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Abstract— Partial Least Squares Regression (PLSR) is a linear regression technique developed to relate many independent variables 
to one or several dependent variables. Robust methods are introduced to reduce or remove the effects of outlying data points. In the 
previous studies in robust PLSR field it has been mentioned that if the sample covariance matrix is properly robustified further 
robustification of the linear regression steps of the PLS1 algorithm (PLSR with univariate dependent variable) becomes unnecessary. 
Therefore, the purpose of this study is to propose a new approach to robust PLSR based on statistical procedures for covariance 
matrix robustification by selecting the well-known S-estimators. Both simulation results and an analysis on a real data set, which is 
used in robust PLSR literature frequently, showing the effectiveness, success in fitting to regular data points and predictive power of 
the new proposed robust PLSR method.  
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I. Introduction 
Partial Least Squares (PLS) is a useful procedure for relating a set of dependent variables to many independent variables. It 

could be seen as a general dimension reduction technique which takes into account the linear relationship between the 
dependent variables and the independent variables. It is well known that the popular algorithms for PLS regression (NIPALS 
and SIMPLS) are very sensitive to outliers in the dataset. For univariate or multivariate dependent variables, several robustified 
versions have already been proposed. Wakeling and Macfie (1992) worked with the PLS with multivariate dependent variables 
(which was called PLS2) and their idea was to replace the set of regressions involved in the standard PLS2 algorithm by M 
estimates based on weighted regressions. Griep et al. (1995) compared least median of squares (LMS), Siegel’s repeated median 
(RM) and iterative reweighted least squares (IRLS) for PLS with univariate dependent variable (PLS1 algorithm), but these 
methods are not resistant to high leverage outliers. Procedures combining robust covariance matrices and robust regression 
methods have been proposed by Gil and Romera (1998), Hubert and Vanden Branden (2003). González et al. (2009) also 
concentrated in the case of univariate response (PLS1) and showed that if the sample covariance matrix is properly robustified 
the PLS1 algorithm will be robust and, therefore, further robustification of the linear regression steps of the PLS1 algorithm is 
unnecessary [2, 3, 5]. 

In this study, similar to Gil and Romera (1998) and González et al. (2009) studies, we also concentrate in the case of 
univariate response (PLS1) and we present a procedure which applies the standard PLS1 algorithm to a robust covariance 
matrix. In our study, we estimate the covariance matrix used in PLS1 algorithm robustly by using well-known S-estimators. 

The rest of the paper is organized as follows. Section 2 reviews briefly the PLS1 algorithm for an one-dimensional dependent 
variable and analyzes the implication of the robustification of the covariance matrix for the regression steps. Section 3 presents 
the new approach to robust PLSR analysis. Section 4 reports a simulation study where the performance of the new robust 
method is compared to classical method and other four robust methods existing in robust PLSR literature. Section 5 illustrates 
the performance of the proposed method on a well-known set of a real data in literature. Conclusions are reported in Section 6. 

II. The Classical PLS1 Algorithm  

It is supposed that we have a sample of size n of a 1+p dimensional vector   Xyz , , which could be decomposed as a set 
of p independent variables, x and a univariate dependent variable y. Throughout this paper, matrices are denoted by bold capital 
letters and vectors are denoted by bold lowercase letters. Let zS , be the sample covariance matrix of z, consisting of the 

elements 








 
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XXy,

Xy,y
z Ss

ss
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2
, where Xy,s  is the 1p  vector of covariances between y and the x variables. The aim of this 

study is to estimate the linear regression xβy  ˆˆ , and it is assumed that the dependent variable can be linearly explained by a 
set of a components  k1 ,, tt  , with k<<p, which are linear functions of the x variables. Hence, calling X the pn  data matrix 
of the independent variables, and ix  to its ith row, the following model showed by Eq. (2.1) and Eq. (2.2) holds [3]. 
 

iεPtx  ii                                                                                                                                                                                 (2.1) 
 

iii ηtqy                                                                                                                                                                                (2.2) 
 



