Role of Ψ_{μ} Operator in Ideal Supra Topological Spaces

Renukadevi.V¹, Tessy Cardoz², Malarvizhi.P³

Assistant Professors, Department of Mathematics, Dr.N.G.P Arts and Science College, Coimbatore, Tamilnadu. India.

Abstract- In this paper, we shall discuss the ideal on supra topological space and the properties of Ψ operator on topological space. Moreover, We introduce Ψ_{μ} operator and its properties on supra topological space. In addition with the help of Ψ_{μ} operator, ()* μ operator and its properties are also discussed here.

Keywords- Ψ - operator, Ψ -C set, supra topological space, Ψ_{μ} - operator, Ψ_{μ} - C set, ()* μ – operator.

I. INTRODUCTION

In 1960, Kuratowski[5] and Vaidyanathswamy[14] were the first to introduce the concept of the ideal in topological space. They also have defined local function in ideal topological space. Further Hamlett and Jankovic in [3] and [4] studied the properties of ideal topological spaces and they have introduced another operator called Ψ operator. They have also obtained a new topology from original ideal topological space. Using the local function, they defined a Kuratowski Closure operator in new topological space.

Further, they showed that interior operator of the new topological space can be obtained by Ψ - operator. In 2007, Modak and Bandyopadhyay[9] have defined generalized open sets using Ψ operator. More recently AI-Omri and Noiri[1] have defined the ideal m-space and introduced two operators as like similar to the local function and Ψ operator. Different types of generalized open sets like semi-open[6], preopen[7], semi-preopen[2], α -open[12] have a common property which is closed under arbitrary union. Mashhour et al[8] put all of the sets in a pocket and defined a generalized space which is supra topological space.

In this space, two type of set operators i.e. μ -local function and Ψ_{μ} operator are defined under ideal. Further the properties of these two operators are discussed. Finally, μ -codense ideal, μ - compatible ideal and Ψ_{μ} – C set with the help of Ψ_{μ} operator and their properties are discussed.

II. PRELIMINARIES

Definition 2.1 : A topology on a set X is a collection \mathcal{T} of subsets of X having the following properties:

- 1. ϕ and X are in \mathcal{T} .
- 2. The union of the elements of any subcollection of \mathcal{T} is in \mathcal{T} .
- 3. The intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} .

A set X for which a topology \mathcal{T} has been specified is called a topological space.

Definition 2.2 : A subfamily μ of the power set $\mathcal{P}(X)$ of a nonempty set X is called a supra topology on X if μ satisfies the following conditions:

- a. μ contains ϕ and X,
- b. μ is closed under the arbitrary union.

The member of μ is called supra open set in (X, μ). The pair (X, μ) is called a supra topological space.

Definition 2.3 : A subfamily μ of the power set $\mathscr{D}(X)$ is said to be supra closed set in (X, μ) if $X - \mu$ is supra open set.

Definition 2.4 : A supra topological space (X, μ) with an ideal I on X is called an ideal supra topological space and denoted as (X, μ, I) .

Definition 2.5 : A nonempty collection I of subsets of X is called an ideal on X if:

- a. $A \in I$ and $B \subset A$ implies $B \in I$ (heredity);
- b. $A \in I$ and $B \in I$ implies $A \cup B \in I$ (finite additivity).

For a subset A of X, $A^* = \{x \in X : U \cap A \notin I, \text{ for every } U \in \tau(x) \text{ where } \tau(x) \text{ is the collection of all nonempty open sets containing x}. A^* is a closed subset for any <math>A \subset X$.

Definition 2.6 : If X is a topological space with topology \mathcal{T} , then a subset U of X is an open set of X if U belongs to the collection \mathcal{T} .

Definition 2.7 : A subset U of a topological space X is said to be closed if X - U is open.

Definition 2.8: A subset A of a topological space X, the interior of A is defined as the union of all the open sets contained in A.

Definition 2.9 : A subset A of a topological space X, the closure of A is defined as the intersection of all the closed sets containing A.

Definition 2.10 : A neighborhood of x is a subset $W \subset X$ such that there exists an open set A such that $x \in A \subset W$.

Definition 2.11 : Let X and Y be topological spaces. A function $f: X \rightarrow Y$ is said to be continuous if for each open subset V of Y, the set $f^{-1}(V)$ is an open subset of X.

Definition 2.12 : Let (X, μ) be a supra topological space and $A \subset X$. Then supra interior of A in (X, μ) defined as $\cup \{ U : U \subseteq A, U \in \mu \}$ and it is denoted as $Int^{\mu}(A)$.

International Journal of Mathematics Trends and Technology – Volume 9 Number 3 – May 2014

Definition 2.13 : Let (X, μ) be a supra topological space and $A \subset X$. Then supra closure of A in (X, μ) defined as $\cap \{F : A \subseteq F, X - F \in \mu\}$ and it is denoted as $CI^{\mu}(A)$.

Definition 2.14 : Let (X, μ) be a supra topological space and $M \subset X$. Then M is said to a supra neighborhood of a point x of X if for some supra open set $U \in \mu$, $x \in U \subset M$.

Definition 2.15 : Let (X, μ, I) be an ideal supra topological space. A subset A of X is called a Baire set with respect to μ and I, denoted A $\in B_r(X, \mu, I)$, if there exists a supra open set U $\in \mu$ such that A = U[mod I].

Definition 2.16 : A subset A of a topological space (X, τ, I) is called I-dense if every point of X is in the local function of A with respect to I and τ , i.e. if $A^*(I) = X$.

Definition 2.17 : An ideal I in a space (X, μ , I) is called μ codense ideal if $\mu \cap I = \{\varphi\}$.

Definition 2.18 : Let (X, μ, I) be an ideal supra topological space. Then the μ - structure μ is μ - compatible with the ideal I, denoted $\mu \sim_{\pi} I$, if the following holds : For every $A \subseteq X$, if for every $x \in A$ there exists $U \in \mu(x)$ such that $U \cap A \in I$, then $A \in I$.

Definition 2.19 : Let A be the subset of a nonempty set X, Then Ψ -operator is defined as $\Psi(A) = X - (X - A)^*$.

Definition 2.20 : Let (X, τ, I) be a topological space and $A \subset X$, A is said to be a Ψ -C set if $A \subset Cl(\Psi(A))$. The collection of all Ψ -C sets in (X, τ, I) is denoted by $\Psi(X, \tau)$.

Definition 2.21 : Let (X, μ, I) be an ideal supra topological space. A set operator $()^{*\mu} : \mathscr{D}(X) \to \mathscr{D}(X)$, is called the μ -local function of I on X with respect to μ , is defined as: $(A)^{*\mu}(I, \mu) = \{ x \in X : U \cap A \notin I$, for every $U \in \mu(x) \}$,where $\mu(x) = \{ U \in \mu : x \in U \}$. This is simply called μ -local function and simply denoted as $(A)^{*\mu}$.

Definition 2.22 : Let (X, μ, I) be an ideal supra topological space. An operator $\Psi_{\mu} : \mathcal{P}(X) \to \mu$ is defined as follows for every $A \in \mathcal{P}(X), \Psi_{\mu}(A) = \{x \in X: \text{ there exists a } U \in \mu(x) \text{ such that } U - A \in I\}$ and $\Psi_{\mu}(A) = X - (X - A)^{*\mu}$.

