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I. INTRODUCTION AND MATHEMATICAL PRELIMINARIES 
Fixed point theory in partially ordered metric spaces has greatly developed in recent times. The fixed points of mappings in 

partially ordered metric space are of vital use in many mathematical problems in applied and pure mathematics. The first step in 
this direction was taken by Ran and Reurings [1]. After that Nieto and Lopez [9], Agarwal et al. [12], O’Regan and Petrusel [8] 
and Lakshmikantham and Ciric [16] established marvellous fixed point results for different type of mappings. In 2011, Binayak 
Choudhury and Metiya [13] proved some multivalued and singlevalued fixed point results in  partially ordered metric spaces. In 
1987 Guo and Lakshmikantham [6] introduced the notion of coupled fixed point. Bhaskar and Lakshmikantham [15] 
reconsidered the concept of coupled fixed point in partially ordered metric space in 2006. 

In this paper we have established some coupled fixed point theorems for mappings satisfying certain different conditions.  
 
To begin, we first recall the definitions and notation that will be needed in the sequel. 
 

Definition 1.1. A partially ordred set is a set X  with a binary operation   denoted by ( , )X   such that for all , ,p q r X  
(i) p p  (reflexivity), 

(ii) p q  and q p p q    (anti-symmetry), 
(iii) p q  and q r p r    (transitivity). 

 
Definition 1.2. An element 2( , )x y X  is called a coupled fixed point of the mapping 2:F X X  if ( , )F x y x  and 

( , )F y x y . 
 

Definition 1.3. A function :[0, ) [0, )     is called an Altering distance function if  the following properties are satisfied: 
(i)   is monotone increasing and continuous, 

(ii) ( ) 0t   if and only if 0t  . 
This control function has been greatly used in metric fixed point theory. Its use and importance can be viewed in the works of 
Khan et al. [11], Sastry and Babu [10], Dutta and Choudhury [4], Choudhury [2], Doric [5], Choudhury and Das [3], Mihet [7] 
and Naidu [14]. 
 
Notation. Let ( , )X   be a partially ordered set. We endow the product space 2X  with the partial order   defined by: 

 For 2( , ), ( , )x y u v X , ( , ) ( , ) ,x y u v x u y u    . 
 

II. MAIN RESULTS 
Theorem 2.1. Let ( , , )X d   be a partially ordered complete metric space, :[0, ) [0, )     is an Altering distance function 
and (0,1)  . Let 2:F X X  be a mapping such that the following conditions are satisfied: 

(i) there exists 2
0 0( , )x y X  such that 0 0 0 0 0 0( , ) ( ( , ), ( , ))x y F x y F y x , 

 
(ii) for 2

1 1 2 2( , ), ( , )x y x y X , 

1 1 2 2( , ) ( , )x y x y  1 1 2 2( , ) ( , )F x y F x y   and 1 1 2 2( , ) ( , )F y x F y x , 
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(iii) If ( , ) ( , )n nx y x y  is non-decreasing in first co-ordinate and non-increasing in second coordinate then 

nx x , ny y   for all n , 

(iv) 2 1 1 1 2 2
1 1 2 2 1 2 1 1 1 2 2 2

( , ( , )) ( , ( , ))( ( ( , ), ( , ))) max ( , ), ( , ( , )), ( , ( , )),
2

d x F x y d x F x yd F x y F x y d x x d x F x y d x F x y 
      

  
 

for either 1 2x x  and 1 2y y  or  1 2x x  and 1 2y y . 
Then F  has a coupled fixed point. 
 

Proof. Let 0 0 1( , )F x y x  and 0 0 1( , )F y x y , then by hypothesis (i) we have 0 0 1 1( , ) ( , )x y x y  
 0 1x x  and 0 1y y .                   (2.1) 

Now by hypothesis (ii) and using equation (2.1), we have  
0 0 1 1( , ) ( , )F x y F x y  and 0 0 1 1( , ) ( , )F y x F y x . 

