Volume 38 | Number 4 | Year 2016 | Article Id. IJMTT-V38P531 | DOI : https://doi.org/10.14445/22315373/IJMTT-V38P531
Especially Coupled Fixed Point Theorems in
Partially Fuzzy Normed Spaces
Following the definition of coupled fixed point [T. Gnana Bhaskar, V.
Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006) 1379–1393], we prove a coupled fixed point
theorem for contractive mappings in partially complete fuzzy normed spaces.
Fuzzy normed space, Coupled fixed point, Coupled coincidence, Partially
ordered set, Mixed monotone mapping
[1] R.P. Agarwal, M. Meehan, D. O’Regan, Fixed Point Theory and Applications,
Cambridge University Press, 2001.
[2] R.P. Agarwal, M.A. El-Gebeily, D. O’Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008) 1–8.
[3] T. Bag, S.K. Samanta, Some fixed point theorems on fuzzy normed linear spaces,
Inform. Sci. 177 (2007) 3271–3289.
[4] T. Bag, S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets Syst. 151
(2005) 513–547.
[5] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux
euations integrales, Fund. Math. 3 (1922) 133–181.
[6] L.C. Barros, R.C. Bassanezi, P.A. Tonelli, Fuzzy modelling in population dynamics, Ecol. Model. 128 (2000) 27–33.
[7] T.G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered
metric spaces and applications, Nonlinear Anal. 65 (2006) 1379–1393.
[8] D.W. Boyd, J.S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20
(1969) 458–464.
[9] A. Branciari, A fixed point theorem for mappings satisfying a general contractive
condition of integral type, Internat. J. Math. Math. Sci. 29 (2002) 531–536.
[10] Lj.B. Ciri´c, A generalization of Banach’s contraction principle, Proc. Amer. ´
Math. Soc. 45 (1974) 267–273.
[11] J.X. Fang, On I-topology generated by fuzzy norm, Fuzzy Sets Syst. 157 (2006)
2739–2750.
[12] A.L. Fradkov, R.J. Evans, Control of chaos: Methods and applications in engineering, Chaos, Solitons and Fractals 29 (2005) 33–56.
[13] R. Giles, A computer program for fuzzy reasoning, Fuzzy Sets Syst. 4 (1980)
221–234.
[14] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic
Press, New York, 1988.
[15] L. Hong, J.Q. Sun, Bifurcations of fuzzy nonlinear dynamical systems, Commun.
Nonlinear Sci. Numer. Simul. 1 (2006) 1–12.
[16] V. Lakshmikantham, Lj.B. Ciri´c, Coupled fixed point theorems for nonlinear ´
contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009) 4341–
4349.
[17] J. Madore, Fuzzy physics, Ann. Phys. 219 (1992) 187–198.
[18] D. Mihet¸, The fixed point method for fuzzy stability of the Jensen functional
equation, Fuzzy Sets Syst. 160 (2009) 1663–1667.
[19] A.K. Mirmostafaee, A fixed point approach to almost quartic mappings in quasi
fuzzy normed spaces, Fuzzy Sets Syst. 160 (2009) 1653–1662.
[20] M. Mursaleen, S.A. Mohiuddine, Nonlinear operators between intuitionistic fuzzy
normed spaces and Fr´ehet differentiation, Chaos, Solitons and Fractals, 42 (2009)
1010-1015.
[21] J.J. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005)
223–239.
[22] C. Park, Fuzzy stability of a functional equation associated with inner product
spaces, Fuzzy Sets Syst. 160 (2009) 1632–1642.
[23] B.E. Rhoades, A comparison of various definition of contractive mappings, Trans.
Amer. Math. Soc. 266 (1977) 257–290.
[24] B. Schweize, A. Sklar, Satistical metric spaces. Pacific J Math. 10 (1960) 314–334.
[25] Shaban Sedghi, Ishak Altun, Coupled fixed point theorems for contractions in
fuzzy metric spaces. Nonlinear Analysis 72 (2010) 1298–1304.
[26] D.R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge,
1974.
[27] T. Suzuki, Meir-Keeler contractions of integral type are still Meir–Keeler contractions, Internat. J. Math. Math. Sci. 2007, 6 pages, Article ID 39281,
doi:10.1155/2007/39281.
[28] T. Suzuki, A generalized Banach contraction principle which characterizes metric
completeness, Proc. Amer. Math. Soc. 136 (2008) 1861–1869.
[29] R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric
space, Indian J. Pure Appl. Math. 30 (1999) 419–423.
[30] L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338–353
M. H. Rezaei gol, J. Farrokhi-Ostad, "
Especially Coupled Fixed Point Theorems in
Partially Fuzzy Normed Spaces