Definition 2.23 : Let (X, μ, I) be an ideal supra topological space. A subset A of X is called a Ψ_{μ} - C set if $A \subseteq CI^{\mu}(\Psi_{\mu}$ (A)). The collection of all Ψ_{μ} - C sets in (X, μ, I) is denoted by $\Psi_{\mu}(X, \mu)$.

Definition 2.24 : A subset A of a space (X, \mathcal{T}) is called a generalized closed set if $CI(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Definition 2.25 : A map $f: X \to Y$ is called a generalized continuous if $f^{-1}(F)$ is g-closed in X or every closed set F of Y.

Definition 2.26 : A subset $A \subset X$ is semi-open set if $A \subset Cl(Int(A))$. The collection of all semi-open sets in a topological space (X, τ) is denoted by $SO(X, \tau)$.

Definition 2.27 : A subset A of X is said to be a semipreopen set if $A \subset Cl(Int(Cl(A)))$. The collection of all semi-preopen sets in (X, τ) is denoted by $SPO(X, \tau)$.

Definition 2.28 : A subset $A \subset X$ is semi-closed set if $A \subset Int(Cl(A))$. The collection of all semi-closed sets in a topological space (X, τ) is denoted by $SO(X, \tau)$.

Definition 2.29 : A subset $A \subset X$ is semi-closure if the intersection of all semi-closed sets that contain A and it is denoted by sCl(A)

Theorem 2.1 : Let $(X,\,\mu)$ be a supra topological space and $A\subset X.$ Then

a) $Int^{\mu}(A) \subseteq A$.

b) $A \in \mu$ if and only if $Int^{\mu}(A) = A$.

c) $CI^{\mu}(A) \supseteq A$.

d) A is a supra closed set if and only if $CI^{\mu}(A) = A$.

e) $x \in Cl^{\mu}(A)$ if and only if every supra open set U_x containing $x, U_x \cap A \neq \phi$.

Proof :

a) From the definition of supra interior,

Let (X, μ) be a supra topological space and $A \subset X$.

Then supra interior of A in (X, μ) defined as $\cup \{ U : U \subseteq A, U \in \mu \}$ and it is denoted as $Int^{\mu}(A)$.

$$\Rightarrow$$
 Int ^{μ} (A) = U.

Since $U \subseteq A$,

 \Rightarrow Int^µ(A) \subseteq A. Since arbitrary union of supra open sets is again a supra open set, then proof is obvious.

c) From the definition of supra closure,

Let (X, μ) be a supra topological space and $A \subset X$.

Then supra closure of A in (X, μ) defined as $\cap \{F : A \subseteq F,$

 $X - F \in \mu$ and it is denoted as $Cl^{\mu}(A)$.

 \Rightarrow CI^{μ}(A) = F.

Since $A \subseteq F \implies F \supseteq A$ $\implies CI^{\mu}(A) \supseteq A$

d) If A is a supra closed set, then smallest supra closed set containing A is A .Hence $Cl^{\mu}(A) = A$.

e) Let $x \in Cl^{\mu}(A)$. If possible suppose that $U_x \cap A = \phi$, where U_x is a supra open set containing x.

Then $A \subset (X - U_x)$ and $X - U_x$ is a supra closed set containing A.

Therefore $x \in (X - \mathsf{U}_x$), a contradiction.

Conversely,

Suppose that $U_x\cap A\neq \varphi, for every supra open set <math display="inline">U_x$ containing x.

If possible suppose that $x \notin Cl^{\mu}(A)$, then $x \in X - Cl^{\mu}(A)$.

Then there is a $U'_x \in \mu$ such that $U'_x \subset (X - CI^{\mu}(A))$,

i.e.,
$$U'_x \subset (X - CI^{\mu}(A)) \subset (X - A)$$
.

Hence $U'_{\mathbf{x}} \cap \mathbf{A} = \mathbf{\phi}$, a contradiction. So $\mathbf{x} \in Cl^{\mu}(\mathbf{A})$.

Theorem 2.2[5] : Let (X, μ) be a supra topological space and $A \subset X$. Then $Int^{\mu}(A) = X - CI^{\mu}(X - A)$.

Proof : Let $x \in Int^{\mu}(A)$. Then there is $U \in \mu$, such that $x \in U \subset A$.

Hence $x \notin X - U$, i.e., $x \notin Cl^{\mu}X - U$,

Since X - U is a supra closed set.

International Journal of Mathematics Trends and Technology – Volume 9 Number 3 – May 2014

By the definition of supra closure,

 $CI^{\mu}(X - A) \subset CI^{\mu}(X - U)$ So $x \notin CI^{\mu}(X - A)$. And hence $x \in X - CI^{\mu}(X - A)$. Conversely,

Suppose that $x \in X - Cl^{\mu}(X - A)$. So $x \notin Cl^{\mu}(X - A)$, then there is a supra open set U_x containing x, such that $U_x \cap (X - A) = \phi$.

So $U_x \subset A$. Therefore $x \in Int^{\mu}(A)$.

III. ()^{$*\mu$} Operator

Theorem 3.1 : Let (X, μ, I) be an ideal supra topological space, and let A, B, A1, A2,---- Ai,---- be subsets of X. Then

a) $\phi^{*\mu} = \phi$.

- b) $A \subset B$ implies $A^{*\mu} \subset B^{*\mu}$.
- c) for another ideal $J \supseteq I$ on X, $A^{*\mu}(J) \subset A^{*\mu}(I)$.
- d) $A^{*\mu} \subset CI^{\mu}(A)$.
- e) $A^{*\mu}$ is a supra closed set.
- f) $(A^{*\mu})^{*\mu} \subset \hat{A}^{*\mu}$.
- g) $A^{*\mu} \cup B^{*\mu} \subset (A \cup B)^{*\mu}$.
- h) $\cup_i A^{*\mu} \subset (\bigcup_i A_i)^{*\mu}$.
- i) $(A \cap B)^{*\mu} \subset A^{*\mu} \cap B^{*\mu}$.
- i) for $V \in \mu$, $V \cap (V \cap A)^{*\mu} \subset V \cap A^{*\mu}$.
- k) for $I \in I$, $(A \cup I)^{*\mu} = A^{*\mu} = (A I)^{*\mu}$.

Proof:

a) From the definition of µ-local function, A set operator ()^{* μ} : $\wp(X) \rightarrow \wp(X)$, is called the μ -local function of I on X with respect to µ, is defined as: $(\mathsf{A})^{*\mu}(\mathsf{I},\mu) = \{ x \in \mathsf{X} : \mathsf{U} \cap \mathsf{A} \notin \mathsf{I}, \text{for every } \mathsf{U} \in \mu(x) \},\$ where $\mu(x) = \{ U \in \mu : x \in U \}.$ $\Rightarrow (\phi)^{*\mu}(I, \mu) = \{ \phi \in X: U \cap \phi \notin I \text{, for every } U \in \mu(x) \},\$ where $\mu(\phi) = \{ U \in \mu : \phi \in U \}.$ $\Rightarrow \varphi^{*\mu} = \varphi.$ b) Let $x \in A^{*\mu}$. Then for every $U \in \mu(x)$, $U \cap A \notin I$. Since $U \cap A \subset U \cap B$, then $U \cap B \notin I$. This implies that $x \in B^{*\mu}$. Hence $A^{*\mu} \subset B^{*\mu}$. c) Let $x \in A^{*\mu}(J)$. Then for every $U \in \mu(x)$, $U \cap A \notin J$. This implies that $U \cap A \notin I$, So $x \in A^{*\mu}(I)$. Hence $A^{*\mu}(J) \subset A^{*\mu}(I)$. d) Let $x \in A^{*\mu}$. Then for every $U \in \mu(x)$, $U \cap A \notin I$. This implies that $U \cap A \neq \phi$. Then $x \in Cl^{\mu}(A)$. Hence $A^{*\mu} \subset CI^{\mu}(A)$. e) From definition of supra neighbourhood, each supra neighbourhood M of x contains a $U \in \mu(x)$. If $A \cap M \in I$ then for $A \cap U \subset A \cap M$, $A \cap U \in I$.

