Volume 70 | Issue 7 | Year 2024 | Article Id. IJMTT-V70I7P102 | DOI : https://doi.org/10.14445/22315373/IJMTT-V70I7P102
Received | Revised | Accepted | Published |
---|---|---|---|
18 May 2024 | 26 Jun 2024 | 11 Jul 2024 | 30 Jul 2024 |
Tangle is a concept in graph theory that has a dual relationship with branch-width which is well-known graph width
parameter. Ultrafilter, a fundamental notion in mathematics, is similarly known to have a dual relationship with branch-width
when extended to a connectivity system (X, f). We will reconsider these concepts using separation and partition.
Tangle, Linear tangle, branch-width, Filter, Ultrafilter.
[1] Reinhard Diestel, Christian Elbracht, and Raphael W. Jacobs, “Point Sets and Functions Inducing Tangles of Set Separations,” arXiv,
2023.
[CrossRef] [Google Scholar] [Publisher Link]
[2] Illya V. Hicks, and Boris Brimkov, “Tangle Bases: Revisited,” Networks: An International Journal, vol. 77, no. 1, pp. 161-172, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[3] Joseph E. Bonin, and Kevin Long, “Connectivity Gaps Among Matroids with the Same Enumerative Invariants,” Advances in Applied
Mathematics, vol. 154, p. 102648, 2024.
[CrossRef] [Google Scholar] [Publisher Link]
[4] Vadim Lozin, and Igor Razgon, “Tree-width Dichotomy,” European Journal of Combinatorics, vol. 103, p. 103517, 2022.
[CrossRef] [Google Scholar] [Publisher Link]
[5] Reinhard Diestel, “Graph Minors I: A Short Proof of the Path-width Theorem,” Combinatorics, Probability and Computing, vol. 4, no. 1,
pp. 27-30, 1995.
[CrossRef] [Google Scholar] [Publisher Link]
[6] Fedor V. Fomin, and Dimitrios M. Thilikos, “On the Monotonicity of Games Generated by Symmetric Submodular Functions,” Discrete
Applied Mathematics, vol. 131, no. 2, pp. 323–335, 2003.
[CrossRef] [Google Scholar] [Publisher Link]
[7] Frank Gurski, and Robin Weishaupt, “The Behavior of Tree-Width and Path-Width under Graph Operations and Graph Transformations,”
arXiv, 2024.
[CrossRef] [Google Scholar] [Publisher Link]
[8] P. Seymour, and R. Thomas, “Graph Searching and A Min-max Theorem for Tree-width,” Journal of Combinatorial Theory, Series B,
vol. 58, no. 1, pp. 22-23, 1993.
[CrossRef] [Google Scholar] [Publisher Link]
[9] Isolde Adler, “Games for Width Parameters and Monotonicity,” arXiv, 2009.
[CrossRef] [Google Scholar] [Publisher Link]
[10] Jim Geelen et al., “Obstructions to Branch-decomposition of Matroids,” Journal of Combinatorial Theory, Series B, vol. 96, no. 4, pp.
560-570, 2006.
[CrossRef] [Google Scholar] [Publisher Link]
[11] Athanassios Koutsonas, Dimitrios M. Thilikos, and Koichi Yamazaki, “Outerplanar Obstructions for Matroid Pathwidth,” Discrete
Mathematics, vol. 315-316, pp. 95-101, 2014.
[CrossRef] [Google Scholar] [Publisher Link]
[12] Christophe Paul, Evangelos Protopapas, and Dimitrios M. Thilikos, “Graph Parameters, Universal Obstructions, and WQO,” arXiv, 2023.
[CrossRef] [Google Scholar] [Publisher Link]
[13] Bruce A. Reed, “Tree Width and Tangles: A New Connectivity Measure and Some Applications,” Surveys in Combinatorics, vol. 241,
pp. 87-162, 1997.
[Google Scholar]
[14] Jan Kurkofka, “Ends and Tangles, Stars and Combs, Minors and The Farey Graph,” PhD Thesis, Staats-und Universitätsbibliothek
Hamburg Carl von Ossietzky, 2020.
[Google Scholar]
[15] Bogdan Alecu et al., “The Treewidth and Pathwidth of Graph Unions,” SIAM Journal on Discrete Mathematics, vol. 38, no. 1, 2024.
[CrossRef] [Google Scholar] [Publisher Link]
[16] Sandra Albrechtsen, “Refining Trees of Tangles in Abstract Separation Systems I: Inessential Parts,” arXiv preprint arXiv:2302.01808,
2023.
[CrossRef] [Google Scholar] [Publisher Link]
[17] Reinhard Diestel, and Sang-il Oum, “Tangle-tree Duality: In Graphs, Matroids and Beyond,” Combinatorica, vol. 39, pp. 879-910, 2019.
