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Abstract— We establish new sufficient conditions for asymptotic behavior of the solutions of non linear forced neutral delay
differential equations with constant impulsive jumps. Our results improve and generalize some known results in the literature.
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|. INTRODUCTION

Consider the following non linear forced neutral delay differential
equations with constant impulsive jumps

X~ D piOXE-7)'+ 0 Ofxt -0 ) =10, t=1,

X(ty) = x(t,) =B, k=123,.. )
where p, g, r € C([ty, ©), R), 5, j 2 0, i =1, 2, .., m,
j =12 .,n fe CR, R) and xf(x) > 0 for x = O,
0<1 <12<..<1Ty, 0< 01 <02<... <op PC(R+, R) denotes the
set of all functions ¢ : R . — R such that ¢ is continuous on [0, t;] L

[t <t<twl] k=123 ...with ¢(t;) =lim ¢(t) exists for k = 1,
toty

2, 3, ...; the sequence {t.}, k =1, 2, ..., is impulsive time which
satisfiess 0 <t; <t, <. <t <... lI(im t, =oc0 and {B}. k=1,2, ..
—0

are constant impulsive perturbation sequence.

Let ¢ € C([to — d, to], R), d = max{rt,, oc.}. By a solution of
system (1) satisfying the initial condition ¢, we mean any function x :
[to — d, o0) — R for which the following conditions hold:

(l) Ifte [to, OO) andt;ttk,t;ttk + 7, U= 1, +Gj, k= 12 .., i:1,

m
2,..mj=12 ..,n X{t) —Zpi(t)x(t —1;) is continuous
i=1
and differentiable and satisfies the first equation of system
(1)
(i) For k =1, 2 .., x(t;), x(t.) exist, x(t.)=x(t,), and
satisfy the second equation of system (1).

As usual, a solution x(t) of system (1) is said to be nonoscillatory
if it is either eventually positive or eventually negative. Otherwise it
is called oscillatory.

The asymptotic behavior of solutions of equations (1) has been
studied in [6] as a special case when pi(t) = 0. In
[2, 4, 7], the authors have studied the asymptotic behavior of

solutions by taking impulses of the form x(t,) =b,x(t,). The

purpose of this paper is to study the asymptotic behavior of the
solutions of system (1) by taking constant impulsive jumps. Our
results are generalized and improved the known results [2, 4, 6, 7, 9].

Il. MAIN RESULTS

First we introduce the following conditions:
[fx)|<M[x| for xeR %)
where M is a positive constant,

R,(t)= J. r(s)ds existson [t,,) ®3)
lI(im By =0 4)
[rsyas, te[0.4]0 (b b,
R =1 ©)
f r(s)ds+ By, t=t, k=1,23,..
where B, = max{B,,0}, k e Z, U {0}, and B, =0 and
ey —t >T, k=12, (6)

Theorem 2.1.

Let the conditions (2), (3), (4), (5) and (6) hold. Assume that
there exists a constant ¢ e [0, o] satisfying, the following conditions
for sufficiently large t:

Dajt-c+5)20 (@) Iqu(t—0+0j)dt:w, ®)
=1

0 il
and
t—oi _ t-o n
ZJ"*“ q;(s+oc,;)ds+ Zj'miqj (s+0;)ds
1->pi(®
i=1 , 9
VI ©)
where  gj (t) = max{q;(t),0], q; (t) = max{-q;(t).0},

p; (t) = max{p,(t),0}. Then every non oscillatory solution of
system (1) tends to zero as t — co.
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Proof.

Choose a positive integer N such that (6)-(9) hold for t > ty. Let
X(t) be a non-oscillatory solution of system (1). Without loss of
generality, we suppose that x(t) > 0, X(t — 7)) > 0 and X(t — oj) >0, t>
t I+ =1, 2 ., m j =1 2 3 ., n For all

t > ty, define
ot>t
B(t): BN N+L
O, te[tN’tN-M_]
where N' corresponds to the largest subscript of impulsive point in

(10)

(tNr t)
Set
20) = X0~ 3P, Xt —) - [ 20, (55 )TE) ds + R~ Bt
i=1 V=1
(11)
ThenfortZtN,titk,titk+’Ci,t¢tk+0j, i =12, ..., m,

j=1,2, ..,n,k=1 2,3, ..., we can choose At sufficiently small such
that there is no impulsive point in (t, t+At). Then we have

Lt B(t+ Atz —B(®)

At—0 A

Z(t) = —Zn:q [(t—o+0)f(x(t o))

=0, we have
(12)

while for t =t,, k =N+1, N+2, ..., we get R(t;) —R(t,) =B,
moreover

z(ty) —z(t,) = x(t,) — x(t, ) + R(t, ) = R(t,) = B(ty) +B(t,)

= Bk _B;—l _B; +B;-1 <0,
by (10). Therefore, from the above discussion, we have z(t) is
decreasing on [ty, «). Set L =Ilimz(t). We claim that L € R.
t—o

Otherwise, L = —0 and by conditions (2), (3), (9) and (11), x(t) must

be unbounded. In fact, suppose that there exists a constant ¢ such
that x(t) < c. Then from (11), (2), (3), we have

() = x(t) —czm: pr(t)— Mchj—(s +0)ds

- Mch; (s+0)ds + R(t) — B(t) > —,
which contradicts L = —0. Thus x(t) is unbounded. Choose
t >ty + 1, + oy such that z(f') — R({) + B(t) < 0 and
X(t") = max{x(t) :ty<t<t'}
Hence
0>z(t")-R(")+p(t")
t-o;

> x(t*)—ipr(t)x(t*)—M .[I g (s+0;)x(s)ds

t-g 0j<C

-M j >.q; (s+o)X(s)ds+R(t")—p(t") —R(t") +p(t")

t-c; 0;>C

> x(t) 1- M[z _.[quj'(s+cj)ds+ 3 Tq;(smj)ds

Gj<C t—g 0j>Ct—g;

—ipf(t)}

>0,

which is a contradiction. Thus L € R.