It follows that $X - A^{*\mu}$ is the union of supra open sets. Since the arbitrary union of supra open sets is a supra open set. So X - $A^{*\mu}$ is a supra open set and hence $A^{*\mu}$ is a supra closed set.

f) From (d), $(A^{*\mu})^{*\mu} \subset CI^{\mu}(A^{*\mu}) = A^{*\mu}$, since $A^{*\mu}$ is a supra closed set. Hence $(A^{*\mu})^{*\mu} \subset A^{*\mu}$. g) Since $A \subset (A \cup B)$ and $B \subset (A \cup B)$. Then from (b), $A^{*\mu} \subset (A \cup B)^{*\mu}$ and $B^{*\mu} \subset (A \cup B)^{*\mu}$. Hence $A^{*\mu} \cup B^{*\mu} \subset (A \cup B)^{*\mu}$.

h) Proof is by induction method,

Consider i = 1,2; Since $A_1 (A_1 \cup A_2)$ and $A_2 (A_1 \cup A_2)$.

Then from (b), $A_1^{*\mu} \subset (A_1 \cup A_2)^{*\mu}$ and $A_2^{*\mu} \subset (A_1 \cup A_2)^{*\mu}$. $\begin{array}{c} \Rightarrow A_1^{*\mu} \cup A_2^{*\mu} \subset (A_1 \cup A_2)^{*\mu}.\\ \text{Similarly, For } i=1,2,3,\ldots \Longrightarrow \cup_i A^{*\mu} \subset (\cup_i A_i)^{*\mu}. \end{array}$ i) Since $A \cap B \subset A$ and $A \cap B \subset B$, then from (b), $(A \cap B)^{*\mu} \subset A^{*\mu}$ and $(A \cap B)^{*\mu} \subset B^{*\mu}$. Then $(A \cup I)^{*\mu} = A^{*\mu} = (A - I)^{*\mu}$. Hence $(A \cap B)^{*\mu} \subset A^{*\mu} \cap B^{*\mu}$ j) Since $V \cap A \subset A$, then $(V \cap A)^{*\mu} \subset A^{*\mu}$. So $V \cap (V \cap A)^{*\mu} \subset V \cap A^{*\mu}$. k) Since $A \subset (A \cup I)$, then $\mathsf{A}^{*_{\mu}} \subset (\mathsf{A} \cup \mathsf{I})^{*_{\mu}} - \dots - (i).$ Let $x \in (A \cup I)^{*\mu}$. Then for every $U \in \mu(x)$, $U \cap (A \cup I) \notin$ I. This implies that $U \cap A \notin I$. If possible suppose that $U \cap A \in I$. $U \cap I \subset I$ implies $U \cap I \in I$ and hence $U \cap (A \cup I) \in I$, a contradiction. Hence $x \in A^{*\mu}$ and $(\mathsf{A} \cup \mathsf{I})^{*_{\mu}} \subset \mathsf{A}^{*_{\mu}}$ -----(ii). From (i) and (ii) it implies $(A \cup I)^{*\mu} = A^{*\mu}$ -----(iii). Since $(A - I) \subset A$, then $(A - I)^{*\mu} \subset A^{*\mu}$ -----(iv). For reverse inclusion, let $x \in A^{*\mu}$. Claim that $x \in (A - I)^{*\mu}$, if not, then there is $U \in \mu(x)$, $U \cap (A - I) \in I$. Given that $I \in I$, then $I \cup (U \cap (A - I)) \in I$. \Rightarrow I \cup (U \cap A) \in I. So, U \cap A \in I, a contradiction to the fact that $x \in A^{*\mu}$. Hence $A^{*\mu} \subset (A - I)^{*\mu}$ -----(v). From (iv) and (v) it implies $A^{*\mu} = (A - I)^{*\mu}$ -----(vi). From (iii) and (vi), \Rightarrow (A U I)^{*}_µ = A^{*}_µ = (A - I)^{*}_µ. *Example 3.1* : Show that $A^{*\mu} \cup B^{*\mu} = (A \cup B)^{*\mu}$ does not hold in general. Proof : Let, $X = \{a, b, c, d\}, I = \{\phi, \{c\}\}.$ $\mu = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b\}, \{a,b\}$,d,{a,c,d},{b,c,d}}, Then, Supra open sets containing'a' are: $X, \{a\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\};$ Supra open sets containing 'b' are: $X, \{b\}, \{a,b\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, \{b,c,d\};$ Supra open sets containing'c' are: $X, \{a,c\}, \{b,c\}, \{a,b,c\}, \{a,c,d\}, \{b,c,d\};$ Supra open sets containing 'd' are: $X, \{a,d\}, \{b,d\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}.$ Consider $A = \{a,c\}$ and $B = \{b,c\}$. Then, $A^{*\mu} = \{a\}, B^{*\mu} = \{b\}$ and $(A \cup B)^{*\mu} = \{a, b, c\}^{*\mu} = \{a, b, c, d\}.$ Hence $A^{*\mu} \cup B^{*\mu} \neq (A \cup B)^{*\mu}$.

IV. Ψ - Operator And Ψ - C Set

A. Ψ- Operator

Theorem A.1 : Let (X, τ, I) be a topological space, then $U \subset \Psi(U)$ for every open set U of (X, τ) .

International Journal of Mathematics Trends and Technology – Volume 9 Number 3 – May 2014