International Journal of Mathematics Trends and Technology – Volume 9  Number 3 – May  2014 

          ISSN: 2231-5373                   http://www.ijmttjournal.org                              Page 198 
 

Here, P is the kp   matrix of the loadings of the vector   ik1ii t,,t t  and q is the k-dimensional vector of the y-loadings. 
The vectors iε  and iη  have zero mean, follow normal distributions and are uncorrelated. The component matrix 

  k1 ,, ttT   is not directly observed and should be estimated. Then, it can be shown that the maximum likelihood 
estimation of the T matrix is given as in Eq. (2.3) [3]. 
 

kXWT                                                                                                                                                                                       (2.3) 
 

Here the loading matrix  k21k ,,, wwwW   is the kp  matrix of coefficients and the vectors ki1,i w , are the 
solution of Eq. (2.4) under the constraint in Eq. (2.5) with y,xsw 1 . Consequently, we can conclude that components 

 k1 ,, tt   are orthogonal [3]. 
 

 yXww
w

,covmaxarg 2
i                                                                                                                                                          (2.4) 

 
1ww  and 0ji  wSw x    for ij1                                                                                                                                    (2.5) 

 
It can be shown that vectors iw  are found as the eigenvectors linked to the largest eigenvalues of the matrix is given as in Eq. 

(2.6). 
 

   xy,xy,x ssPI  i                                                                                                                                                                        (2.6) 
 

 iXP  is the projection matrix on the space spanned by iWSX , given by          



 



i

1

iiii WSWSWSWSP xxxxx . From 

these results it is easy to see that the vectors iw  can be computed recursively as in below. 
 

xy,sw 1                                                                                                                                                                                    (2.7) 
 

  ki1,i
1

iii1i  
 xy,xxxy, sWWSWWSsw                                                                                                                (2.8) 

 
It could be mentioned that by using the expressions given by Equations (2.7) and (2.8), it is not necessary to calculate the PLS 

components it . In each step of the algorithm, 1iw  only depends on the value of the i previous vectors i21 ,,, www  , on xS  
and on xy,s . Moreover, as 1w  only depends on y,xs , the calculation of W completely fixed by the values of xS  and xy,s . 
Finally, as the regression coefficients in Eq. (2.2) are uncorrelated, due to the uncorrelation of the t variables, it is easy to see 
that the regression coefficients PLS

kβ̂  are given by Eq. (2.9) [3]. 
 

  xy,x sWWSWWβ k
1

kkk
PLS
k

ˆ                                                                                                                                                 (2.9) 
 

The application of this algorithm can be seen as a two step procedure: (1) the weights iw  that define the new orthogonal 
regressor it , are computed with Equations (2.7) and (2.8) by using the covariance matrix of the observations; (2) the regression 
coefficients iq  are computed from a simple regression between the response, y and the regressor it . As it is shown in Equation 
(2.9), these two steps depend only on the covariance matrix of the observations and it may be thought that if this matrix is 
properly robustified the procedure will be robust [3]. 

III. A New Approach to Robust Partial Least Squares Regression Analysis 
In this section, following the idea of the methods proposed by Gil and Romera (1998) and González et al. (2009) we propose 

a new approach to robust PLSR by using S-estimators in order to robustify the sample covariance matrix, zS , in the PLS1 
algorithm. Thus, firstly, we will briefly recall the definition of an S-estimator of multivariate location and scatter. Then, we will 
give detailed information about FastS algorithm used for calculating multivariate S-estimators for location and scatter. Finally, 
we will give the three steps of our new proposed robust PLSR method which we named as ‘PLS-Smult’ [8]. 

