]. The covariance matrix
is given by:

C =
1

M

M
∑

n=1

ΦnΦ
T
n (3)

It is clear from this matrix that we are interested in finding
the set of vectorsuk and scalarsλk that satisfy the relations

Cuk = λkuk (4)

uT
1 uk =

{

1 if l = k,
0 if l 6= k.

(5)

It is clear from 5 that the vectorsuk are orthonormal.
Another way of representing the covariance matrix is by
writing

A = {Φ1,Φ2,Φ3, . . . ,ΦM} (6)

C =
1

M
AAT (7)

A closer look at 7 reveals that matrix C has a dimension of
N2 by N2, and determiningN2 eigenvectors and eigenvalues
from a matrix this large (48400 by 48400 for example) is
unwieldy. Furthermore, the purpose of employing PCA in the
first place is to obtain a low dimensional representation that
can briefly describe the training set, and usingN2 eigenvectors
for that will defeat the purpose. In fact, if the number of data
points in the image space for which we wish to find a compact
representation is less than the dimension of the image space
(i.e.M << N2), only M−1 eigenvectors will be meaningful.
To circumnavigate the problem, Turk and Pentland proposed
the following solution. Consider the eigenvectorsvi of ATA
such that

ATAvi = µivi (8)

The scalarsµi are the corresponding eigenvalues ofvi.
Multiplying 1

M
A from the left for both sides of the equation

yields

1

M
AATAvi =

1

M
µiAvi (9)

CAvi =
1

M
µiAvi (10)

This implies thatAvi are the eigenvectors of the covariance
matrix. With this treatment, we have effectively reduced the
dimension of the matrix on which we have to work on from
N2 by N2 to M by M .
Using this method, firstly construct the matrixL = ATA of M
by M dimensions and find theM eigenvectors,vi, of L. The
first M eigenvectors of the covariance matrix can be obtained
by finding Avi, and the corresponding eigenvalues allow us
to rank the eigenvectors according to their significance. As
described in detail previously, these eigenvectors are termed
Eigenfaces.
Each element of the training set{T1, T2, T3, . . . , TM} is pro-
jected onto “face space” by the following operation

ωk = (Avk)
T
(Ti −Ψ) ; 1 ≤ k ≤ M, 1 ≤ i ≤ M (11)

Therefore, for each face image in the training set, we would
have a set ofM weights,Ωi = {ω1, ω2, ω3, . . . , ωM} , 1 ≤
i ≤ M , which describes the contribution of each Eigenface to
the face image.

B. Classifying a Face Image

With each training image represented by the set of weights,
standard pattern recognition methods can be used to classify
input images into known identity classes. For this case, the
Euclidean distance was used as the measure for classification.
Before the value can be calculated, the test image,T , has to
be projected onto the face space as well, using equation 11 ,
yielding the setΩp. The test image is assigned to the class k
which minimizes.
Since recognition is performed by projection first, any image
similar-sized can be fed into the system. Images of individuals
not previously seen in the training set, as well as non-face
images, can be projected onto face space, yielding the set of
weightΩp. Hence, a competent face recognition must be able
differentiate between a face image and non-face image, and if
a face image is received, whether it corresponds one or none
of the individuals in the training set. For this purpose, the
distance between the input image and face space, is proposed
by Turk and Pentland to countercheck whether an input image
is indeed a face image.

ε2F = ‖ΦP − Φi‖
2 (12)

with
ΦP = Tp −Ψ (13)

ΦI =

M
∑

i=1

ωi(Avi) (14)

The value ofΦ is simply the reconstructed image of the
projection of the input image onto the face space spanned by
the eigenvectors.

For the system trained with the set in IndianFace Database
[4]. These faces were carefully chosen to have neutral
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expression as well as the same lighting conditions. They were
then manually centered and cropped to be of the same size.
After a PCA was performed on these points, it was found
that the first principal component was sufficient to capture
the major variations among the points, i.e. all points can
be discriminated based on their projections onto the first
principal component.