We are now in a position to prove that

!im X(t) =0 (13)
Integrating (12) from ty to t and letting t — oo, we find
© n
L-2Z(t,) < j Dajt-c+o)fxt-ondt  (14)
ty =
which together with (8) and (14) implies that
!im inf f(x(t)) = 0. (15)
Since x(t) is bounded, it follows that
!im inf x(t) =0 (16)
From (14), we have
t-o
lim Iqj(s +6,)f(x(s))ds = 0
t—oo
t-o;
Then integrating (12) we get,
m
fim {x«) —;pia)x(t —n)} -LeR,
which implies that
!im X(t) exists. 7
By (16) and (17) we obtain (13) which is our claim.
The proof is complete. u]
Theorem 2.2.
Let the conditions (2), (3) hold. Assume that
limB, =0, (18)

and there exists constant o € [0, o,] and functions Qy(t), Q,(t) such
that for sufficiently large t,

qu(t—0+0j)¢0 (19) !Lmsup2|pi(t)|<1/2 (20)

=L i=1
n t-o
> Iqj(s+cj)|dSSQl(t) @1
It t-c-0;
n 9
> J.Sgn(c—cj)|qj(s+cj)|dssQz(t) 22)
Fl t-o
and
m
_ _ 1-2limsup [p; 9
!lm sup Q, (1) + !lm sup Q,(t) < v = (23)
Then every oscillatory solution x(t) of system (1) tends to zero as t —
0,
Proof.

Let p=limsup[x(t). First we prove u < . Otherwise
t—oo
p =oo. Choose a ty > tq such that (18)-(23) hold for t > ty and
sup  [x(s)| = sup [x(s)|-

ty+ T, +o, <S<t tySs<t

Set
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200 = X0 - 2P, (Ot - 1)

= [ S0, (5+ 0@ + RO — B,

t-o; J=1
where R(t) and B(t) are as in (5) and (10). Then (12) holds and for t
>ty + Ty + G, We have

200 = x| - 3 [p, Ot - )

- Zn: ‘_rsgn( 6-0,)

lt-o;

> 0] - [i\pim\ + MQz(t)]Slipq x|~ [Re)| -[p

which implies

a,(s + 0| [f(x(9)) |ds —[R(®)| + [B(0)|

m

sup > [pi(s)]

ty+Ty+0, <8<t o

sup

ty +T, +0, <8<t

|2(s)| 2{1—

-M  sup

ty +T, +0, <8<t

- supt\R(s)\ - tsupt\B(s)\.

ty <5<

Q. (S)} Sup ()|

nSs<t

(24)

Hence lim sup |z(t)| = oo by (3) and condition (18).
t—oo

Noticing that x(t) is oscillatory, from (12) we see that Z'(t)
oscillates. Thus there exists a § >ty + 1, + o, such that

|z(g)|:l sup  [z(s) and Zz'(g)=0.

0t Tmt6,S8<¢
From (12) and (19) we know that x(£ — o) = 0. Integrating (12) both
sides from £ — o to £ we obtain

20) = 26-0) - | D0, —0+0)i(x(s —o)ds

(S} j=1

= P oo 1) - [a,(s+0,)x(s)ds
i=1 =1 §—0-0;
+R(¢-0)-B(g-0),
which implies

]| 3 oG+ MO (@) | x|+ R(c - o

+Bs —o)| (25)
From (24) and (25) we have

m m

17( +1SL:IrE gsg:; ‘pi(s)‘7 M t +1SL:IrE <s<g QZ(S) N Z:; ‘p|(§76)‘

-MQ (s)
sup [x(s)| < sup |R(s)|+|R(s— )|+ sup |B(s)|+[B(c— o)}
tySs<g tySs<g thSs<g

m

sup Ipi )|
1

N+Tp +0, <5<¢ ty+Tm +0, <856 j=

l_M(Q1(Q)+‘ sup Qz(S)j

& | RG=0)[+[Be -0
; ‘p| (Q G)D ‘Sl(,l[:l ‘X(S)‘
sup |R(s)|+ sup [B(s)|
ty<s<g tn<s<¢
- 0
sup [x(s)
ty<s<¢

Letting £ — oo, we find
m
1- M[!im sup Q, (t) + lim sup Qz(t)]— 2lim sup Z|pi(t)| <0
—>0 t—>o tow
i=1
which contradicts (23). Hence p < oo.

Next we prove p =0. From (24), (3) and (18), we have
A = lim sup [z(t)
t—owo

> 1-timsupS o, (0] Mlimsup Q,) |26

On the other hand, there exists a sequence {oy} such that

lim o, =co,  lim (0 )|=2 and Z'(ow) = 0, k =1, 2 3, ...

t—w

Similar to (25), we can get
‘Z(ak)‘ < |:Zpi (o, _G)‘ + MQl(ak):|
i=1

+|R(a, — 0)|+[B(ery —0)]
(7)

sup [x(s)|

tySs<ay

Let k — oo, we get,
A< {!ery] supgl]pi ®)+M lim sup Ql(t)}p. (28)

By (26) and (28)

p{l— 21im sup2|pi(t)| —Mlim sup Q,(t) - M lim sup Qz(t)} <0

i=1

which implies p = 0. This completes the proof.
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