S-estimators for multivariate location and scatter have been studied by Davies (1987), Rousseeuw and Leroy (1987) and 
Lopuhaä (1989). S-estimators for multivariate location and scatter are highly robust with breakdown value (BDP) up to 50%. 
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We briefly recall the definition of an S-estimator of multivariate location and scatter. For a sample pzz n1 ,, , an            

S-estimator is defined as the couple  zz
~

,~ Σµ  which minimizes zC  under the condition in Eq. (3.1) 
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 mzCmz                                                                                                                                     (3.1) 

 
over all  zC,zm  where pzm  and Cz, is a pp   symmetric positive definite (SPD) matrix. In order to obtain positive 
breakdown estimates, -function should satisfy the following conditions [6, 8, 10]: 
 
1. -function is symmetric around zero and twice continuously differentiable 
2. -function is strictly increasing on  c,0  for some 0c  , constant on  ,c  and   00  .  
 

For -function one often chooses the function is given in Eq. (3.2). Here c>0 is an appropriate and a user-chosen tuning 
constant. The derivative of this function is known as Tukey’s bisquare function is shown as in Eq. (3.3) [6, 8, 10]: 
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                                                                                                                                      (3.2) 
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Lopuhaä and Rousseeuw (1991) showed that the BDP of a multivariate S-estimator is  c
b


. The constant b could be 

computed as   zE
0F   where  pI0,NF0   to ensure consistency at the normal model. Therefore, under the normal model b 

can be computed as in Eq. (3.4). 
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Here 2

p  is the cdf of the 2  with p  degrees of freedom. The value of the corresponding tuning parameters for a given 
BDPs between 0% and 50% could be found in Rousseeuw and Yohai (1984). For example, for the BDPs 0.50, 0.25, 0.20, 0.15, 
the corresponding c values are 1.5476, 2.937, 3.42, 4.00, respectively [6, 8, 10]. 

The FastS algorithm, which was developed by Salibian-Barrera and Yohai (2006) for regression S-estimators, was extended 
to multivariate S-estimators for location and scatter by Salibian-Barrera et al. (2006) [6]. 

A. The FastS Algorithm for Multivariate Location and Scatter 

In this section, the main idea of the FastS algorithm will be layed out. Firstly, the Cz in Eq. (3.1) is written as z
2
zΓ  with 

1z Γ  and p2/1
zz


 Σ , so that the equivalent objective is to find the triplet that minimizes s under the restriction  
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over all  s,, zz Gm  where pm z , Gz is a pp   SPD matrix with 1z G  and s is a positive scalar. The location and 

scatter estimates are then  z
2
zz
~~,~ Γµ   [6, 8]. 



International Journal of Mathematics Trends and Technology – Volume 9  Number 3 – May  2014 

          ISSN: 2231-5373                   http://www.ijmttjournal.org                              Page 200 
 

The algorithm starts with N initial estimates              0
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size 1p   that have a covariance matrix with non-zero determinant, and calculating the classical mean  0~
lµ  and covariance 
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lΣ  of the lth subset [6, 8]. 
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are refined by performing k so-called I-steps, resulting in [6, 8]. 
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The jth I-step to refine the estimate       1j1j1j ~,
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3. Compute the weighted mean  j~
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After performing k I-steps, the scale  k~

l  is improved for each       kkk ~,
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until convergence while keeping  k~

lµ  and  k~
lΓ  fixed. The refined estimates              BBBBBB ~,
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by solving Eq. (3.7). The first v scales     ,,1,~ k ll  are always computed, but for l >  the lth scale is only computed if Eq. 
(3.8) holds. 
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Here A is the maximum of the  best scales that were fully iterated so far. This idea was first developed by Yohai and Zamar 

(1991). The  estimates              BBBBBB ~,
~
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  ΓµΓµ 111  with the smallest scales need to be refined until convergence 

using I-steps as described above, and the final estimate       FFF ~,
~

,~ Γµ  is the one with the smallest scale after full refinement. 

The final estimate for the covariance matrix z is then       F2FF ~~~ ΓΣ   [6, 8].The FastS algorithm code, which was written by 
Riani et al. (2012), could be found in MATLAB FSDA Toolbox and it was named as ‘Smult’ [9]. 
 

