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ABSTRACT

We have studied the non-linear oscillation of the system of the satellites connected by light, flexible and extensible
cable under the influence of magnetic force, the shadow of the earth due to solar radiation pressure and earth
oblateness in the case of circular orbit of the Centre of mass of the system. The non-linear terms present in the
equations of motion of the system are taken into consideration. First of all we have derived equations of motion for
non-linear oscillations of the system having almost periodic oscillations due to Malkin. An attempt has been made to
analyse the motion and stability of the system analytically. As there is no periodic terms in the equation of motion,
so only non-resonant solution have been obtained and shown to be stable.
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1. INTRODUCTION

This paper is devoted to study the effect of shadow of the earth due to solar radiation pressure, magnetic force and
earth’s oblateness on the non-linear oscillation and stability of two satellites connected by light, flexible and
extensible cable in the central gravitational force in a circular orbit of the Centre of mass of the system in case of
two dimensional motion. Beletsky, V.V. is the pioneer worker in this field. This paper is an attempt towards the
generalisation of works done by him.

2. EQUATIONS OF MOTION FOR NON-LINEAR OSCILLATION.

The equation of motion of one of the two satellites when the centre of mass moves along a circular orbit in
Nechvill’s coordinates can be obtained by exploiting Lagrange’s equation of motion of first kind in the form:
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Here, dashes denote differentiations with respect to T and T = wt where w is the angular velocity in case of circular
orbit of the centre of mass and t is the time.
The condition of constraint is given by
x4+ y2<20 (2.2)
It has been found in the previous chapter that there exits an equilibrium position (a,0,0) and has been seen to be
stable in the sense of Liyapunov.
Now we want to discuss the effect of the shadow of the earth due to solar radiation pressure, magnetic force
and oblateness of the earth on the equilibrium position (a,0) for non-linear oscillation of the system.
For this, Let n, and n,be small variations in x and y coordinates at the given equilibrium point (a, 0) of the system.
Then, we have
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Xx=a+n, and y=n,
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But at the equilibrium position, we have
To=a e (2.5)
Using (2.5) in (2.4), we get
1 1
_ 2rgn, + N2+ 1212 1_1 2ron, +n2+n3] 2
r—r0[1+—rg | T_T0[1+—Tg | (2.6)

Now expanding the right hand side of (2.6) and retaining terms only up to third order in infinitesimals n,and n,,, we
get after some simplifications
1 1 my ,n¥ mZ  3n% 3nm3
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Putting the values from (2.3), due to small variations, in the system of equations (2.1), we get a new, set of
variational equations of motion for the non-linear oscillations of the system in the form:
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Now substituting the values % of from (2.6) in (2.8), we get after neglecting fourth and higher order terms in
infinitesimals n, and n,as:
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Thus, the system of equations (2.9) represents an almost periodic oscillator due to Malkin.
3. SOLUTION OF THE EQUATION AND ITS STABILITY.

The solution of the linear part is obtained by putting G=0 and H=0 in [2.9] and are given by
n, = a;sinw; T + B,) + a, sin(w,T + B,)
and |, n, = a; Ky cos(w, T + B,) + a, K, cos(w,T + f3,)
This can be written as:
n, =a.sing, +a,sing,
and n, = a;K, cos ¢, +a,K, cos ¢,

Where, ¢ = wT+p,

ISSN: 2231-5373 http://www.ijmttjournal.org Page 149




International Journal of Mathematics Trends and Technology — Volume 9 Number 2 — May 2014