Proof : Since $\Psi(U) = X - (X - U)^*$. Then $(X - U)^* \subset CI(X - U) = X - U$, Since X - U is closed. Therefore $X - (X - U)^* \supset X - (X - U) = U$ $\Rightarrow U \subset \Psi(U).$ Example A.1 : A set A which is not open but satisfies $A \subset \Psi(A)$. Proof: Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a, c\}\}, I = \{\phi, \{c\}\}.$ Then $\Psi(\{a\}) = X - (X - \{a\})^*$ $= X - \{b, c\}^*$ $= X - \{b\}$ $= \{a, c\}.$ Therefore $\{a\} \subset \Psi(\{a\})$, but $\{a\}$ is not open. Corollary A.1[3] : Let (X, τ, I) be a space, then Int(A) \subset $\Psi(A)$ for any subset A of X. Proof: Since Int(A) is open, then by theorem A.1, ----- (i) $Int(A) \subset \Psi(Int(A))$ \Rightarrow Int(A) \subset A, Therefore, $\Psi(Int(A)) \subset \Psi(A)$ ----- (ii) From (i) and (ii), \Rightarrow Int(A) $\subset \Psi$ (A). Theorem A.2[3] : Let (X, τ, I) be a space, where I is codense. Then for $A \subset X$, $\Psi(A) \subset A^*$. Proof : Suppose $\alpha \in \Psi(A)$ but $\alpha \notin A^*$. Then there exists a nonempty neighborhood U_{α} of α such that $U_{\alpha} \cap A \in I$. Since $\alpha \in \Psi(A)$, therefore $\alpha \in \bigcup \{M - A \in I\}$, \Rightarrow there exist V $\in \tau$ such that $\alpha \in V$ and V – A $\in I$. \Rightarrow U_{α} \cap V is a neighborhood of α . \Rightarrow U_a \cap V \cap A \in I, by heredity. \Rightarrow U_{α} \cap V – A \in I by heredity. $U_{\alpha} \cap V = (U_{\alpha} \cap V \cap A) \cup (U_{\alpha} \cap V - A) \in I$ (By finite additivity). Since $U_{\alpha} \cap V$ is nonempty open, A contradiction to I being codense. Therefore, $\alpha \in A^* \Longrightarrow \Psi(A) \subset A^*$. Corollary A.2 : Let (X, τ, I) be a topological space, where I is codense. Then for $A \subset X$, $\Psi(A) \subset CI(A)$. Theorem A.3 : Let (X, τ, I) be a topological space and I be codense. Then (a) for any $A \subset X$, $\Psi(A) \subset Int(CI(A))$. (b) for any closed subset A, $\Psi(A) \subset A$. (c) for any $A \subset X$, $Int(CI(A)) = \Psi(Int(CI(A)))$. (d) for any regular open subset A, $A = \Psi(A)$. (e) for any $U \in \tau$, $\Psi(U) \subseteq Int(CI(U)) \subseteq U^*$. (f) for $J \in I$, $\Psi(J) = \Phi$. Proof: (a) From corollary A.2, $\Psi(A) \subset CI(A)$. Since $\Psi(A)$ is open, then $\Psi(A) \subset Int(CI(A))$.

(b) From the definition of Ψ -operator,

For any closed subset A, $\Psi(A) \subset A$. (c) For any set A, $\Psi(\operatorname{Int}(\operatorname{CI}(A))) \subset \operatorname{CI}(\operatorname{Int}(\operatorname{CI}(A))), by \operatorname{corollary} A.2.$ Since $\Psi(Int(CI(A)))$ is open, $\Psi(\operatorname{Int}(\operatorname{CI}(A))) \subset \operatorname{Int}(\operatorname{CI}(\operatorname{Int}(\operatorname{CI}(A))))$ $\Rightarrow \Psi \left(\mathsf{Int}(\mathsf{CI}(\mathsf{A})) \right) \subset \mathsf{Int}(\mathsf{CI}(\mathsf{A}))$ -------(i) Since Int(CI(A)) is open, therefore by theorem A.1, \Rightarrow Int(CI(A)) $\subset \Psi$ (Int(CI(A))) ------(ii) From (i) and (ii), \Rightarrow Int(CI(A)) = Ψ (Int(CI(A))) (d) If A is regular open, therefore A = Int(CI(A)). From (c), $A = \Psi(A)$. (e) By corollary A.2, $\Psi(U) \subset CI(U)$. Since $\Psi(A)$ is open, therefore $\Rightarrow \Psi(\overline{U}) \subset Int(CI(U))$ ------(i) Here I is codense and U is open, therefore $U^* = CI(U)$ \Rightarrow Int(CI(U)) \subset U^{*} ----- (ii) From (i) and (ii), $\Rightarrow \Psi(U) \subset Int(CI(U)) \subset U^*.$ (f) Given that $J \in I$ From theorem A.2, Let (X, τ, I) be a space, where I is codense. Then for $A \subset X, \Psi(A) \subset A^*$. It follows, $\Psi(J) = \phi$. Theorem A.4[15] : Let (X, τ, I) be a topological space. Then for each $x \in X$, $X - \{x\}$ is I -dense if and only if $\Psi(\{\mathbf{x}\}) = \mathbf{\Phi}.$ Proof: From the definition of I-dense set, A subset A of a topological space (X, τ , I) is called I-dense if every point of X is in the local function of A with respect to I and τ . i.e. if $A^{*}(I) = X$. for each $x \in X$, $X - \{x\}$ is I -dense if and only if $\Psi(\{\mathbf{x}\}) = \mathbf{\phi}.$ Conversely, $\Psi({x}) = \Phi \text{ if and only } (X - {x})^* = X.$ Hence, $\Psi({x}) = \phi$ if and only if for each $x \in X, X - {x}$ is I -dense B. Ψ- C Set Theorem B.1 : Let (X, τ, I) be a topological space. If $A \in \tau$ then $A \in \Psi(X, \tau)$. Proof : Since, $\Psi(A) = X - (X - A)^*$. Then $(X - A)^* \subset CI(X - A) = X - A$, Since X - A is closed. Therefore, $X - (X - A)^* \supset X - (X - A) = A$ $\Rightarrow A \subset \Psi(A) \Rightarrow A \in \Psi(X, \tau).$ *Example B.1*: Show that the reverse inclusion of the above theorem is not true. Proof : Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{c, d\}\}, I = \{\phi, \{c\}\}.$ Therefore $c(\tau) = \{ \phi, X, \{a, b\} \}.$ Then $\Psi(\{a, d\}) = X - \{b, c\}^* = X - \{a, b\} = \{c, d\}.$