Let 1 1 2( , )F x y x  and 1 1 2( , )F y x y .  
Then we have 

1 2x x  and 1 2y y .                    (2.2) 
Again using hypothesis (ii) and equation (2.2), we have 

1 1 2 2( , ) ( , )F x y F x y  and 1 1 2 2( , ) ( , )F y x F y x . 
Continuing like this we can construct a monotone non-decreasing sequence { }nx  and monotone non-increasing sequence { }ny  
in X  that is 
  1 2 3 1... ...n nx x x x x      , 
  1 2 3 1... ...n ny y y y y      , 
such that 1( , )n n nF x y x   and 1( , )n n nF y x y   for all n . 
If there exist a positive integer   such that  
  1x x    and 1y y   . 
Then ( , )x y   is a coupled fixed point of F . 
Hence we assume that either 1n nx x   or 1n ny y   for all n . 
First we assume that 1n nx x   for all n . 
Now since 1n nx x   and 1n ny y  , using the hypothesis (iv), we have 

        
1 2 1 1

1 1 1
! 1 1 1

( ( , )) ( ( ( , ), ( , )))

( , ( , )) ( , ( , ))
max ( , ), ( , ( , )), ( , ( , )),

2

n n n n n n

n n n n n n
n n n n n n n n

d x y d F x y F x y

d x F x y d x F x y
d x x d x F x y d x F x y

 



   

  
   



      
  

 

    1 2 1 1 2( ( , )) max ( , ), ( , )n n n n n nd x y d x x d x x       .                (2.3) 

(  2
1 1 2

( , )
max{ ( , ), ( , )}

2
n n

n n n n
d x x

d x x d x x
   ) 

Assume  
1 ! 2( , ) ( , )n n n nd x x d x x    for some n N . 

Then 
1 2 1 2( ( , )) ( ( , ))n n n nd x x d x x      

  1 2( , ) 0n nd x x    
  1 2n nx x    
which gives a contradiction to our assumption that 1n nx x   for all n . 
So  1 2 1( , ) ( , )n n n nd x x d x x    for all n  and 1{ ( , )}n nd x x   is a monotone decreasing sequence of non-negative real numbers. 
    a real number 0p   such that 1( , )n nd x x p   and n  . 
Taking the limit n   and using continuity of  , we have  
 ( ) ( )p p  .                     (2.4) 
  0p    (  otherwise equation (2.4) will lead to a contradiction) 
Hence  1lim ( , ) 0n nn

d x x 
 .                    (2.5) 
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Similar if we assume 1n ny y   for all n  then we will arrived a contradiction and have 
 1lim ( , ) 0n nn

d y y 
 .                    (2.6) 

Now we will show that { }nx  is a Cauchy sequence in X . 
If possible, let { }nx  is not a Cauchy sequence in X . 
Then there exists an 0   such that  
 ( ) ( )( , )n t m td x x   for all t N , ( ) ( )m t n t t  . 
If ( )m t  is the smallest such natural number, then we have 
 ( ) ( )( , )n t m td x x                        (2.7) 
and  

( ) ( ) 1( , )n t m td x x   .                    (2.8) 
Then 
 ( ) ( ) ( ) ( ) 1 ( ) 1 ( )( , ) ( , ) ( , )n t m t n t m t m t m td x x d x x d x x    
  ( ) 1 ( )( , )m t m td x x   .   (by using (2.8))                 (2.9) 
Combining equations (2.7) and (2.9) and taking limit as t   and then using (2.5) we have 
 ( ) ( )lim ( , )n t m tt

d x x 


 .                    (2.10) 

Now  
( ) ( ) ( ) ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( )( , ) ( , ) ( , ) ( , )n t m t n t n t n t m t m t m td x x d x x d x x d x x      . 

Taking limit as t   and using equations (2.5) and (2.10) we get  
 ( ) 1 ( ) 1lim ( , )n t m tt

d x x  
 .                    (2.11) 

Also 
( ) 1 ( ) 1 ( ) 1 ( ) ( ) ( ) ( ) ( ) 1( , ) ( , ) ( , ) ( , )n t m t n t n t n t m t m t m td x x d x x d x x d x x      . 