In this study, firstly, by using robust covariance estimator obtained by using FastS algorithm, the robust covariance estimator 
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2
 is obtained. Then, by using robust covariance estimator z

~
S  in the alternative definition of PLS1 

algorithm given between Equations (2.7)-(2.9), a new robust PLSR method named as ‘PLS-Smult’ is proposed. The steps of the 
PLS-Smult algorithm could be given as in Eq. (3.9) [8]. 
 



International Journal of Mathematics Trends and Technology – Volume 9  Number 3 – May  2014 

          ISSN: 2231-5373                   http://www.ijmttjournal.org                              Page 201 
 

 
  x,yk

1
kxkk

SmultPLS
k

x,yi
1

ixiixx,y1i

x,y1

~~ˆ

ki1,~~~~

~

sWWSWWβ

sWWSWWSsw

sw










                                                                                                                   (3.9) 

 
The x,y

~s  and X
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S  robust covariance estimations could be obtained by decomposing the robust covariance estimation of 
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 [8]. 

IV. Simulation Study 
In the previous section, the new proposed robust PLSR method ‘PLS-Smult’ is explained in detail. In this section, the 

comparison of PLS-Smult with other four robust PLSR methods existing in literature is shown in order to validate the good 
properties of the new PLS robusification. Hence, in this study, five robust PLSR procedures are compared to the classical PLSR 
method. The first one, RSIMPLS, is the algorithm proposed by Hubert and Vanden Branden (2003) [5].The second one, PRM, 
is the partial robust M-estimator proposed by Serneels et al. (2006) [11]. The third one, PLS-SD, is the one proposed by Gil and 
Romera (1998) [2]. The fourth one, PLS-KurSD, is the one proposed by González et al. (2009) [3]. The last robust PLSR 
method is PLS-Smult, is the one proposed in this paper. In this study, following the study of Hubert et al. (2012) the number of 
subsets is chosen as N=500 for ‘Smult’ function used in PLS-Smult algorithm. 

We compare efficiency, goodness-of-fit (GOF) and predictive ability of classical PLSR, robust RSIMPLS, PRM, PLS-SD, 
PLS-KurSD and new proposed robust PLS-Smult methods by performing a simulation study on uncontaminated and 
contaminated data sets. 

According to the initial models given in Equations (2.1) and (2.2), and following a simulation design similar as the one 
described in Engelen et al. (2003), we have generated the data sets as in Eq. (4.1). 
 

 
 

 10,N

,N







1,2

pppp,2

t22

1.0,N

TAy
Ι0ΙTX

Σ0T
                                                                                                                                                        (4.1) 

 
Here,   1j,ip,k Ι  for ji   and   0j,ip,k Ι , otherwise; pI  is the pp  dimensional identity matrix;   0,020  is a          

two-dimensional vector of zeros and   1,11,2A  is a two-dimensional vector of ones and T is the 2n   dimensional 

component matrix. Furthermore, we select n=50, p=10 and we set 



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


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08

tΣ . 

Next, contamination is added by replacing 10% of the observations by different types of outliers. The contaminated parts of 
the data are denoted as T , X  and Y . 
 

1. Bad leverage points were constructed by substituting   




  t2 ,15,15N ΣT :  pppp,2 1.0,N Ι0ΙTX   . However, the 

corresponding y-values did not change. 
 
2. Vertical outliers have uncontaminated x-values, but their y-values were changed by adjusting the error term: 

 1.0,15N1,2  TAY .  
 