Thus $Cl(\Psi(\{a, d\})) = X$. Therefore $\{a, d\} \subset Cl(\Psi(\{a, d\}))$, but $\{a, d\}$ is not open in τ . *Example B.2* : Show that any closed set in (X, τ, I) may not be a Ψ -C set. Proof: Let $X = \{a, b, c\}, \tau = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}, I = \{\phi, \{a\}\}.$ $C(\tau) = \{ \phi, X, \{a, c\}, \{c\}, \{a\} \}.$ Then $\Psi(\{a\}) = X - \{b, c\}^* = X - \{a, b, c\} = \phi$. Therefore {a} is closed in (X, τ) but {a} $\not\subset CI(\Psi(\{a\}))$. Theorem B.2 : Let $\{A_{\alpha} : \alpha \in \Delta\}$ be a collection of nonempty Ψ - C sets in a topological space (X, τ , I), then $U_{\alpha}A_{\alpha} \in \Psi_{\mu}(X, \tau).$ Proof: For each α , $\mathsf{A}_{\alpha} \subset \mathsf{CI}(\Psi(\mathsf{A}_{\alpha})) \subset \mathsf{CI}(\Psi(\mathsf{U}_{\alpha \in \Delta}\mathsf{A}_{\alpha})$ $\mathsf{U}_{\alpha}\mathsf{A}_{\alpha}\subset\mathsf{CI}(\Psi(\mathsf{U}_{\alpha}\mathsf{A}_{\alpha}))$ Thus $\bigcup_{\alpha \in \Delta} A_{\alpha} \in \Psi_{\mu}(X, \tau)$. *Example B.3* : Show that intersection of two Ψ - C sets in (X, τ, I) may not be a Ψ -C set. *Proof* : $X = \{a, b, c, d\}, \quad \tau = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}, I = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}, I = \{a, b, c, d\}, I = \{a,$ Let $\{\phi, \{c\}\}.$ $C(\tau) = \{ \phi, X, \{ b, c, d \}, \{ a, d \}, \{ d \} \}.$ Then $\Psi(\{a, d\}) = X - \{b, c\}^* = X - \{b, c, d\} = \{a\}.$ Therefore $Cl(\Psi(\{a, d\})) = \{a, d\} \Longrightarrow \{a, d\} \subset Cl(\Psi(\{a, d\})).$ Then $\Psi(\{b, c, d\}) = X - \{a\}^* = X - \{a, d\} = \{b, c\},\$ \Rightarrow CI(Ψ ({b,c,d}) = {b,c,d}. Therefore $\{b, c, d\} \subset CI(\Psi(\{b, c, d\}))$. Then $\{b, c, d\} \cap \{a, d\} = \{d\}$ and $\Psi(\{d\}) = X - \{a, b, c\}^* = X - \{a, b, c, d\} = \phi.$ Therefore {d} $\not\subset$ Cl(Ψ ({d})). Theorem B.3 : Let (X, τ, I) be a topological space then $SO(X, \tau) \subset \Psi(X, \tau).$ Proof : Let $A \in SO(X, \tau)$, therefore $A \subset Cl(Int(A))$. By *Corollary A.1*, $Int(A) \subset \Psi(A)$. Therefore $CI(Int(A) \subset CI(\Psi(A))$. Thus $A \subset Cl(Int(A)) \subset Cl(\Psi(A))$. Theorem B.4 : Let A be a Ψ - C set in a topological space (X, τ, I) , where I is codense. Then $A \in SPO(X, \tau)$ Proof: From the *Theorem A.3.*(a), for any $A \subset X$, $\Psi(A) \subset Int(CI(A))$. Since $\Psi(A) \subset CI(A)$ $\Rightarrow A \subset CI(Int(CI(A)))$ Hence $A \in SPO(X, \tau)$. Example B.4 : Show that the converse of the above theorem does not hold. Proof : Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a, b\}\}, I = \{\phi, \{a\}\}.$ $C(\tau) = \{ \Phi, X, \{c\} \}.$ Then $\Psi(\{a\}) = X - \{b, c\}^* = X - \{a, b, c\} = \{a\} = \phi$. Therefore {a} $\not\subset$ Cl(Ψ ({a}), i.e., {a} is not a Ψ - C set. But $\{a\} \subset Cl(Int(Cl(\{a\})))$, therefore $\{a\}$ is a semi-preopen set.

Corollary B.1 : $SO(X, \tau) \subset \Psi(X, \tau) \subset SPO(X, \tau)$, when I is a codense ideal. Proof: From Theorem B.3, $SO(X, \tau) \subset \Psi(X, \tau)$ ------(i) From Theorem B.4, $\Psi(X, \tau) \subset SPO(X, \tau) \quad ----- (ii)$ From (i) and (ii), \Rightarrow SO(X, τ) $\subset \Psi(X, \tau) \subset SPO(X, \tau)$. Theorem B.5 : Let (X, τ, I) be a topological space and $A \in \Psi(X, \tau)$. If $U \in \tau^{\alpha}$, then $U \cap A \in \Psi(X, \tau)$. Proof : Consider, if G is open, for any $A \subset X$, $G \cap CI(A) \subset CI(G \cap A)$, As well as that, $\Psi(A \cap B) = \Psi(A) \cap \Psi(B)$. Hence if $U \in \tau^{\alpha}$ and $A \in \Psi(X, \tau)$. Therefore, $U \cap A \subset Int(CI(Int(U))) \cap CI(\Psi(A))$ $\subset \operatorname{Int}(\operatorname{CI}(\Psi(U))) \cap \operatorname{CI}(\Psi(A))$ $\subset Cl(Int(Cl(\Psi(U))) \cap \Psi(A))$ $= CI\left(Int\left(CI(\Psi(U) \cap \Psi(A))\right)\right)$ $= CI(\Psi(U) \cap \Psi(A)) = CI(\Psi(U \cap A))$ and Hence $U \cap A \in \Psi(X, \tau)$. Corollary B.2 : Let (X, τ, I) be a topological space and $A \in \Psi(X, \tau)$. If $U \in \tau$, then $U \cap A \in \Psi(X, \tau)$. Example B.5 : Show that the converse of the above corollary does not hold. Proof : Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\},\$ $I = \{ \Phi, \{ C \} \}.$ $C(\tau) = \{ \phi, X, \{ b, c, d \}, \{ a, d \}, \{ d \} \}.$ Then $\Psi(\{a, c\}) = X - \{b, d\}^* = X - \{b, c, d\} = \{a\}.$ Therefore $Cl(\Psi(\{a,c\})) = \{a,d\}.$ Thus $\{a, c\} \notin \Psi(X, \tau)$, where as $\{a, c\} \notin I$. Also that $\Psi(A) = X - (X - A)^*$, from the definition of I dense set $\Rightarrow \Psi(A) = \phi$ if and only if (X - A) is I - dense. Therefore for a topological space (X, τ, I) if I is codense $A \neq \phi, A \notin \Psi(X, \tau)$ if $A \in I$ or (X - A) is I-dense. Theorem B.6 : A set $A \notin \Psi(X, \tau)$ if and only if there exists an element $x \in A$ such that there is a neighborhood V_x of x for which X - A is relatively I -dense in V_x . Proof: Let $A \notin \Psi(X, \tau)$. Since $A \not\subset Cl(\Psi(A))$, there exists $x \in X$ such that $x \in A$ but $x \notin CI(\Psi(A)).$ Hence there exists a neighborhood V_x of x such that $V_{x} \cap \Psi(A) = \phi.$ \Rightarrow V_x \cap (X - (X - A)*) = ϕ , therefore $V_x \subset (X - A)^*$. Conversely, Let U be any nonempty open set in V_x . Since $V_x \subset (X - A)^*$,

therefore $U \cap (X - A) \notin I$. $\Rightarrow X - A$ is relatively I -dense in V_x .

V. Ψ_{μ} - Operator And Ψ_{μ} - C Set

The behaviors of the operator Ψ_{μ} has been discussed in the following theorem:

A. Ψ_{μ} - Operator Theorem A.1 : Let (X, μ , I) be an ideal supra topological space.

a) If $A \subseteq X$, then $\Psi_{\mu}(A) \supset Int^{\mu}(A)$.

b) If $A \subseteq X$, then $\Psi_{\mu}(A)$ is supra open.

c) If $A \subseteq B$, then $\Psi_{\mu}(A) \subseteq \Psi_{\mu}(B)$.

d) If $A, B \in \mathcal{P}(X)$, then $\Psi_{\mu}(A) \cup \Psi_{\mu}(B) \subset \Psi_{\mu}(A \cup B)$.

e) If A, B \in $\mathscr{P}(X)$, then $\Psi_{\mu}(A \cap B) \subset \Psi_{\mu}(A) \cap \Psi_{\mu}(B)$.

f) If $U \in \mu$, then $U \subset \Psi_{\mu}(U)$.

g) If $A \subseteq X$, then $\Psi_{\mu}(A) \subset \Psi_{\mu}(\Psi_{\mu}(A))$. h) If $A \subseteq X$, then $\Psi_{\mu}(A) \subset \Psi_{\mu}(\Psi_{\mu}(A))$ if and only if $(X - A)^{*_{\mu}} = ((X - A)^{*_{\mu}})^{*_{\mu}}$ i) If $A \in I$, then $\Psi_{\mu}(A) = X - X^{*_{\mu}}$. j) If $A \subseteq X$, $I \in I$, then $\Psi_{\mu}(A - I) = \Psi_{\mu}(A)$.

k) If $A \subseteq X$, $I \in I$, then $\Psi_{\mu}(A \cup I) = \Psi_{\mu}(A)$.