From equations 12, 13 and 14, equation of the value of
distance between input image and face space can be rewrite
as,

ε2F = |Tp − Tl|
2 (15)

with

Tl =

(

M
∑

i=1

ωi(Avi) + Ψ

)

(16)

From equation 16, we can see thatTl is the reconstruction of
the projection ofTP onto the firstM ′ Eigenfaces. The firstM ′

Eigenface were found to be able to account for more than 90 %
of the variations in the training set, and the reconstruction is
very good approximation ofTl if the image has a position
in the image space close to the subspace defined by the
Eigenfaces [15]. This means that as long as an input image
lies near the subspace defined by the Eigenfaces, regardless
of whether the position of the image in the image spaceRL

(with L = N2) is close to the positions of the face images,
Tl and will be fairly similar, and will have a small value. This
causes face space distances defined by equation 12 to be close
for face.
A better measure for face space distance would be to use
deviation from mean directly. As it was reported in [9] that
“Images of faces, being similar in overall configuration, will
not be randomly distributed in the huge image space”, It can
be conjectured that face images are situated near the average
face. Therefore, it can be simply used as a measure of face
space distance:

ε2F = ‖TP −Ψ‖2 (17)

Based on the training set in IndianFace Database, a threshold
can be established to differentiate face images.

III. L INEAR DISCRIMINANT ANALYSIS (FISHERFACE
APPROACH)

Fisher faces method [7] derives from Fishers linear
disriminant analyis (FLD or LDA); it works on the same
principle as the eigenfaces method.
For appearance-based face recognition, a 2Dface image is
viewed as a vector with lengthN in the high dimensional
image space. The training set containsM samples{xi}

M
i=1

belonging to C individual classes{xj}
C
j=1.

LDA tries to find a set of projecting vectorsw best dis-
criminating different classes. According to the Fisher criteria,
it can be achieved by maximizing the ratio of determinant of
the between-class scatter matrixSb and the determinant of the
within-class scatter matrixSW .

The objective of LDA is to perform dimensionality reduction
while preserving as much of the class discriminatory informa-
tion as possible by finding direction along which the classes
are best separated. In the Fisherface method [1], the face data
is first projected to a PCA subspace spanned by M-C largest
eigenfaces.

A. Training Phase

LDA finds the vectors in the underlying space that best
discriminate among classes [1][7]. For all samples of all
classes, the between class scatter matrixSb and the within
class scatterSw are defined by

Sb =
C
∑

i=1

qi (Ψci −Ψ)T (Ψci −Ψ) (18)

Sw =

C
∑

i=1

∑

Γk∈Ci

(Γk −Ψci)
T
∗ (Γk −Ψci) (19)

qi is the number of training samples in classi, C the number
of distinct class.
Ψci is the mean vector of samples belonging to classi defined
by the equation:

Ψci =
1

qi

qi
∑

k=1

Γk (20)

Ψ = 1
M

∑M
n=1 Γn is the mean of the set of training images.

We used matrix of dimensionN ∗ M in equation 18 and 19
to calculate the within class scatter of dimension(M ∗ M)
that deals with covariance between individuals.

The within class scatterSW represents how face images are
distributed closely within classes and between class scatter
matrix Sb how classes are separated from each other [2].

The goal of LDA is to maximizeSb while minimizingSW ;
the images in the training set are divided into the corresponding
classes. LDA finds a set of vectorsw such that the fisher
discriminant criterion is maximized.

w = argmaxT (J(T ))

max(J(T )) =
|T TSbT |

|T TSwT |
T = w (21)

w can be constructed by calculating the eigenvectors of the
matrix S−1

w Sb

w = eig(S−1
w Sb) (22)

When face images are projected into the discriminant vec-
torsw, face images should be distributed closely within classes
and should be separated between classes as much as possible.
These eigenvectors are called the fisher faces [2]. Fisherface
approach is similar to eigenface approach, which makes use
of projection of training images into a subspace.
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B. Recognition phase:

Given a test image(Γx), where the mean imageΨ is
subtractedΓx − Ψ and the resultφt is projected onto the
face space and identified using the euclidean distance as a
similarity measure.g(φt) = WφtW

T The face which has
the minimum distance with the projected face images is
labeled with the identity of that image. The same procedure
is established in PCA method for calculating the minimum
distance to find the corresponding face classk that minimizes
the Euclidean distance in fisher space.
Face recognition systems using LDA/FLD have also been
very successful (Belhumeur et al [1]; Swets and Weng [6]);
Zhao et al [13][14]. Zhao et al [13][14] describes the LDA
approach for face recognition using the class probability:the
face image is projected from the original vector space to a
face subspace via Principal Component Analysis where the
subspace dimension is carefully chosen, the LDA is used
to obtain a linear classifier in the subspace. In addition, a
weighed Euclidean distance metric is employed to improve
the performance of the subspace LDA method.