For each situation, m=1000 data sets were generated and they were analyzed with k=1; 2 and 3 components. The efficiency of 
the considered methods is evaluated by means of the MSE of the estimated regression parameters β̂  that is defined as in Eq. 
(4.2). Moreover, it is clear that the true parameter vector is determined as 1,22,p1,p AIβ   [1]. 
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Here  l

kβ̂  denotes the estimated parameter based on k components in the lth simulation. The MSE indicates to what extent the 
slope and intercept are correctly estimated. Therefore, the aim is to obtain a MSE value close to zero. Furthermore, we are 
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interested on how well the methods fit the regular data points. Because of the simulation settings, we know exactly their indices 
as we store in the set rG . Then, the GOF criterion is defined as in Eq. (4.3). Here k,ir  is the residual of the ith observation 
when k components are computed. The objective is to obtain a GOF value close to 1 [1]. 
 

 

 iGi

iGi
k yvar

k,rvar
1GOF

r

r



                                                                                                                                                                  (4.3) 

The predictive ability of the methods could be measured by means of the Root Mean Squared Error (RMSE). First a test set 
Gt of uncontaminated data points with size nt=50 is generated and then Eq. (4.4) is computed. Here, k,iŷ  is the predicted          
y-value of observation i from the test set when the regression parameter estimates are based on the training set (X, Y) of size n 
and k components are retained in the model. The optimal number of components is often selected as that k for which this RMSE 
value is minimal [1]. 
 

 



tn

1i

2
k,ii

t
k ŷy

n
1RMSE                                                                                                                                                   (4.4) 

 
The results of the simulations are shown in Tables I-III. Table I shows that in case of no contamination is added and when 

there is only k=1 component is selected, although RSIMPLS method performs better than classical PLSR method in terms of 
efficiency and predictive ability, the other four robust PLSR methods (including the new proposed robust PLS-Smult method) 
have nearly close performance to classical method in terms of efficiency, fitting to data and predictive ability. When only k=2 
components are retained in the model, PRM and new proposed robust PLS-Smult methods have nearly close performance to 
classical method in terms of efficiency and predictive ability. When the model with k=3 is examined, though robust RSIMPLS 
and PRM methods are better than classical PLSR method in terms of efficiency and showing a close performance to classical 
method in terms of predictive ability, it could be mentioned that the classical PLSR method outperforms the other three robust 
PLSR methods (including PLS-Smult) in terms of efficiency and predictive ability. Overall, when no contamination is added, 
the classical method performs somewhat better than their robust versions, as it would be expected. 
 

Table I The Sample Size is n=50 and p=10, No Contamination. 

Number of Components  PLSR RSIMPLS PRM PLS- 
SD 

PLS-
KurSD PLS-Smult 

k=1 

MSE 0.5526 0.5352 0.5597 0.5532 0.5645 0.5526 

GOF 0.7982 0.7997 0.7960 0.7970 0.7930 0.7977 

RMSE 1.4925 1.4845 1.4977 1.4949 1.5085 1.4935 

        

k=2 

MSE 0.0338 0.0519 0.0357 0.0432 0.0730 0.0379 

GOF 0.8935 0.8916 0.8921 0.8922 0.8883 0.8930 

RMSE 1.1135 1.1242 1.1165 1.1200 1.1380 1.1162 

        

k=3 

MSE 1.7041 1.4097 1.5228 1.9331 3.1495 1.8428 

GOF 0.9082 0.9007 0.9038 0.9029 0.8832 0.9057 

RMSE 1.1883 1.1860 1.1829 1.2021 1.2760 1.1973 
 

It could be seen from both Table II and Table III that when the data set is contaminated, classical PLSR method clearly break 
downs. The MSE of the regression parameter estimates for classical method increases drastically and even attains their 
minimum at k=1. The GOF values for classical PLSR method are very low, especially when the data contain bad leverage 
points. The low GOF values mean that the regular data points are badly fitted. The high RMSE values indicate the low 
predictive ability of the classical method.  

Table II shows that when the data contain bad leverage points, the performance of classical PLSR method in terms of 
efficiency, fitting to data and predictive ability decrease drastically against robust methods for k=1, k=2 and k=3. The MSE of 
the regression parameter estimates for classical method increase drastically and even attain their minimum at k=1. When the 
GOF values of methods are examined for each of the number of components (k=1, 2 3), it is seen that the values related to 
classical method is lower than the robust methods as it is expected. This shows that the regular data points are badly fitted for 
classical PLSR method.  