1) If
$$(A - B) \cup (B - A) \in I$$
, then $\Psi_{\mu}(A) = \Psi_{\mu}(B)$.

Proof:

a) From definition of Ψ_{μ} operator, $\Psi_{\mu}(A) = X - (X - A)^{*\mu}$. Then $\Psi_{\mu}(A) = X - (X - A)^{*\mu} \supset X - CI^{\mu}(X - A)$, from the theorem 3.1.(d), $A^{*\mu} \subset CI^{\mu}(A)$.

By using the theorem 2.2, Let (X, μ) be a supra topological space and $A \subset X$. Then $Int^{\mu}(A) = X - CI^{\mu}(X - A)$. Hence $\Psi_{\mu}(A) \supset Int^{\mu}(A)$. b) Since $(X - A)^{*\mu}$ is a supra closed set. From the theorem 3.1.(e), $A^{*\mu}$ is a supra closed set. Then $X - (X - A)^{*\mu}$ is a supra open set. Hence $\Psi_{\mu}(A)$ is supra open. c) Given that $A \subseteq B$, then $(X - A) \supseteq (X - B)$. Then from the theorem 3.1.(b), $A \subset B$ implies $A^{*\mu} \subset B^{*\mu}$, $(X - A)^{*\mu} \supseteq (X - B)^{*\mu}$ and hence $\Psi_{\mu}(\mathsf{A}) \subseteq \Psi_{\mu}(\mathsf{B}).$ d) Given that $A \subseteq (A \cup B)$ and $B \subseteq (A \cup B)$, then $(X - A \cup B)$ A) \supseteq (X - (A \cup B) and (X - B) \supseteq (X - (A \cup B). Then from the result, $A \subset B$ implies $A^{*\mu} \subset B^{*\mu}$, (X - B) $A)^{*_{\mu}} \supseteq (X - (A \cup B))^{*_{\mu}} \text{ and } (X - B)^{*_{\mu}} \supseteq (X - (A \cup B))^{*_{\mu}}.$ Hence $\Psi_{\mu}(A) \subseteq \Psi_{\mu}(A \cup B)$ and $\Psi_{\mu}(B) \subseteq \Psi_{\mu}(A \cup B)$. $\Rightarrow \Psi_{\mu}(A) \cup \Psi_{\mu}(B) \subset \Psi_{\mu}(A \cup B)$ e) Since $A \cap B \subset A$ and $A \cap B \subset B$, From (c), If $A \subseteq B$, then $\Psi_{\mu}(A) \subseteq \Psi_{\mu}(B)$. $\Rightarrow \Psi_{\mu}(A \cap B) \subset \Psi_{\mu}(A) \cap \Psi_{\mu}(B).$ f) Let $U \in \mu$. Then (X - U) is a supra closed set and hence $CI^{\mu}(X - U) = (X - U)$

$$\Rightarrow (X - U)^{*\mu} \subset Cl^{\mu}(X - U) = (X - U).$$

Hence $U \subset X - (X - U)^{*\mu}$, so $U \subset \Psi_{\mu}(U)$.

g) From (b), If $A \subseteq X$, then $\Psi_{\mu}(A)$ is supra open, $\Psi_{\mu}(A) \in$ μ. From (f), If $U \in \mu$, then $U \subset \Psi_{\mu}(U)$. $\Rightarrow \Psi_{\mu}(A) \subset \Psi_{\mu}(\Psi_{\mu}(A)).$ h) Let $\Psi_{\mu}(A) = \Psi_{\mu}(\Psi_{\mu}(A))$. Then, $X - (X - A)^{*_{\mu}} = \Psi_{\mu}(X - (X - A)^{*_{\mu}}) = X - (X - (X - A)^{*_{\mu}})$ $(X - A)^{*_{\mu}})^{*_{\mu}} = X - ((X - A)^{*_{\mu}})^{*_{\mu}}.$ $\implies (X - A)^{*\mu} = ((X - A)^{*\mu})^{*\mu}.$ Conversely, Suppose that $(X - A)^{*\mu} = ((X - A)^{*\mu})^{*\mu}$ hold. Then $X - (X - A)^{*\mu} = X - ((X - A)^{*\mu})^{*\mu}$ $X - (X - A)^{*\mu} = X - (X - (X - (X - A)^{*\mu}))^{*\mu} = X - (X - A)^{*\mu}$ $\Psi_{\rm u}({\sf A}))^{*\mu}$. Hence $\Psi_{\mu}(A) = \Psi_{\mu}(\Psi_{\mu}(A)).$ i) Since $\Psi_{\mu}(A) = X - (X - A)^{*_{\mu}} = X - X^{*_{\mu}}$ from the theorem 3.1.(k), For $I \in I$, $(A \cup I)^{*\mu} = A^{*\mu} = (A - I)^{*\mu}$. j) Since $X - (X - (A - I))^{*\mu} = X - ((X - A) \cup I)^{*\mu}$ $= X - (X - A)^{*\mu}$ From the theorem 3.1.(k), For $I \in I$, $(A \cup I)^{*\mu} = A^{*\mu} = (A - I)^{*\mu}$. So $\Psi_{\mu}(\mathsf{A} - \mathsf{I}) = \Psi_{\mu}(\mathsf{A}).$ k) Since $X - (X - A \cup I)^{*\mu} = X - ((X - A) - I)^{*\mu}$ $= X - (X - A)^{*\mu}$ By using the theorem 3.1.(k), For $I \in I$, $(A \cup I)^{*\mu} = A^{*\mu} = (A - I)^{*\mu}$. Thus $\Psi_{u}(A \cup I) = \Psi_{u}(A)$. 1) Given that $(A - B) \cup (B - A) \in I$, and let $A - B = I_1$, $B - A = I_2$. Then I_1 and $I_2 \in I$ (by heredity). And also that $B = (A - I_1) \cup I_2$. Thus $\Psi_{u}(A) = \Psi_{u}(A - I_{1}) = \Psi_{u}((A - I_{1}) \cup I_{2}) = \Psi_{u}(B).$ Example A.1 : A set A which is not supra open set but satisfies $A \subseteq \Psi_{\mu}(A)$. Proof: Let $X = \{a, b, c, d\}, \mu = \{\phi, X, \{a\}, \{a, c, d\}, \{b, c, d\}\},\$ $\mathbf{I} = \{ \boldsymbol{\varphi}, \{ \mathbf{c} \} \}.$ Then for A = {a,b,d}, $\Psi_{\mu}(A) = X - \{c\}^{*\mu} = X - \phi = X$. Here $A \subseteq \Psi_u(A)$, but A is not a supra open set. *Example A.2* : Show that $\Psi_{\mu}(A \cap B) = \Psi_{\mu}(A) \cap \Psi_{\mu}(B)$ does not hold in general. Proof: Let, $X = \{a, b, c, d\}, I = \{\phi, \{c\}\}.$ $\mu = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b\}, \{a,b\}$,d,{a,c,d},{b,c,d}}, Then, Supra open sets containing 'a' are: $X, \{a\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\};$ Supra open sets containing 'b' are: $X, \{b\}, \{a,b\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, \{b,c,d\};$ Supra open sets containing 'c' are: $X, \{a,c\}, \{b,c\}, \{a,b,c\}, \{a,c,d\}, \{b,c,d\};$ Supra open sets containing 'd' are: $X, \{a,d\}, \{b,d\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}.$ Here,