Two or four training samples per person are available; LDA
training is carried out via scatter matrix analysis [13]. For M
class problem, the within and between-class matricesSW and
theSb are computed as follows:
SW =

∑M

i=1 Pr(Ci)(mi−mo)·(mi−mo)
T WherePr(Ci)

is the prior class probability and usually replaced by1
M

in
practice with the assumption of equal priors. HereSW is the
within-class matrix showing the average Scatter of the sample
vectorx of different classesCi around their respective means
mi

IV. FUSION OFPCA AND LDA FOR FACE RECOGNITION

In this section we present methodology for fusing two
appearance-based (or statistical) approaches to face recogni-
tion: the PCA representation (“eigenface” approach) and the
LDA representation (“fisherface” approach). This composedof
the following steps:

• representation of the face according to the PCA and the
LDA approaches;

• The distance vectorsdPCA and dLDA from all theN
faces in the database are computed;

• For the final decision, these two vectors are combined
according to a given combination rule. We propose al-
gorithm for the fusion phase: the K-Nearest Neighbours.

A. Method of fusion of PCA and LDA

Let X be a d-dimensional feature vector. In our case,d
is equal to the number of pixel of each face image. The
high dimensionality of the related “image space” is a well-
known problem for the design of a good verification algorithm.
Therefore, methods for reducing the dimensionality of such
image space are required. To this end, Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) are

widely used. Principal Component Analysis [9] [12] is defined
by the transformation:

yi = WTxi (23)

Wherexi ∈ X ⊆ Rd, i = 1, 2, . . . , n (n samples).W is
a d-dimensional transformation matrix whose columns are the
eigenvectors related to the eigenvalues computed according to
the formula:

λei = Sei (24)

S is the scatter matrix (i.e., the covariance matrix):

S =

n
∑

i=1

(xi −m).(xi −m)t;m =
1

n

n
∑

i=1

xi (25)

This transformation is called Karuhnen-Loeve transform. It
defines thed-dimensional space in which the co-variance
among the components is zero. In this way, it is possible to
consider a small number of “principal” components exhibiting
the highest variance. In the face space, the eigenvectors related
to the most expressive features are called “eigenfaces”. The
Linear Discriminant Analysis is defined by the transformation:

yi = WTxi (26)

The columns ofW are the eigenvectors ofS−1
W Sb, whereSW

is the within-class scatter matrix, andSb is the between-class
scatter matrix. It is possible to show that this choice maximizes
the ratio det(Sb)

det(SW ) . These matrices are computed as follows:

SW =

c
∑

j=1

nj
∑

i=1

(xj
i −mj).(x

j
i −mj)

T ;mj =
1

nj

nj
∑

i=1

x
j
i (27)

Wherexj
i is the i-th pattern of j-th class andnj is the number

of patterns for the j-th class.

Sb =

c
∑

j=1

(mj −m)(mj −m)T ;m =
1

n

n
∑

i=1

xi (28)

The eigenvectors of LDA are called “fisherfaces”. LDA
transformation is strongly dependent on the number of
classes (c), the number of samples (n), and the original
space dimensionality (d). It is possible to show that there
are almostc − 1 nonzero eigenvectors.c − 1 being the
upper bound of the discriminant space dimensionality. We
need d + c samples at least to have a nonsingularSW .
It is impossible to guarantee this condition in many real
applications. Consequently, an intermediate transformation is
applied to reduce the dimensionality of the image space. To
this end, we used the PCA transform.

Many works analysed the differences between these two
techniques [10], but no work investigated the possibility of
fusing them. Here it should be noted that LDA and PCA are
not so correlated, as the LDA transformation applied to the
principal components can generate a feature space significantly
different from the PCA one. Therefore, the fusion of LDA and
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PCA for face recognition and verification is worth of theo-
retical and experimental investigation. We propose following
approach to fuse PCA and LDA face representations: the K-
Nearest Neighbour approach (KNN).
First of all, we normalise the distance vectorsdPCA anddLDA

in order to reduce the range of these distances in the interval
[0,1]. The second step is to compute a combined distance
vectord that must contain both PCA and LDA informations.
To this aim, we followed this way, we obtained the combined
distance vector by computing the mean vector:

d =

{

dPCA
1 + dLDA

1

2
, . . . ,

dPCA
N + dLDA

N

2

}

(29)

whereN is the number of images in the face database. After
computing and ordering the combined distance vectord, we
follow the KNN decision: the most frequent identity among the
first K components ofd is selected. The combined distance
vector follows 29, we call our algorithm “M-KNN” or “Mean-
KNN”.