It is obvious from Table II that when k=1, k=2 or k=3, the new proposed robust PLS-Smult method outperforms robust PRM, 
PLS-SD and PLS-KurSD methods in terms of efficiency, fitting to data and predictive ability. Consequently, for this simulation 
setting in the presence of 10% bad leverage points in the data set, the superiority of new proposed robust PLS-Smult method 
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against robust PRM, PLS-SD and PLS-KurSD methods in terms of efficiency, fitting to data and predictive ability could be seen 
clearly. 

 
Table II The Sample Size is n=50 and p=10, 10% Bad Leverage Points. 

Number of Components  PLSR RSIMPLS PRM PLS 
-SD 

PLS-
KurSD 

PLS 
-Smult 

k=1 

MSE 1.5875 0.5107 0.6115 0.5867 0.5694 0.5561 

GOF 0.2874 0.8087 0.7894 0.7955 0.7967 0.8023 

RMSE 2.7942 1.4646 1.5389 1.5145 1.5079 1.4931 

        

k=2 

MSE 2.3084 0.0508 0.1136 0.2354 0.0891 0.0404 

GOF 0.3992 0.8937 0.8827 0.8639 0.8872 0.8944 

RMSE 2.6040 1.1226 1.1688 1.2607 1.1470 1.1162 

        

k=3 

MSE 12.5550 1.6954 5.7283 3.1187 3.0885 1.9656 

GOF 0.4713 0.9046 0.7351 0.8673 0.8882 0.9087 

RMSE 2.7935 1.1932 1.9097 1.4121 1.2794 1.2008 

 
Table III shows that the classical PLSR method has a very low efficiency and predictive ability, much badly fitting to data 

than the five robust PLSR methods (including PLS-Smult) in the presence of vertical outliers in the model with k=1, 2 or 3 
components. Especially when the model with k=3 is examined, it is seen that the MSE value of classical method (29.0442) is 
higher than the MSE values of the five robust methods. RSIMPLS method is the forefront robust method in terms of efficiency 
and predictive ability for k=1, however, the new proposed robust PLSR method shows a close performance to the robust PRM,  
PLS-SD and PLS-KurSD methods. When k=2 components are retained in the model, PLS-Smult method is more efficient, 
fitting to data better and it has a higher predictive ability than PLS-KurSD method. Furthermore, for the model with k=2 
components, the new proposed robust PLS-Smult, robust RSIMPLS and PRM are forefront methods especially in terms of 
efficiency and predictive ability. For the model with k=3 components, it is seen that the new proposed robust PLS-Smult 
method is more efficient and it has a higher predictive ability than robust PLS-SD and PLS-KurSD methods existing in 
literature. 
 

Table III The Sample Size is n=50 and p=10, 10% Vertical Outliers. 

Number of Components  PLSR RSIMPLS PRM PLS 
-SD 

PLS-
KurSD 

PLS 
-Smult 

k=1 

MSE 0.6133 0.4910 0.5419 0.5487 0.5543 0.5465 

GOF 0.7613 0.8126 0.8027 0.8019 0.7984 0.8034 

RMSE 1.6175 1.4485 1.4860 1.4886 1.4956 1.4840 

        

k=2 

MSE 1.1477 0.0517 0.0428 0.0549 0.2505 0.0406 

GOF 0.8132 0.8942 0.8932 0.8926 0.8868 0.8950 

RMSE 1.4543 1.1198 1.1189 1.1270 1.1460 1.1135 

        

k=3 

MSE 29.0442 1.6097 1.8694 2.6334 4.6291 1.8839 

GOF 0.6241 0.9050 0.9043 0.9000 0.8723 0.9089 

RMSE 2.2290 1.1933 1.2033 1.2438 1.3276 1.1998 

 
Both GOF and RMSE appear to be good criteria to select the optimal number of components ‘kopt’. In this study, generally, it 