Again taking limit as t   and using equations (2.5) and (2.10), we get  
 ( ) 1 ( ) 1lim ( , )n t m tt

d x x  
 .                    (2.12) 

Combining (2.11) and (2.12), we have 
 ( ) 1 ( ) 1lim ( , )n t m tt

d x x  
 .                    (2.13) 

Again  
 ( ) ( ) ( ) ( ) 1 ( ) 1 ( )( , ) ( , ) ( , )n t m t n t m t m t m td x x d x x d x x    
and 
 ( ) ( ) 1 ( ) ( ) ( ) ( ) 1( , ) ( , ) ( , )n t m t n t m t m t m td x x d x x d x x   . 
Taking limit as t   and using (2.5) and (2.10), we get 
 ( ) ( ) 1lim ( , )n t m tt

d x x 
 .                    (2.14) 

Again  
 ( ) ( ) ( ) ( ) 1 ( ) 1 ( )( , ) ( , ) ( , )m t n t m t n t n t n td x x d x x d x x    
and 
 ( ) ( ) 1 ( ) ( ) ( ) ( ) 1( , ) ( , ) ( , )m t n t m t n t n t n td x x d x x d x x   . 
Taking limit as t   and using (2.5) and (2.10), we get 
 ( ) ( ) 1lim ( , )m t n tt

d x x 
 .                    (2.15) 

Now  
 ( ) ( )( ) ( ) m t n tm t n t x x    and ( ) ( )m t n ty y  for all t N . 
So using hypothesis (iv), we have 

 
( ) 1 ( ) 1 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ( , )) ( ( ( , ), ( , )))

(max{ ( , ), ( , ( , )), ( , ( , )),

( , ( , )) ( , ( , ))
2

n t m t n t n t m t m t

n t m t n t n t n t m t m t m t

n t m t m t n t m t m t

d x x d F x y F x y

d x x d x F x y d x F x y

d x F x y d x F x y
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                               ( ) ( ) 1 ( ) ( ) 1
( ) ( ) ( ) ( ) 1 ( ) ( ) 1

( , ) ( , )
max ( , ), ( , ), ( , ),

2
n t m t n t m t

n t m t n t n t m t m t

d x x d x x
d x x d x x d x x  

 

   
      

. 

Taking limit t   and using previous equations as required, we get 
 ( ) ( )    , 
which is not possible by definition of  . Hence { }nx  is a Cauchy sequence in X . 
Similarly { }ny  is also a Cauchy sequence in X . But X  is given to be a complete space. So   ,x y X  such that 
 nx x  and ny y .                  (2.16) 
Then by hypothesis (iii) nx x , ny y  for all n N . 
So using hypothesis (iv), we get  

 
( ) 1( ( , ( , )) ( ( ( , ), ( , )))

( , ( , )) ( , ( , ))
max ( , ), ( , ( , )), ( , ( , )), .

2

n t n n

n n n
n n n n

d x F x y d F x y F x y

d x F x y d x F x y
d x x d x F x y d x F x y

 



 

      
  

 

Taking limit as n   and using (2.5) and (2.16), we get 
 ( ( , ( , ))) ( ( , ( , )))d x F x y d x F x y   

( , ( , )) 0d x F x y   
( , )F x y x                     (2.17) 

and 

 
1( ( , ( , )) ( ( ( , ), ( , )))

( , ( , )) ( , ( , ))
max ( , ), ( , ( , )), ( , ( , )),

2

n n n

n n n
n n n n

d y F y x d F y x F y x

d y F y x d y F y x
d y y d y F y x d y F y x

 



 

      
  

 

1
1

( , ) ( , ( , ))
max ( , ), ( , ), ( , ( , )),

2
n n

n n n
d y y d y F y x

d y y d y y d y F y x 


      
  

. 

Now taking limit as n  and using (2.6) and (2.16), we get 
 ( ( , ( , ))) ( ( , ( , )))d y F y x d y F y x   

( , ( , )) 0d y F y x   
( , )F y x y  .                   (2.18) 

Thus from (2.17) and (2.18) we have ( , )F x y x , ( , )F y x y  
  ( , )x y  is the coupled fixed point of F . 
 

