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Abstract — We consider a delayed Pest-predator model under insecticide use. First, the paper considers the stability and local Hopf 
bifurcation for a modified Pest-predator model with time delay. In succession, using the normal form theory and center manifold 
argument, we obtain some explicit results which determine the stability, direction and other properties of bifurcation periodic 
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I. INTRODUCTION 
With the rapid development of chemistry, many pesticides are applied in the world. However, insecticide pollution is also 

recognized as a major health hazard to human beings and to natural enemies. Thus it is required that we should combine 
pesticide efficacy tests with biological control research, so that the effects on the pest and the natural enemies are considered as 
a unified whole. Many researchers have been devoting to study the Pest-predator model. In this paper, our research is based on 
the Pest-predator models under insecticide use. However, here we consider the model with time delay. 

Let x(t), y(t) denote the density of the pest and predator (natural enemies) at the time t, respectively. We could have the 
Pest-predator model as followings 
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Where 01 r  is the intrinsic growth rate of pest, 02 r  is the death rate of predator, 012 a  is the coefficient of 

intraspecific competition, 021 a  is the product of the per-capital rate of predication and the rate of converting pest into 
predator. 
    By introducing the time delay, the above system (1.1) can be written as the following form: 
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where is positive, E > 0 is the proportionality constant which represents the rate of mortality due to applied pesticide, and the 
other parameters are the same as (1.1). 

II. LOCAL STABILITY AND HOPF BIFURCATION 
    In this section, we are devoted in investing the stability of the positive equilibrium and by applying the Hopf bifurcation 
theorem, we give the conditions of the Hopf bifurcation. 
    Clearly, system (1.2) has the unique positive equilibrium at ),( *** yxE  , where 
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The linearization part of the system (2.1) at the equilibrium (0,0) is as below: 
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And the characteristic equation is 
              0)( **
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    It is clear that the Eq.(2.3) is the following second degree exponential polynomial equation 
                        02   esrp                       (2.4) 

    In order to investigate the stability of the positive equilibrium of system (1.2), we need to study the 
distribution of roots of Eq.(2.4). Obviously, 0  is not a root of Eq.(2.4). 
If i ( 0 ) is a root of Eq.(2.4), then 

.0)sin(cos2   isirpi  
Separating the real and imaginary parts, we get 
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which lead to 
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Let 
2222 4)2( rrps   

It is easy to see that: 
if at least one of the following conditions is satisfied: 
(P1) ;0  
(P2) ;0,02,0 222  rrps  
(P3) ,02,0 22  rps  
then Eq.(2.6) has no positive root; 
if 0,02,0 222  rrps  or 02,0 22  rps holds, then Eq.(2.6) has two positive roots 

                    ,)2(
2
2 2

1
22  rps                     (2.7) 

if 02 r  or 02 r ; 0222  rps  holds, then Eq.(2.6) has one positive root  : 
But, it is clear that this can't happen since r > 0 forever. 
Then from (2.5), we can determine 
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at which Eq.(2.4) has a pair of purely imaginary i . 
Denote by 
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the root of Eq.(2.4), such that 

.)(,0)( 
   jj  

Substituting )(  into (2.4) and differentiating it with respect to   yields 
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where .042  s  Thus, when ,0  we have 
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and 
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Then the following results about the distribution of root of Eq.(2.4) are got. 
Lemma 2.1 
i)When at least one of the conditions (P1)--(P3) is satisfied, then all the roots of Eq.(2.4) have negative real 
parts for all 0 . 
(ii)When 0,0  r  and  ,022 **
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,1,1,0),,(   kjjj   and , k  Eq.(2.4) has at least one root with positive real part. 
We can obtain the following lemma by applying the lemma 2.1. 
Lemma 2.2 
(1)If at least one of the conditions (P1)--(P3) is hold, then system (2.1) is asymptotically stable at the 
positive equilibrium E*. 
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(3)If and then system(2.1) undergoes a Hopf bifurcation at 

III. DIRECTION AND STABILITY OF THE BIFURCATING PERIODIC SOLUTIONS 
In this section, we derive explicit formulate for computing the direction of the Hopf bifurcation and the 
stability of bifurcation periodic solution at critical values 0  by using the normal form theory and center 
manifold reduction. 
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simplification of notation, system (2.1) is transformed into a FDE as 
                          ),,()()( tt xfxltx                            (3.1) 

where x(t) is a vector )(,))(),(( 21  txxtxtx t
T  for ],0,1[  with 
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Using the Riesz representation theorem, there exists a function ),(   of bounded variation for 
],0,1[  such that 

                        .),(),(
0

1
Ctxdl                    (3.4) 

In fact, we can choose 
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where )( is Dirac delta function. 
In the next for ],0,1[  we define 

               














0

1
.0),(),(

),0,1[,
)(








d

d
d

A             (3.6) 

                








.0),,(

),0,1[,0
)(





f

R                 (3.7) 

Then system (3.1) can be rewritten as 
                       ,)()()( tt xRxAtx                  (3.8) 

where ).()(   txxt    
The adjoint operator A* of A is defined by 
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where T is the transpose of the matrix .  
For ],0,1[1 C and ],1,0[1C we define 

         ,)()()()0()0(,
0

1 0







dd  

       (3.10) 

where ).0,()(   As we all know that 0i is an eigenvalue of A(0), so 0i is also an eigenvalue of 
A*(0). And assume that )(q and )(* sq is the eigenvector of A and A*corresponding to 0i and 0i , 
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respectively, satisfying with 1,* qq and .0,* qq  

We can get 
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    In the remainder of this section, by using the same notation as in Hassard et al.[1], we first construct 
the coordinate for describing the center manifold C0 at .0 Letting tx  be the solution of (3.1) with 
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z and z  are local coordinate for C0 in the direction of q and q*.If xt is real, we will deal with real solution 
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From (3.12), differentiating it with respect to t can get 
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then by comparing coefficients with Eq.(3.17), we can obtain 
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    Because there are W11 and W20 in g21, so we need compute them in the sequel. Differentiating 
Eq.(3.14) with respect to   and then comparing coefficients with ),,,( zzHAWW  we can easily get 
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know 
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According to the proof above, we can compute the following parameter 
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where the sign of 2  determine the direction of the Hopf bifurcation: if )0(0 22   then the Hopf bifurcation is 

forward(backward) and the bifurcating periodic solutions exist for ).( 00   The sign of 2 determine the stability of the 

Hopf bifurcating periodic solutions: the bifurcating periodic solutions are stable(unstable) if ).0(0 22   The sign 

of 2T determines the period of the bifurcating periodic solutions: the period increases(decreases) if ).0(0 22  TT  

IV.  CONCLUSION 
Firstly, under the condition of ,0  we discuss the Pest-predator model. We know that the stability of Pest-predator varies 
with the parameters changing. What's more, we discuss the Pest-predator model with time delay (1.2). By adjusting the 
parameters _ , we more easily control the Pest-predator populations such that the population tends to our expected results. 
Although our analysis indicates that the dynamics of the Pest-predator model with time delay can be much more complicated 
than we may have expected. It is still important to research the Pest-predator population. We just investigate the positive 
equilibrium, as the (0,0) is not the ideal point. The point (0,0) means the pest and predator both go to extinction, so we hope the 
population can converges to the positive equilibrium, that is the predator can survival. 
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