V. I NTRODUCTION TODIFFERENTDISTANCES

Distance measures are used to compute the difference be-
tween two vectors. The Face Identification Evaluation System
includes many common distance measures that are used to
compute the similarity between two images. Some of them
are describe here. In the definitions of the distance measures in
the following subsections, letu andv be vectors representing
arbitrary images in PCA or LDA space.
The following are the different distances [11] to measure
similarity between two images

1) CityBlock

DCityBlock =
∑

i

|ui − vi| (30)

2) Euclidean

DEuclidean(u, v) =

√

∑

i

(ui − vi)2 (31)

3) Correlation

DCorrelation(u, v) =

∑

i(ui − ū)(vi − v̄)

(N − 1)

√

∑

i
(ui−ū)2

N−1

√

∑

i
(vi−v̄)2

N−1

(32)
4) Covariance

DCovariance(u, v) =

∑

i uivi
√

∑

i u
2
i

√

∑

i v
2
i

(33)

5) Mahalinobis CityBlock

DMahl1(u, v) =
∑

i

|mi − ni| (34)

6) Mahalinobis Euclidean

DMahL2(u, v) =
√

∑

i(mi − ni)2 (35)

7) Cosine
DCos(u, v) =

u.v

‖u‖.‖v‖
(36)

8) Mahalinobis Cosine

DMahCosine(u, v) =
m.n

|m||n|
(37)

9) Hellinger

DHellinger(u, v) =

√

∑

i

(

√

|ui| −
√

|vi|
)2

(38)

10) Canberra

DCanberra(u, v) =
∑

i

|ui − vi|

|ui + vi|
(39)

Among these all distances we have implemented following
three distances for face recognition methods Principle compo-
nent analysis(PCA), Linear discriminant Analysis(LDA) and
Fusion of PCA and LDA.

A. Euclidean distance

Euclidean distance is usual distance between two vectors
which can be measured using following

DEuclidean(u, v) =

√

∑

i

(ui − vi)2 (40)

B. Cosine similarity

Cosine similarity is a measure of similarity between two
vectors of an inner product space that measures the cosine
of the angle between them. The cosine of 0 degree is 1, and
it is less than 1 for any other angle. It is thus a judgment
of orientation and not magnitude: two vectors with the same
orientation have a Cosine similarity of 1, two vectors at 90
degree have a similarity of 0, and two vectors diametrically
opposed have a similarity of -1, independent of their magni-
tude. Cosine similarity is particularly used in positive space,
where the outcome is neatly bounded in [0,1]. These bounds
apply for any number of dimensions, and Cosine similarity is
most commonly used in high-dimensional positive spaces[8].

DCos(u, v) =
u.v

‖u‖.‖v‖
(41)

C. Mahalinobis Cosine distance

The first step in computing Mahalinobis based distance
measures is to understand the transformation between image
space and Mahalinobis space. PCA is used to find both the
basis vectors for this space and the sample variance along
each dimension. The output of PCA are eigenvectors that give
rotation into a space with zero sample covariance between
dimensions, and a set of eigenvalues that are the sample
variance along each of those dimension. Mahalinobis space
is defined as a space where the sample variance along each
dimension is one. Therefore, the transformation of a vector
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from image space to feature space is performed by dividing
each coefficient in the vector by its corresponding standard
deviation. This transformation then yields a dimensionless
feature space with unit variance in each dimension[8].
Here we will deal with the similarity between two vectors we
will define two vectors u and v in the unscaled PCA space and
corresponding vectorsm and n in Mahalinobis space. First,
we defineλi = σ2

i whereλi are the PCA eigenvalues,σ2
i is

the variance along those dimensions andσ2
i is the variance

along those dimensions andσi is the standard deviation. The
relationship between the vectors are then defined asmi =

ui

σi

andni =
vi
σi

.

Mahalinobis Cosine is the cosine of the angle between the
images after they have been projected into the recognition
space and have been further normalized by the variance esti-
mates. So, for images u and v with corresponding projections
m andn in Mahalinobis space, the Mahalinobis Cosine is:

SMahCosine(u, v) = cos(θmn) =
|m||n|cos(θmn)

|m||n|
=

m.n

|m||n|

DMahCosine(u, v) = −SMahCosine(u, v) (42)

VI. A LGORITHM FOR FUSION OFPCA AND LDA WITH
DIFFERENT DISTANCES

In this fusion method on different databases first we employ
principle component analysis to find eigenfaces and distance
of eigenfaces with test image. After that we implement linear
discriminant analysis on the same databases for the same test
image and find distance of test images with other fisherfaces.
Once both distances are obtained we will take average distance
and then different measures are used as similarity measuresto
determine the closest match for the test image with the face in
the trained database. The steps involved in implementing the
algorithm are:

Step 1 Implement Principle component analysis method to find
distance of eigenfaces with test image.

step 1.1 Represent the faces in the database in terms of the
vectorX as

X = {X1, X2, . . . , XN} (43)

Where eachXi is a face vector of dimensionN
obtain from theM ×N dimension face image.

step 1.2 From each of the face image vectors the average
face is subtracted. The average face is given by

AvgFace =
1

N

∑

N

Xi (44)

X
′

= X −AvgFace (45)

step 1.3 Classify the images based on the number of unique
subjects involved. So the number of classes,C, will
be the number of subjects who have been imaged.

step 1.4 Compute the eigenvectors of the scatter matrix.
Retain only theK eigenvectors corresponding to
theK largest eigenvalues

step 1.5 The face image vectorX ′ is then projected onto
the eigenvectors usingY = WTX ′. The values of
Y are the feature vectors or weights of the images.
Each of the face images can be represented in terms
of these feature vectors. Second part is Recognition

step 1.6 For a test face image to be recognized, initially
the normalization is performed by subtracting the
average face from the image :X ′ = X−AvgFace

step 1.7 Then the face is projected on the basis vector :
Y =

∑

K WT
i X ′Wi, whereY gives the weight of

the test image
step 1.8 Compare the weight obtainedY with the values

of weights recorded from the training phase. This
comparison is performed using different distance
metrics and find distance vectordPCA

step 2 Implement Linear discriminant analysis method to mea-
sure distance of test image with fisherfaces. Steps are
given in section 2.2. using which find distance vector
dLDA is computed.

step 3 To find a combined distance vectord that must contain
both PCA and LDA informations, we compute the mean
vector

d =

{

dPCA
1 + dLDA

1

2
, . . . ,

dPCA
N + dLDA

N

2

}

.

step 4 After computing and ordering the combined distance
vectord, we follow the Nearest Neighbor decision: the
most frequent identity among the firstK components of
d is selected.

Here we have implemented Principle component analysis,
Linear discriminant analysis and fusion of PCA and LDA
(PCA+LDA) using following distances.

• First we have used standard Euclidean distance to mea-
sure similarity between test image and images from train
database.

• We have checked result for verification of face using
Cosine similarity between test image and images from
train database.

• Finally we have use Mahalinobis cosine distance to
check similarity between test image and images from
train database.

VII. R ESULTS

A. Data

Here we have used the standard computer vision data set, it
contains frontal images of 395 individuals, and each personhas
20 frontal images [16]. This data set contains images of people
of various racial origins, mainly of first year undergraduate
students, so the majority of individuals are between 18-20
years old but some older individuals are also present. Some
individuals are wearing glasses and beards. The total number
of images is 7900. In our experiments, ten face images are
selected for training and reference, and five for testing.
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Fig. 1. Some examples of faces from database

PCA LDA PCA+LDA

Euclidean Distance 46(92%) 46(92%) 46(92%)

Cos Distance 48(96%) 46(92%) 50(100%)

MahCos Distance 48(96%) 46(92%) 50(100%)
TABLE I. RECOGNITION IN PERCENTAGE

B. Training

To train above algorithms, we used M=100 images of C=10
classes (different persons). Each class contains 10 frontal
images. For the ten classes; the images were taken at different
times, varying the lighting, facial expressions and facialdetails
(glasses/no glasses). Some examples are shown in following
figure.

The following table shows the percentage accuracy of our
approaches on face94 data set.

VIII. C ONCLUSION

The fusion of two approaches, namely PCA and LDA, for
face representation and recognition have been investigated.
Reported results confirm the benefits in fusing them. We
combined PCA and LDA with the KNN-based combination
rule. Reported results are strongly dependent on the data set.

Fig. 2. PCA algorithm with Different Distances

Fig. 3. LDA algorithm with Different Distances

Fig. 4. PCA+LDA algorithm with Different Distances

Fig. 5. PCA, LDA and PCA+LDA with different Distances
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Fig. 6. Euc, Cos, MahCos Distances for PCA, LDA and PCA+LDA

Along with fusion we tried to apply this fusion technique using
three different similarity measures namely Euclidean, Cosine
and Mahalinobis Cosine and we conclude that Mahalinobis
cosine and cosine works well for this fusion technique.

On the basis of the reported results it is worth devoting fur-
ther theoretical and experimental investigations to understand
the behavior of PCA and LDA in order to combine them.
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