¢, =w, T+
Where ay, ay, B, and B,are arbitrary constants and V\Z, W, are the ﬁ‘requencies of the free oscillations of the linearised
system of equations.
Also w; and w; satisfy the characteristic equation
wt+(m2+m2 —-4Hw2+m?m:=0 (3.2)
Differentiating (3.1), we have
;= a,w; COS ¢, + a,w, COS ¢,
Ny = —a;Kyw; sing, — a,K,w, sin g,
n, = -—a;wising, —a,wisinsg¢,
n, =-aKwicosg —a,Kwicosg, L (3.3)
Putting the values of n,, 1,, n,, 11, n,and n, from (3.1) and (3.3) in (2.1), we get
sing, [a; (Wi — 2kyw; +mZ)] +sin @, [a,(W3 — 2k,w, +mf)] =0
and cos ¢, [a; (kywi — 2w, +mPk;)] + cos ¢, [a, (k,wi — 2w, + m3k;,)]
................ (3.4
Equation given in (3.4) will be satisfied identically if the coefficients of sin¢y, sing,, cos¢p;and cos¢, must vanish
separately.
Hence we get
w2 —2k,w, +m? =0
w2 —2k,w, +m?2 =0

........... (3.5)
k,w? — 2w, + m?k,
k,w? —2w, +m2k, =0 (3.6)
From [3.5] and [3.6], we get
k. = w12+m% _ 2w
1 2wq - w12+m% }

_ w22+m% _ 2wy

k, = Tow, wRemd S (3.7

Now, we shall study the general solutions of the entire non-linear equations [2.9] with the supposition that G #0 and
H #0.

For this, the variation of arbitrary constants will be taken into consideration and the method of parameters will be
exploited for our further studies.

Therefore, let us assume that a;,a,,¢; and ¢, are now variables instead of constants in the linear case
Since,
n, =a.sing, +a,sing,
n, = a,K; cos ¢, + a,K;, cos ¢,
1 = a,sing, + a4, cos ¢, +ajsin g, + a, ¢, Cos ¢,

N2 = a; K1€os ¢, — a Ky ¢, sing, + a, K,€08 ¢, — a,K, ¢, sin ¢,

n, =a;wiC08¢, —aw; ¢, Sing, +a; w,C0S g, — a,w, ¢, Sin g,
n, _ —ayKywising, — a,K; ¢, sin g, — ay K,w,sin ¢, — Kyw, ¢, €0S ¢,
.................. (3.8)
Comparing the values of n'land n'zin the system of equation [3.8] and [3.3], we have by subtracting
ay sin g, + a, ¢, COS §, — a;w; COS ¢, +a, sin g, + a, ¢, COS §, — a,'w, Cos ¢, = 0
a; K1cos ¢, — alKlq}'l'sin ¢, + a;K;wisin g, + a, K,C08 ¢, — a,K, qﬁ%sinq}z + a,K,w,sing, =0
.............. (3.9)

Therefore, in two cases, when G# 0, H #0 and G=0 and H=0, substituting the values of and their derivatives from
[3.1], [3.3] and [3.8] and using relations [3.5] and [3.6], the system of equations [2.9] reduces to the form:

ay W, CoS ¢, — a;wy @, Sin ¢, + a;wf sin g, + a, W,C0S ¢, — a,w, 8, Sin ¢, + aywi sing, = G
and — a; K;w,sing, — all('lwqu1 cos ¢, + a, K;wicos ¢, — a, K,w,sin ¢, — a,K,w, '¢'2 cos¢, + a,K,wicosg,
=H
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Multiplying the first equations of [3.9] by K;w; and adding it to the second equation of [3.10], we get
a;sin g, [w Ky — w,K,]1 + a, [¢2 —wy (W, K, — w,K3)cos¢, = H

Again, multiplying the first equation of [3.9] by Kow, and adding it to the 2™ equation of [3.10], we get,
a;[wi Ky — w, K, ]sin ¢, +a1(¢ —-wy)W,K, —w,Ky)cosg, =H (3.12)
Again, multiplying the 2”d equation of [3.9] by w, and then subtracting it from K; times the first equation of [3.10],
we get

ay[w,K; — w; K,]cos ¢, — a2(¢2 - Wz)(W2K1 - W1K2)5in¢2 =K,G e (313)

Lastly, multiplying the 2" equation of [3.9] by w, and then subtracting it from K, times the first equation of [3.10],
we get
a[w K, — wy K 1cos ¢, — a (4, — wi)w, K, —w,Ky)sing, =K,¢6 L (3.14)