is clearly seen from Tables I-III that the differences GOF3-GOF2 are very small compared to GOF2-GOF1, however, as it is 
mentioned in Engelen et al. (2003) study it could not be concluded that kopt should be chosen for which GOFk is maximal. On 
the other hand, the minimal value of RMSE is always reached at the k=2. This suggesting to select k such that RMSEk is 
minimal, therefore, kopt=2 is selected [1]. If Table II and Table III are examined together, it is concluded that in case of the data 
set is contaminated by 10% of bad leverage points or vertical outliers, it is clear that the new proposed robust PLS-Smult is one 
of the most efficient methods for kopt=2. The new proposed robust PLS-Smult method is more efficient and it has a higher 
predictive ability than robust RSIMPLS, PRM, PLS-SD and PLS-KurSD methods in case of the data set is contaminated by bad 
leverage points and kopt=2 is selected. Moreover, when the data set is contaminated by vertical outliers and kopt=2 is selected, 
PLS-Smult and PRM are the forefront methods with their performance in terms of efficiency and predictive ability. 
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V. An Example: Fish Data 
In this section, the new proposed robust PLSR method and four robust PLSR methods existing in the literature will be 

compared on a real data including outliers in terms of goodness-of-fit and predictive ability by using Eq. (4.3) and Eq. (4.4). For 
this purpose, the fish data which was given in Naes (1985) will be used. The fish data comprise 45 observations and the last 7 
are outliers (in the words of Næs, ‘abnormal samples’). In this example, fat concentration (percentage, %) of 45 fish samples 
(rainbow trout) and independent variables of the absorbance at 9 Near Infrared Reflectance (NIR) wavelengths measured after 
sample homogenisation. The aim of the analysis made on this data set is to model the relationships between the fat 
concentration (one dependent variable) and these nine spectrums (independent variables). In this study, the data set is divided 
into two parts. The first 5 observations are the test set and the other remained 40 samples are the training set [2, 4, 7]. 

Firstly, similar to the our simulation studies, while computing the GOF values 7 outliers are removed from training set that 
occurs of 40 samples. However, while computing the RMSE value the models are constituted using the training set including 
the 7 outliers. Then, by using the regression coefficients obtained from these models, the predictions are made from clean test 
set that occurs of 5 samples. Hence, the predictive ability of the new robust PLSR method especially against the classical PLSR 
method and the other four robust methods is examined. 

The GOF or RMSE values could be considered while selecting the number components that will be retained in the model. 
The optimal number of components could be selected as the k for which the GOF values are no more change. However, as it is 
mentioned before, it is more convenient to consider the RMSE values while selecting the optimal number of components. The 
significant point while selecting the optimal number of components that will retain in the model is that adding one more 
component whether cause an important decrease or not in RMSE value. Hence, both the aim of data reduction is not deviated 
and an unnecessary component is not added to model. From Table IV, it is seen clearly that the optimal number of components 
should be selected as kopt=3 for this data set, as adding the third component to the model cause an important decrease in the 
RMSE values for all the robust methods and classical method. Furthermore, it is clear that the fitting to data also improves for 
all the methods after adding the third component. Table IV shows that PLS-Smult has a higher predictive ability than both 
classical method and robust PLS-SD and PLS-KurSD methods for kopt=3. Moreover, PLS-Smult method fits the data better than 
the robust PRM method existing in the literature for kopt=3. 
 

Table IV The GOF and RMSE Values for Fish Data in Case of the First 5 Observations are the Test Set and 
the Remaining 40 Samples are the Training Set. 