[CrossRef] [Google Scholar] [Publisher Link]
[18] Fedor V. Fomin, and Tuukka Korhonen, “Fast FPT-approximation of Branchwidth,” Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, pp. 886-899, 2022.
[CrossRef] [Google Scholar] [Publisher Link]
[19] Mamadou Moustapha Kanté et al., “Obstructions for Matroids of Path-Width at most k and Graphs of Linear Rank-Width at most k,”
Journal of Combinatorial Theory, Series B, vol. 160, pp. 15-35, 2023.
[CrossRef] [Google Scholar] [Publisher Link]
[20] Daniel Bienstock, “Graph Searching, Path-width, Tree-width and Related Problems (A Survey),” Reliability of Computer and
Communication Networks, vol. 5 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 33-50, 1989.
[Google Scholar] [Publisher Link]
[21] Shoji Kasahara et al., “DAG-pathwidth: Graph Algorithmic Analyses of DAG-type Blockchain Networks,” IEICE TRANSACTIONS on
Information and Systems, vol. E106, vol. 3, pp. 272-283, 2023.
[CrossRef] [Google Scholar] [Publisher Link]
[22] Moran Feldman, “Maximizing Symmetric Submodular Functions,” ACM Transactions on Algorithms (TALG), vol. 13, no. 3, pp. 1-36,
2017.
[CrossRef] [Google Scholar] [Publisher Link]
[23] Maurice Queyranne, “Minimizing Symmetric Submodular Functions,” Mathematical Programming, vol. 82, pp. 3-12, 1998.
[CrossRef] [Google Scholar] [Publisher Link]
[24] Reinhard Diestel, “Ends and Tangles,” Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 87, pp. 223-244,
2017.
[CrossRef] [Google Scholar] [Publisher Link]
[25] Eva Fluck, “Tangles and Hierarchical Clustering,” arXiv, vol. 38, no. 1, 2024.
[CrossRef] [Google Scholar] [Publisher Link]
[26] Sang-il Oum, and Paul Seymour, “Testing Branch-width,” Journal of Combinatorial Theory, Series B, vol. 97, no. 3, pp. 385-393, 2007.
[CrossRef] [Google Scholar] [Publisher Link]
[27] Christian Elbracht, Jakob Kneip, Maximilian Teegen, “The Structure of Submodular Separation Systems,” arXiv, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[28] Reinhard Diestel, Fabian Hundertmark, and Sahar Lemanczyk, “Profiles of Separations: In Graphs, Matroids, and Beyond,”
Combinatorica, vol. 39, pp. 37-75, 2019.
[CrossRef] [Google Scholar] [Publisher Link]
[29] Omid Amini et al., “Submodular Partition Functions,” Discrete Mathematics, vol. 309, no. 20, pp. 6000-6008, 2009.
[CrossRef] [Google Scholar] [Publisher Link]
[30] Petr Škoda, “Computability of Width of Submodular Partition Functions,” European Journal of Combinatorics, vol. 34, no. 3, pp. 660-
665, 2013.
[CrossRef] [Google Scholar] [Publisher Link]
[31] Henry H. Crapo, “Single-element Extensions of Matroids,” Journal of Research of the National Bureau of Standards-B, vol. 69B, no. 1-
2, pp. 55-65, 1965.
[Google Scholar]
[32] Masataka Nakamura, “A Single-element Extension of Antimatroids,” Discrete Applied Mathematics, vol. 120, no. 1-3, pp. 159-164, 2002.
[CrossRef] [Google Scholar] [Publisher Link]
[33] Neil Robertson, and Paul D. Seymour, “Graph Minors. X. Obstructions to Tree-decomposition,” Journal of Combinatorial Theory, Series
B, vol. 52, no. 2, pp. 153-190, 1991.
[CrossRef] [Google Scholar] [Publisher Link]
[34] Christophe Paul, Evangelos Protopapas, and Dimitrios M. Thilikos, “Universal Obstructions of Graph Parameters,” arXiv, 2023.
[CrossRef] [Google Scholar] [Publisher Link]
[35] Sang-il Oum, and Paul Seymour, “Certifying Large Branch-width,” Symposium on Discrete Algorithms: Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithm, vol. 22, no. 26, pp. 810-813, 2006.
[Google Scholar]
[36] Costas D. Koutras, Christos Moyzes, and Christos Rantsoudis, “A Reconstruction of Default Conditionals within Epistemic Logic,”
Proceedings of the Symposium on Applied Computing, pp. 977-982, 2017.
