On (M,Q,G*)-Open Functions in M-Structures

International Journal of Mathematical Trends and Technology (IJMTT)          
© 2013 by IJMTT Journal
Volume-4 Issue-11                           
Year of Publication : 2013
Authors : V.Kokilavani , M.Myvizhi.


V.Kokilavani , M.Myvizhi."On (M,Q,G*)-Open Functions in M-Structures"International Journal of Mathematical Trends and Technology (IJMTT),V4(11):369 - 385 2013. Published by Seventh Sense Research Group.

The purpose of this paper is to give a new type of open function and closed function called open function and -closed function. Also, we obtain its characterizations and its basic properties.


[1] Alimohammady M, Roohi M, Linear minimal spaces, Chaos, Solitons and Fractals, 33(4) (2007), 1348-1354.
[2] Alimonammady M, Roohi M, Fixed Point in Minimal Spaces, Nonlinear Analysis: Modelling and Control, 2005, Vol. 10, No.4, 305 – 314.
[3] Csaszar A, Generalized topology: generalized continuity, Acta. Math. Hunger., 96, pp. 351 – 357, 2002.6.S.Lugojan. Generalized Topology, Stud. Cerc. Math., 34, pp.348 – 360, 1982.
[4] Kokilavani V, Basker P, On -closed sets in -structures, International Journal of Mathematical Archive, 3(3), 2012, pp. 822 - 825.
[5] Kokilavani V,Myvizhi M, On Quasi -Open Functions in Topological Spaces(Submitted).
[6] Kokilavani V,Myvizhi M,On -closed sets in -structures (Submitted).
[7] Kokilavani V,Myvizhi M, -interior and -closure in topological spaces (Submitted).
[8] Maki H, Umehara J, Noiri T, Every topological space is pre T ½, Mem. Fac. Sci. Kochi Univ. Ser.Math., pp. 33 – 42.
[9] Maki H, On generalizing semi-open sets and pre-open sets, in: Meeting on Topological Spaces Theory and its Application, August 1996, pp. 13 – 18.
[10] Maki H, Rao K C and NagoorGani A, On generalizing semi-open and preopen sets,Pure Appl. Math. Sci., 49(1999), 17–29.
[11] Njastad O, On some classes of nearly open sets, Pacific J Math, 15(1965), 961 – 970.
[12] Noiri T, On -sets and related spaces, in: Proceedings of the 8 th Meetings on Topological Spaces Theory and its Applications, August 2003, pp. 31 – 41.

k-normal, k-unitary, k-hermitian, Con-k-normal.