 

Number of  
Components  PLSR RSIMPLS PRM PLS 

-SD 
PLS 

-KurSD 
PLS 

-Smult 

k=1 
GOF 0.4012 0.5407 0.4582 0.5420 0.5388 0.5263 

RMSE 3.5624 2.4939 1.6635 2.3197 2.1207 1.9402 
        

k=2 
GOF 0.7733 0.8333 0.4228 0.8556 0.8652 0.8431 

RMSE 3.0175 2.8755 1.9905 2.7618 2.8415 2.7439 
        

k=3 
GOF 0.9240 0.9624 0.6813 0.9603 0.9502 0.9608 

RMSE 2.2604 1.8794 1.2443 2.0029 2.1007 1.9382 
        

k=4 
GOF 0.9291 0.9621 0.6787 0.9583 0.9598 0.9597 

RMSE 2.1734 1.8312 1.1445 1.9081 1.9179 1.9307 
        

k=5 
GOF 0.9337 0.9668 0.6793 0.9654 0.9685 0.9669 

RMSE 2.2326 1.8506 1.0011 1.9618 1.8130 1.8737 
        

k=6 
GOF 0.9377 0.9633 0.8048 0.9695 0.9628 0.9666 

RMSE 1.9128 1.8871 1.1785 1.7740 1.9087 1.8558 
        

k=7 
GOF 0.9407 0.9679 0.8135 0.9670 0.9405 0.9674 

RMSE 1.8834 1.7305 1.1420 1.8190 1.7419 1.7700 

        

k=8 
GOF 0.9432 0.9600 0.8187 0.9686 0.9370 0.9646 

RMSE 1.9318 1.8257 1.2743 1.8119 1.7429 1.8099 

        

k=9 
GOF 0.9424 0.9662 0.8186 0.9690 0.9478 0.9654 

RMSE 1.9935 1.7920 1.1997 1.7623 1.6864 1.8023 
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VI. Conclusions 
In this study, we propose a new robust PLSR method for the PLSR model with one dependent variable, called as             

‘PLS-Smult’, in order to obtain robust predictions in case of outliers existing in the data set. 
The simulation study shows that when no contamination is added to the data set, the new proposed PLS-Smult gives almost 

give identical results to classical PLSR method for kopt=2. However, when the data set is contaminated with bad leverage points 
or vertical outliers, it is seen that the new proposed robust PLS-Smult method outperforms especially the classical PLSR 
method but also the robust RSIMPLS, PRM, PLS-SD and PLS-KurSD methods with more or less differences in terms of 
efficiency, fitting to data and predictive ability. In case of the data set is contaminated with bad leverage points, it is seen that 
most efficient methods are PLS-Smult and RSIMPLS for kopt=2, respectively. Moreover, when the data contain bad leverage 
points and kopt=2, the new proposed robust PLS-Smult method shows a better predictive ability than robust RSIMPLS, PRM, 
PLS-SD and PLS-KurSD methods existing in the literature. In case of the data containing vertical outliers and kopt=2, the most 
efficient methods are the new proposed robust PLS-Smult and PRM methods. Furthermore, these two robust methods are also 
come forefront with their predictive ability performance.  

The results obtained from real data analysis show that the optimal number of components is selected kopt=3, as adding the 
third component to the model causes a considerably decrease in the RMSE values of robust methods. The results for the model 
containing kopt=3 components show that the GOF values for the new proposed robust PLS-Smult method are higher than 
especially both robust PRM method existing in the literature and classical PLSR method. However, when kopt=3 is selected, the 
RMSE value for PLS-Smult is lower than classical PLSR method. Generally, for the real data analysis it could be mentioned 
that whatever the number of the components in the model, the new proposed robust method gives much better models than 
classical PLSR method in terms of fitting to data and predictive ability. 

Consequently, it could be mentioned that when the data contaminated by a reasonable amount of outliers the new proposed 
robust PLS-Smult method outperforms the classical PLSR method in terms of efficiency, fitting to data and predictive ability. 
Moreover, PLS-Smult is a good alternative to robust RSIMPLS, PRM, PLS-SD and PLS-KurSD methods existing in the robust 
PLSR literature that in some cases it outperforms or shows a similar performance with these four robust PLSR methods.  
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