Now substituting the values of K; and Kz from [3.7] in the system of equations [3.11], [3.3] and [3.14], we get
Wz —wf wi —wf
al 2 Sl’n¢ + a1(¢ ) T

m; (Wi — w;

)] sing, = K,G

)cosqﬁ =H

2
, [mi(wi —w;
1 2wy w,

2W1W2 )] cos¢, — a1(¢ Wl) [

wi — w3

a1< > )smq} +a2(¢ Wz) (@)cosq} =H

,mi(wsy —w mi;(wy —w
anda, [M] cos¢, — a2(¢ Wz) [M] sing, = K, G
2w, w, 2w, w,
............ (3.15)
After solving these equations for a;, a,, q}' ,and q}'zwe get them in the form:
, —2H . Wi W, 2G
a, = — —w22 _le smq}1 + K, mf w2 2 cos¢
, —2H Wi W, 26
a, = — H sing, + K, —— e w2 7 |cosé,
- 1 —2H Wy W, 26
¢, =wy +a_1[_ w cosg, + K, 2 w2 e cosg,]
. 1 2H Wi W, 2G
and¢2 =w, +a—2[— w COS¢1 - Klm—% W22 W sm¢ ]
............ (3.16)
From [3.2], we have
wt+(m? +m32 —4)w2 +m?m3=0
Which is a quadratic equation in w?
Let w; and w, be its two roots.
Then
wiw? = mZm?
=2 (3.17)
W m .
Substituting the value from (3.17) in the system of equations [3.16], we get
= —[H"sing, + K,G"cos¢, ]
= —[H"sing, + K,G"cos¢,]
' 1 N . .
¢1 =w, +a—1 [—H cosp, + K,G smqﬁl]
. 1
¢, =w, +a_ [—H*cosq}2 + KZG*sinqSZ] e (3.18)
2
Where, H* = —— }
Wy —wy
. 2myG
G = i wD) e (3.19)

Thus, we get new system of four variation equations given by [3.18] considering a;,a,, ¢ and ¢, as variables.
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Now in the system equation [3.18], we put right hand side of the value of H and G from [3.11] and
there after the values of n; and m, from [3.1]. Then the right hand side terms of the expression are expanded into
trigonometrical sums and the averaged values of the variables are taken. In this way, all the terms in the system of
equations [3.18] may be dropped except the free terms,We get a system of equation for the first approximation as

a;=0,a,=0,¢,=wiand ¢ = w; e (3:20)
Where,
1 3 3K,m, K?K,m 6K;m, K3m
X — - |2 -g +Zgz3 222 1272y 02| oKk +3K2K, — —1 212
Wi= W 4(wiw?) [a1< L m, 2m, 4 2 2™ m, m,

= a constant quantity

. _ 1 2 2 6Kimy | Kimy 2 3,3 3Kimp | KiKimpy _
and, w; = w, — 2_w2) [af (—2K; + 3K{K, — m + ) + a5 (K, +5K2 - + ) =

4(W1 m_1 mq
a constant quantity
............... (3.21)
Integrating [3.20], we get
a, = constant = aj , a, = constant = a3, ¢, = w;T + myand ¢ = wiT + m,
.................. (3.22)

Where m; and m, are constants.

Hence, we see that in the equations [3.22], a; and a, remain constants where as the values of ¢; and ¢, are slightly
changed in the first approximation with the change in the frequencies. But it has no effect on stability. Therefore, w
the first approximation of the equations of non-linear oscillations given by [2.9] can be expressed as

n, = aisin(w;T +m,) + a; sin(w;T + m,) and n, = a;K; cos(w; T +m,) + a; K,cos(w; T + m,)

Where, aj, a3, m; and m, are arbitrary constants and w;, w; will be the new frequencies.
Finally, we conclude that the solutions given in [3.23] for the system of equations [2.9] will be stable.
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