[CrossRef] [Google Scholar] [Publisher Link]
[37] Costas D. Koutras et al., “On Weak Filters and Ultrafilters: Set Theory From (and for) Knowledge Representation,” Logic Journal of the
IGPL, vol. 31, no. 1, pp. 68-95, 2023.
[CrossRef] [Google Scholar] [Publisher Link]
[38] Emmanouil Lardas et al., “On Strict Brambles,” Graphs and Combinatorics, vol. 39, 2023.
[CrossRef] [Google Scholar] [Publisher Link]
[39] Dimitris Askounis, Costas D. Koutras, and Yorgos Zikos, “Knowledge Means ‘all’, Belief Means ‘most’,” Journal of Applied NonClassical Logics, vol. 26, no. 3, pp. 173-192, 2016.
[CrossRef] [Google Scholar] [Publisher Link]
[40] Shital Dilip Solanki, Ganesh Mundhe, and S.B. Dhotre, “Elementary Lift and Single Element Coextension of a Binary Gammoid,” arXiv,
2022.
[CrossRef] [Publisher Link]
[41] Joshua Erde, “A Bramble like Witness for Large Branch-Width,” arXiv, 2015.
[CrossRef] [Google Scholar] [Publisher Link]
[42] Isolde Adler, “Games for Width Parameters and Monotonicity,” arXiv, 2009.
[CrossRef] [Google Scholar] [Publisher Link]
[43] Martin Grohe, and Dániel Marx, “On Tree Width, Bramble Size, and Expansion,” Journal of Combinatorial Theory, Series B, vol. 99, no.
1, pp. 218-228, 2009.
[CrossRef] [Google Scholar] [Publisher Link]
[44] Hans L. Bodlaender, Alexander Grigoriev, and Arie M.C.A. Koster, “Treewidth Lower Bounds with Brambles,” Algorithmica, vol. 51,
pp. 81-98, 2008.
[CrossRef] [Google Scholar] [Publisher Link]
[45] Daniel John Harvey, On Treewidth and Graph Minors, University of Melbourne, Department of Mathematics and Statistics, 2014.
[Google Scholar]
[46] William Wistar Comfort, and Stylianos Negrepontis, The Theory of Ultrafilters, Springer Science & Business Media, 2012.
[Google Scholar]
[47] David Booth, “Ultrafilters on a Countable Set,” Annals of Mathematical Logic, 1970.
[Google Scholar]
[48] Kenneth Kunen, “Ultrafilters and Independent Sets,” Transactions of the American Mathematical Society, vol. 172, pp. 299-306, 1972.
[Google Scholar] [Publisher Link]
[49] Philipp Eberenz. Characteristics of Profiles.
[50] Reinhard Diestel, Philipp Eberenz, and Joshua Erde, “Duality Theorems for Blocks and Tangles in Graphs,” SIAM Journal on Discrete
Mathematics, vol. 31, no. 3, 2017.
[CrossRef] [Google Scholar] [Publisher Link]
[51] Reinhard Diestel, and Jakob Kneip, “Profinite Separation Systems,” Order, vol. 37, pp. 179-205, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
[52] Talal Ali Al-Hawary, Matroid’s Filterbase, 2018.
[53] S.S. Kutateladze, “An Excursion into Set Theory,” Fundamentals of Functional Analysis, pp. 1-9, 1996.
[CrossRef] [Publisher Link]
[54] Ann-Kathrin Elm, and Hendrik Heine, “Limit-closed Profiles,” arXiv, 2023.
[CrossRef] [Google Scholar] [Publisher Link]
[55] Susumu Cato, “Quasi-decisiveness, Quasi-ultrafilter, and Social Quasi-orderings,” Social Choice and Welfare, vol. 41, pp. 169-202, 2013.
[CrossRef] [Google Scholar] [Publisher Link]
[56] Susumu Cato, “Quasi-stationary Social Welfare Functions,” Theory and Decision, vol. 89, pp. 85-106, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
[57] Susumu Cato, “The Possibility of Paretian Anonymous Decision-making with an Infinite Population,” Social Choice and Welfare, vol.
53, pp. 587-601, 2019.
[CrossRef] [Google Scholar] [Publisher Link]
[58] Susumu Cato, “Social Choice, The Strong Pareto Principle, and Conditional Decisiveness,” Theory and Decision, vol. 75, pp. 563-579,
2013.
[CrossRef] [Google Scholar] [Publisher Link]
Takaaki Fujita, "Reconsideration of Tangle and Ultrafilter using Separation and Partition," International Journal of Mathematics Trends and Technology (IJMTT), vol. 70, no. 7, pp. 5-12, 2024. Crossref, https://doi.org/10.14445/22315373/IJMTT-V70I7P102