International Journal of Mathematics Trends and Technology - Volume 9 Number 3 - May 2014

Consider A = {b,d} and B = {a,d}, then $\Psi_{\mu}(A) = X - \{a, c\}^{*\mu} = X - \{a\} = \{b,c,d\}$ and $\Psi_{\mu}(B) = X - \{b, c\}^{*\mu} = X - \{b\} = \{a,c,d\}.$ Then $\Psi_{\mu}(A \cap B) = \Psi_{\mu}(\{d\}) = X - \{a, b, c\}^{*\mu}$ = X - {a,b,c,d} = φ . Hence $\Psi_{\mu}(A \cap B) \neq \Psi_{\mu}(A) \cap \Psi_{\mu}(B).$

B. Ψ_{μ} - C Set

Theorem B.1 : Let (X, μ, I) be an ideal supra topological space. If $A \in \mu$, then $A \in \Psi_{\mu}(X, \mu)$. Proof: From the previous theorem (f), If $U \in \mu$, then $U \subset \Psi_{\mu}(U)$. It follows that $\mu \subseteq \Psi_{\mu}$ (X, μ). Similarly, If $A \in \mu$, then $A \in \Psi_{\mu}(X, \mu)$. Hence the proof. *Example B.1*: Show that the reverse inclusion of the above theorem is not true. Proof : Consider X = {a, b, c, d}, $\mu = \{\phi, X, \{a\}, \{a, c, d\}, \{b, c, d\}\},\$ $I = \{ \phi, \{c\} \}$ and Then for $A = \{a, b, d\}, \Psi_{\mu}(A) = X - \{c\}^{*_{\mu}} = X - \phi = X.$ Here $A \subseteq \Psi_u(A)$, Hence $A \in \Psi_{\mu}(X, \mu)$ but $A \notin \mu$. Which shows that any supra closed in (X, μ, I) may not be a Ψ_{μ} - C set. *Example B.2* : Let $C(\mu)$ be the family of all supra closed sets in (X, μ) . Show that any supra closed in (X, μ, I) may not be a Ψ_{u} - c set. Proof: Consider, $X = \{a, b, c, d\}, I = \{\phi, \{c\}\}.$ $\mu = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b\}, \{a,b\}$,d,{a,c,d},{b,c,d}}. Here $A = \{d\} \in C(\mu)$. Then $\Psi_{\mu}(A) = X - \{a, b, c\}^{*_{\mu}}$ $= X - X = \Phi.$ Therefore $A \in C(\mu)$ but $A \notin \Psi_{\mu}(X, \mu)$. Theorem B.2 : Let $\{A_{\alpha} : \alpha \in \Delta\}$ be a collection of nonempty $\Psi_{\!\mu}$ - C sets in an ideal supra topological space (X, μ , I), then $U_{\alpha} \in \Delta A_{\alpha} \in \Psi_{\mu}(X, \mu)$. Proof: For each $\alpha \in \Delta$, $A_{\alpha} \subseteq CI^{\mu}(\Psi_{\mu} (A_{\alpha})) \subseteq CI^{\mu}(\Psi_{\mu} (U_{\alpha} \in \Delta A_{\alpha}))$. $\Rightarrow U_{\alpha} \in \Delta A_{\alpha} \subseteq CI^{\mu}(\Psi_{\mu} (U_{\alpha} \in \Delta A_{\alpha})))$. Thus $U_{\alpha} \in \Delta A_{\alpha} \in$ $\Psi_{\mu}(X,\mu).$ *Example B.3* : Show that the intersection of two Ψ_{μ} - C sets in (X, μ , I) may not be a Ψ_{μ} – C. Proof: Consider, $X = \{a, b, c, d\}, I = \{\phi, \{c\}\}.$ $\mu = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b\}, \{a,$,d,{a,c,d},{b,c,d}}. Here, Consider $A = \{b,d\}$ and $B = \{a,d\}$, then $\Psi_{\mu}(A) = X - \{a, c\}^{*\mu} = X - \{a\} = \{b, c, d\}$ and $\Psi_{\mu}(A) = X - \{b, c\}^{*\mu} = X - \{b\} = \{a, c, d\}.$

So A, B $\in \Psi_{\mu}(X, \mu)$, but $\Psi_{\mu}(\lbrace d \rbrace) = X - \lbrace a, b, c \rbrace^{*_{\mu}} = X - \lbrace a, b, c d \rbrace = \varphi$, and $\lbrace d \rbrace \notin \Psi_{\mu}(X, \mu)$.

VI. μ - Codense Ideal And μ - Compatible Ideal

A. µ - Codense Ideal

Theorem A.1 : Let (X, μ, I) be an ideal supra topological space and I is μ -codense with μ . Then $X = X^{*\mu}$. Proof: Given, Let (X, μ, I) be an ideal supra topological space and I is μ codense with μ . Then $X^{*\mu} \subseteq X$ is obvious. Conversely, Suppose $x \in X$ but $x \in X^{*\mu}$. Then there exists $U_x \in \mu(x)$ such that $U_x \cap X \in I$. That is $U_x \in I$, a contradiction to the fact that $\mu \cap I = \{\phi\}$. Hence $X = X^{*\mu}$. Theorem A.2 : Let (X, µ, I) be an ideal supra topological space. Then following conditions are equivalent: i) $\mu \cap I = \{\phi\}.$ ii) $\Psi_{\mu}(\phi) = \phi$. iii) if $I \in I$, then $\Psi_{II}(I) = \Phi$. Proof : (i) ⇒(ii) Given that $\mu \cap I = \{ \phi \}$, then $\Psi_{\mu}(\phi) = X - (X - \phi)^{*_{\mu}}$ By previous theorem, $= X - X^{*\mu} = \Phi.$ (ii) ⇒(iii) $\Psi_{\mu}(I) = X - (X - I)^{*\mu} = X - X^{*\mu}$ By the result, for $I \in I$, $(A \cup I)^{*\mu} = A^{*\mu} = (A - I)^{*\mu}$. From the previous theorem, $\Rightarrow X - X^{*\mu} = \Phi$ (iii) ⇒(i) Suppose that $A \in \mu \cap I$, then $A \in I$ and by (iii), $\Psi_{\mu}(\mathsf{A}) = \mathbf{\Phi}.$ If $A \in \mu$, then by the theorem V.A. l(f), If $U \in \mu$, then $U \subset \Psi_{\mu}(U)$ $\Rightarrow A \subseteq \Psi_{u}(A) = \phi.$ Hence $\mu \cap I = \{ \phi \}$. B. µ- Compatible Ideal In this section we shall discuss a special type of ideal and its various properties. Theorem B.1 : Let (X, μ, I) be an ideal supra topological space. Then $\mu \sim_{\pi} I$ if and only if $\Psi_{\mu}(A) - A \in I$ for every $A \subseteq X.$ Proof: Suppose $\mu \sim_{\pi} I$. Then, $x \in \Psi_u(A) - A$ if and only if $x \notin X$ and $x \notin (X - A)$ A)^{* μ} if and only if $x \notin A$ and there exists U_x $\in \mu(x)$ such that $U_x - A \in I$ if and only if there exists $U_x \in \mu(x)$ such that $x \in U_x - A \in I$. Then,

For each $x \in \Psi_{\mu}(A) - A$ and $U_x \in \mu(x)$, $U_x \cap (\Psi_{\mu}(A) - A) \in I$ by heredity and since $\mu \sim_{\pi} I$, hence $\Psi_{\mu}(A) - A \in I$.