In the next theorem we will show that if hypothesis (iii) is removed from Theorem 2.1 and F  is considered as a continuous a 
continuous mapping then still there exists a coupled fixed point. 

 
Theorem 2.2. Let ( , , )X d   be a partially ordered complete metric space,   is an Altering distance function and (0,1)  . Let 

2:F X X  be continuous mapping such that the following conditions are satisfied: 
(i) there exists 2

0 0( , )x y X  such that 0 0 0 0 0 0( , ) ( ( , ), ( , ))x y F x y F y x , 
(ii) for 2

1 1 2 2( , ), ( , )x y x y X , 

1 1 2 2 1 1 2 2( , ) ( , ) ( , ) ( , )x y x y F x y F x y    and 1 1 2 2( , ) ( , )F y x F y x , 

(iii) 2 1 1 1 2 2
1 1 2 2 1 2 1 1 1 2 2 2

( , ( , )) ( , ( , ))( ( ( , ), ( , )) max ( , ), ( , ( , )), ( , ( , )),
2

d x F x y d x F x yd F x y F x y d x x d x F x y d x F x y 
      

  
 

for either 1 2x x  and 1 2y y  or 1 2x x  and 1 2y y . 
Then F  has a coupled fixed point. 
 
Proof. From the proof of the Theorem 2.1, we find that { }nx  is a monotone non-decreasing Cauchy sequence converging to 
x X  and { }ny  is monotone non-increasing Cauchy sequence converging to y X . 

That is  
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 lim nn
x x


  and lim nn

y y


 . 

Then continuity of F  implies that  
 1lim lim ( , ) ( , )n n nn n

x x F x y F x y 
    

and 
 1lim lim ( , ) ( , )n n nn n

y y F y x F y x 
   . 

Hence we find ( , )x y X   such that ( , )F x y x   and ( , )F y x y  
  ( , )x y  is the coupled fixed point of F . 
 
Theorem 2.3. Let ( , , )X d   be a finally ordered complete metric space and :[0, ) [0, )     is an Altering distance function. 
Let 2:F X X  be a mapping such that the following conditions are satisfied: 

(i) there exists 2
0 0( , )x y X  such that 0 0 0 0 0 0( , ) ( ( , ), ( , ))x y F x y F y x , 

(ii) for 2
1 1 2 2( , ), ( , )x y x y X , 

 1 1 2 2 1 1 2 2( , ) ( , ) ( , ) ( , )x y x y F x y F x y    and 1 1 2 2( , ) ( , )F y x F y x , 
(iii) If ( , ) ( , )n nx y x y  is monotone non-decreasing in first co-ordinate and monotone non-increasing in second co-

ordinate then nx x , ny y  for all n , 

(iv) 2 1 1 1 2 2
1 1 2 2 1 2 1 1 1 2 2 2

( , ( , )) ( , ( , ))( ( ( , ), ( , )) max ( , ), ( , ( , )), ( , ( , )),
2

d x F x y d x F x yd F x y F x y d x x d x F x y d x F x y 
      

  
 

       1 2 2 2 2max ( , ), ( , ( , ))d x x d x F x y  

for either 1 1 2 2( , ) ( , )x y x y  or 2 2 1 1( , ) ( , )x y x y , where :[0, ) [0, )     is any continuous function with ( ) 0t   iff 0t  .  
Then F  has a coupled fixed point. 
 
Proof. We will construct the same sequence { }nx  and { }ny  as in Theorem 2.1. 

 
Now, if there exist a positive integer   such that 1x x    and  1y y    then ( , )x y   is a coupled fixed point of F . Hence 

we assume that either 1n nx x   or 1n ny y   for all 0n  . First we assume that 1n nx x   for all 0n  . 
Now since 1n nx x  , 1n ny y  , so using the hypothesis (iv), we have 

1 2 1 1( ( , )) ( ( ( , ), ( , )))n n n n n nd x x d F x y F x y      

                         1 1 1
1 1 1 1

( , ( , )) ( , ( , ))
max ( , ), ( , ( , )), ( , ( , )),

2
n n n n n n

n n n n n n n n
d x F x y d x F x y

d x x d x F x y d x F x y   
   

      
  

