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differential equations with constant impulsive jumps.  Our results improve and generalize some known results in the literature. 
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I. INTRODUCTION 
 

Consider the following non linear forced neutral delay differential 
equations with constant impulsive jumps 
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where pi, qj, r  C([t0, ), R), i, j  0, i = 1, 2, ..., m,  
j = 1, 2, ..., n, f  C(R, R) and xf(x) > 0 for x  0,  
0  1 < 2 < ... < m, 0  1 < 2 < ... < n, PC(R+ ,  R) denotes the 
set of all functions  : R +  R such that  is continuous on [0, t1]  
[tk < t  tk+1], k = 1, 2, 3, ... with (t)lim)(t

kttk 


    exists for k = 1, 

2, 3, ...; the sequence {tk}, k = 1, 2, ..., is impulsive time which 
satisfies 0 < t1 < t2 < ... < tk < .... 

 kk
tlim  and {k}, k = 1, 2, ... 

are constant impulsive perturbation sequence. 
 

Let   C([t0  d, t0], R), d = max{m, n}. By a solution of 
system (1) satisfying the initial condition , we mean any function x : 
[t0  d, )  R for which the following conditions hold: 
(i) If t  [t0, ) and t  tk, t  tk + i, t  tk + j, k = 1, 2, ..., i = 1, 

2, ..., m, j = 1, 2, ..., n, 



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and differentiable and satisfies the first equation of system 
(1); 

(ii) For k = 1, 2, ..., ),x(tk
  )x(t k

  exist, ),x(t)x(t kk   and 
satisfy the second equation of system (1). 

 
As usual, a solution x(t) of system (1) is said to be nonoscillatory 

if it is either eventually positive or eventually negative.  Otherwise it 
is called oscillatory. 

The asymptotic behavior of solutions of equations (1) has been 
studied in [6] as a special case when pi(t) = 0.  In  
[2, 4, 7], the authors have studied the asymptotic behavior of 
solutions by taking impulses of the form ).x(tb)x(t kkk    The 
purpose of this paper is to study the asymptotic behavior of the 
solutions of system (1) by taking constant impulsive jumps.  Our 
results are generalized and improved the known results [2, 4, 6, 7, 9]. 

 
II. MAIN RESULTS 

 
First we introduce the following conditions: 
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where M is a positive constant, 
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where ,0},max{ββ kk 
  k  Z+  {0}, and 0 = 0 and 

 . 1,2,...k,τtt mk1k            (6) 
Theorem 2.1.  

Let the conditions (2), (3), (4), (5) and (6) hold.  Assume that 
there exists a constant   [0, n] satisfying, the following conditions 
for sufficiently large t: 
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where (t),0],max{q(t)q jj   (t),0},qmax{(t)q jj   

(t),0}.max{p(t)p ii   Then every non oscillatory solution of 
system (1) tends to zero as t  .  
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Proof.  
Choose a positive integer N such that (6)-(9) hold for t  tN.  Let 

x(t) be a non-oscillatory solution of system (1).  Without loss of 
generality, we suppose that x(t) > 0, x(t  i) > 0 and x(t  j) > 0, t ≥ 
tN, i = 1, 2, ..., m, j = 1, 2, 3, ..., n.  For all  
t  tN, define 
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where Nt corresponds to the largest subscript of impulsive point in 
(tN, t). 
Set 
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(11) 
Then for t  tN, t  tk, t  tk + i, t  tk + j, i = 1, 2, ..., m,  
j = 1, 2, ..., n, k = 1, 2, 3, ..., we can choose t sufficiently small such 
that there is no impulsive point in (t, t+t).  Then we have 
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by (10).  Therefore, from the above discussion, we have z(t) is 
decreasing on [tN, ).  Set z(t).limL

t 
   We claim that L  R.  

Otherwise, L =  and by conditions (2), (3), (9) and (11), x(t) must 
be unbounded.  In fact, suppose that there exists a constant c such 
that x(t)  c.  Then from (11), (2), (3), we have 
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which contradicts L = .  Thus x(t) is unbounded.  Choose  
t*  tN + n + m such that z(t*)  R(t*) + (t*) < 0 and  
x(t*) = max{x(t) : tN  t  t*}. 
Hence 
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which is a contradiction.  Thus L  R. 
 
We are now in a position to prove that 
 0x(t)lim

t

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Integrating (12) from tN to t and letting t  , we find 
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which together with (8) and (14) implies that 
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Since x(t) is bounded, it follows that 
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Then integrating (12) we get, 
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which implies that 
 exists. x(t)lim
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By (16) and (17) we obtain (13) which is our claim. 
The proof is complete.                □ 
 
Theorem 2.2. 

Let the conditions (2), (3) hold.  Assume that 
 0,βlim kk




         (18) 

and there exists constant   [0, n] and functions Q1(t), Q2(t) such 
that for sufficiently large t, 

0)σσ(tq
n

1j
jj 



    (19)          1/2(t)psuplim
m

1i
it





    (20) 

 (t)Qds)σ(sq 1

n

1j

σt

σσt

jj

j

 






        (21) 

 (t)Qds)σ(sq)σsgn(σ 2

n

1j

σt

σt

jjj

j

 






        (22) 

and 

   
M

(t)psuplim21
(t)Qsuplim(t)Qsuplim

m

1i
it

2t1t









      (23) 

Then every oscillatory solution x(t) of system (1) tends to zero as t  
. 
 
Proof. 
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where R(t) and (t) are as in (5) and (10).  Then (12) holds and for t 
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Noticing that x(t) is oscillatory, from (12) we see that z(t) 
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which contradicts (23).  Hence  < . 
 

Next we prove  = 0.  From (24), (3) and (18), we have 
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which implies  = 0.  This completes the proof. 
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