Conversely,

Suppose that the condition holds. Let $A \subseteq X$ and assume that for each $x \in A$ there exists $U_x \in \mu(x)$ such that $U_x \cap A \in I$.

Then, $\Psi_{\mu}(X - A) - (X - A) = A - A^{*_{\mu}}$.

Thus, $A \subseteq \Psi_{\mu}(X - A) - (X - A) \in I$ and hence $A \in I$ by heredity of I.

Corollary B.1 : Let (X, μ, I) be an ideal supra topological space with $\mu \sim_{\pi} I$. Then $\Psi_{\mu}(\Psi_{\mu}(A)) = \Psi_{\mu}(A)$ for every $A \subseteq X$.

Proof :

Since $\Psi_{\mu}(\mathsf{A}) \subseteq \Psi_{\mu}(\Psi_{\mu}(\mathsf{A})).$

From the previous theorem, $\Psi_{\mu}(A) \subseteq A \cup I$ for some $I \in I$ and By the result,

If $A \subseteq X$, $I \in I$, then $\Psi_{\mu}(A \cup I) = \Psi_{\mu}(A)$, $\Longrightarrow \Psi_{\mu}(\Psi_{\mu}(A))$

 $=\Psi_{u}(A).$

Theorem B.2[11] : Let (X, μ, I) be an ideal supra topological space with $\mu \sim_{\pi} I$. If $U, V \in \mu$ and $\Psi_{\mu}(U) = \Psi_{\mu}(V)$, then U = V[mod I].

- Proof :
- Since $U \in \mu$, $\Longrightarrow U \subseteq \Psi_{\mu}(U)$ and

Hence $U - V \subseteq \Psi_{\mu}(U) - V = \Psi_{\mu}(V) - V \in I$ by the previous theorem.

Similarly,

 $V - U \in I$.

Then $(U - V) \cup (V - U) \in I$ by additivity.

Hence $U = V \mod I$.

Theorem B.3 : Let (X, μ, I) be an ideal supra topological space with $\mu \sim_{\pi} I$. If $A, B \in B_r(X, \mu, I)$, and $\Psi_{\mu}(A) = \Psi_{\mu}(B)$, then $A = B[\mod I]$.

Proof :

Let $U, V \in \mu$ such that A = U[mod I] and B = V[mod I].

 $\Psi_{\mu}(A) = \Psi_{\mu}(B)$ and $\Psi_{\mu}(B) = \Psi_{\mu}(V)$ by the result,

If $(A - B) \cup (B - A) \in I$, then $\Psi_{\mu}(A) = \Psi_{\mu}(B)$.

Since $\Psi_{\mu}(A) = \Psi_{\mu}(U)$ implies that $\Psi_{\mu}(U) = \Psi_{\mu}(V)$,

- hence U = V [mod I] by the previous theorem.
- Hence A = B[mod I] by transitivity.

Theorem B.4 : Let (X, μ, I) be an ideal supra topological space.

a) If $B \in B_r(X, \mu, I) - I$, then there exists $A \in \mu - \{ \varphi \}$ such that B = A[mod I].

b) Let $\mu \cap I = \{ \phi \}$, then $B \in B_r(X, \mu, I) - I$ if and only if there exist $A \in \mu - \{ \phi \}$ such that B = A[mod I]. *Proof*:

a) Let $B \in B_r(X, \mu, I) - I$. Then $B \in B_r(X, \mu, I)$. Suppose,

if there does not exist $A \in \mu - \{\phi\}$ such that

 $\mathsf{B} = \mathsf{A}[\mathsf{mod} \ \mathsf{I}], \implies \mathsf{B} = \mathsf{\Phi}[\mathsf{mod} \ \mathsf{I}].$

 \Rightarrow B \in I which is a contradiction.

Therefore,

there exists $A \in \mu - \{ \phi \}$ such that $B = A \pmod{I}$.

b) Let $A \in \mu - \{ \phi \}$ such that B = A[mod I].

Then $A = (B - J) \cup I$, where J = B - A, $I = A - B \in I$.

If $B \in I$, then $A \in I$ by heredity and additivity, which contradict to $\mu \cap I = \varphi$.

Therefore,

 \Rightarrow B \in B_r(X, μ , I) – I

REFERENCES

- A. AI-Omari and T. Noiri, On ψ*-operator in ideal m-spaces, Bol. Soc.Paran.Mat. (3s) v.30 1 (2012) 53-66, ISSN-00378712 in press.
- [2] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24 32.
 [3] T.R. Hamlett and D. Jankovic, Ideals in topological spaces and the
- set operator ψ, Bull. U.M.I.,(7), 4-B(1990), 863 874.
- [4] D. Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer. Math.Monthly, 97(1990) 295 – 310.
- [5] K. Kuratowski, Topology, Vol.1 Academic Press, New York, 1966.
- [6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math. Monthly 70(1963) 36-41.
- [7] A.S. Mashhur, M.E. Abd El-Monsef and I.A. Hasanein, On pretopological spaces, Bull. Math. R.S. Roumanie (N.S) 28(76)(1984) No.1,39-45.
- [8] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supra topological spaces, Indian J. Pure and Appl. Math. 14(4) (1983), 502 – 510.
- [9] S. Modak and C. Bandyopadhyay, A note on ψ operator, Bull. Malyas. Math.Sci. Soc. (2) 30 (1) (2007).
- [10] T. Natkaniec, On I-continuity and I semicontinuity points, Math. Slovaca, 36, 3 (1986), 297 – 312.
- [11] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph. D.Dissertation, Univ. of Cal. at Santa Barbara, 1967.
- [12] O. Njastad, On some classes of nearly open sets, Pacific J. Math 15(1965), 961–970.
- [13] O. R. Sayed and T. Noiri, On supra b-open sets and supra bcontinuity on topological spaces, European J. Pure and Appl. Math., vol. 3 no. 2. 2010, 295-302.
- [14] R. Vaidyanathaswamy, Set topology, Chelsea Publishing Company, 1960.
- [15] J. Dontchev, M. Ganster and D. Rose, Ideal resolvability, Topology Appl.93(1)(1999), 1–16.
- [16] D. Andrijevic, On the topology generated by preopen sets, Mat. Vesnik 39(4)(1987), 367–376.
- [17] D. Jankovic and T. R. Hamlett, Compatible extensions of ideals, Boll. Un.Mat. Ital. B (7) 6(3)(1992), 453–465.