 

        1 1 1 1max ( , ), ( , ( , ))n n n n nd x x d x F x y      
 

                         1 1 2
1 1 1 2

( , ) ( , )
max ( , ), ( , ), ( , ),

2
n n n n

n n n n n n
d x x d x x

d x x d x x d x x   
   

      
  

 

        1 1 2max ( , ), ( , )n n n nd x x d x x     

                              1 1 2 1 1 2max ( , ), ( , ) max ( , ), ( , )n n n n n n n nd x x d x x d x x d x x         

    (   2
1 1 2

( , )
max ( , ), ( , )

2
n n

n n n n
d x x

d x x d x x
   ) 

 
         1 2 1 1 2 1 1 2( , ) max ( , ), ( , ) max ( , ), ( , )n n n n n n n n n nd x x d x x d x x d x x d x x                      (2.19) 

Suppose 1 1 2( , ) ( , )n n n nd x x d x x   , for some positive integer n . 
Then (2.19) implies  
 1 2 1 2 1 2( ( , )) ( ( , )) ( ( , ))n n n n n nd x x d x x d x x          

1 2( ( , )) 0n nd x x     

1 2( , ) 0n nd x x    
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1 2n nx x    which is contradiction to our assumption that 1n nx x   for all n  

1 2 1( , ) ( , )n n n nd x x d x x     for all n                  (2.20) 
and 1{ ( , )}n nd x x   is a monotone decreasing sequence of non-negative real numbers  
  there exist a real number 0p   such that  
  1lim ( , )n nn

d x x p
 .                  (2.21) 

Now using (2.19) and (2.20), we have 
1 2 1 1( ( , )) ( ( , )) ( ( , ))n n n n n nd x x d x x d x x       . 

Taking limit n   and using (2.21) 
  ( ) ( ) ( )p p p     (  ,   are continuous mappings) 
which will lead to a contradiction unless 0p   
   1lim ( , ) 0n nn

d x x 
 .                  (2.22) 

Similarly if we assume 1n ny y   for all n . Then we will arrive a contraction and we get  
  1lim ( , ) 0n nn

d y y 
                   (2.23) 

Now we will show that  { }nx  and { }ny  are Cauchy sequences in X . 
Firstly, if { }nx  is not a Cauchy sequence in X , then using the same arguments as in Theorem 2.1, we have 
  ( ) ( )lim ( , )n t m tn

d x x 


 ,                  (2.24) 

  ( ) 1 ( ) 1lim ( , )n t m tn
d x x  

 ,                  (2.25) 

  ( ) ( ) 1lim ( , )n t m tn
d x x 

 ,                  (2.26) 

  ( ) ( ) 1lim ( , )m t n tn
d x x 

 .                  (2.27) 

Now ( ) ( )( ) ( ) m t n tm t n t x x    and  ( ) ( )m t n ty y  for all t N . 
Using condition (iv), we get 

( ) 1 ( ) 1 ( ) ( ) ( ) ( )( ( , )) ( ( ( , ), ( , )))n t m t n t n t m t m td x x d F x y F x y     

              ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( , ( , )) ( , ( , ))
max ( , ), ( , ( , )), ( , ( , )),

2
m t n t n t n t m t m t

n t m t n t n t n t m t m t m t

d x F x y d x F x y
d x x d x F x y d x F x y

   
      

 

        ( ) ( ) ( ) ( ) ( )max ( , ), ( , ( , ))n t m t m t m t m td x x d x F x y  

                         ( ) ( ) 1 ( ) ( ) 1
( ) ( ) ( ) ( ) 1 ( ) ( ) 1

( , ) ( , )
max ( , ), ( , ), ( , ),

2
m t n t n t m t

n t m t n t n t m t m t

d x x d x x
d x x d x x d x x  

 

   
      

 

        ( ) ( ) ( ) ( ) 1max ( , ), ( , )n t m t m t m td x x d x x   

Taking t   and using (2.21)-(2.27), we have 
  ( ) ( ) ( )        
which is not possible by definition of  . 
Hence { }nx  is a Cauchy sequence in X . 
Similarly { }ny  is also a Cauchy sequence in X . 
But X  is given to be complete so   ,x y X  such that  

nx x  and ny y  as n  .                          (2.28) 
Then by hypothesis (iii) nx x  and ny y  for all n . 
 
Now we can use condition (iv) and get  

1( ( , ( , )) ( ( ( , ), ( , )))n n nd x F x y d F x y F x y    

                             
( , ( , )) ( , ( , ))

max ( , ), ( , ( , )), ( , ( , )),
2

n n n
n n n n

d x F x y d x F x y
d x x d x F x y d x F x y

      
  

 

            max ( , ), ( , ( , ))nd x x d x F x y . 
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Taking limit n   and using (2.22) and (2.28), we get  
( ( , ( , )) ( ( , ( , ))) ( ( , ( , )))d x F x y d x F x y d x F x y      (  ,   are continuous) 

which will lead to a contradiction unless ( , ( , )) 0d x F x y   
  ( , )F x y x .                   (2.29) 
Also 
 

1( ( , ( , )) ( ( ( , ), ( , )))n n nd y F y x d F y x F y x    

                             
( , ( , )) ( , ( , ))

max ( , ), ( , ( , )), ( , ( , )),
2

n n n
n n n n

d y F y x d y F y x
d y y d y F y x d y F y x

      
  

 

            max ( , ), ( , ( , ))nd y y d y F y x  

                             1
1

( , ) ( , ( , ))
max ( , ), ( , ), ( , ( , )),

2
n n

n n n
d y y d y F y x

d y y d y y d y F y x 


      
  

. 

Taking limit as n   and using (2.23) and (2.28), we get 
( ( , ( , )) ( ( , ( , ))) ( ( , ( , )))d y F y x d y F y x d y F y x     

which will lead to a contradiction unless  
( , ( , )) 0d y F y x   

  ( , )F y x y .                   (2.30) 
Thus we get 2( , )x y X  such that ( , )F x y x  and ( , )F y x y . (using (2.29) and (2.30)) 
Hence ( , )x y  is a coupled fixed point of F . 
 
In the next theorem, we will show that if (iii) hypothesis of Theorem 2.3 is replaced by continuity of F , then still F  has a 
coupled fixed point. 
 
Theorem 2.4.  Let ( , , )X d   be a partially ordered complete metric space and : [0, ) [0, )     be an Altering distance 
function. Let 2:F X X  be a continuous mapping such that the following conditions holds: 

(i) there exists 2
0 0( , )x y X  such that 0 0 0 0 0 0( , ) ( ( , ), ( , ))x y F x y F y x , 

(ii) for 2
1 1 2 2( , ), ( , )x y x y X , 

 1 1 2 2 1 1 2 2( , ) ( , ) ( , ) ( , )x y x y F x y F x y    and 1 1 2 2( , ) ( , )F y x F y x  

(iii) 2 1 1 1 2 2
1 1 2 2 1 2 1 1 1 2 2 2

( , ( , )) ( , ( , ))
( ( ( , ), ( , )) max ( , ), ( , ( , )), ( , ( , )),

2
d x F x y d x F x yd F x y F x y d x x d x F x y d x F x y 

      
  

 

       1 2 2 2 2max ( , ), ( , ( , ))d x x d x F x y  

for either 1 1 2 2( , ) ( , )x y x y  or 2 2 1 1( , ) ( , )x y x y , where :[0, ) [0, )     is any continuous function with ( ) 0t   iff 0t  .  
Then F  has a coupled fixed point. 

 
Proof. From the proof of Theorem 2.1, we find sequence { }nx  and { }ny  such that  
 

  lim nn
x x


  and lim nn

y y


 . 

Then continuity of F  implies that  
 1lim lim ( , ) ( , )n n nn n

x x F x y F x y 
    

And 
 
 1lim lim ( , ) ( , )n n nn n

y y F y x F y x 
   . 

Hence we find 2( , )x y X   such that  
 ( , )F x y x  and ( , )F y x y  
  ( , )x y  is the coupled fixed point of F . 
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