Volume 16 | Number 1 | Year 2014 | Article Id. IJMTT-V16P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V16P505
In the present paper we obtain a finite integral involving general class of polynomials and H¯ -function.Next with the application of this and the lamma due to Srivastava et.al. [12], we obtain two general multiple integral relations involving general class of polynomials. H¯ -function and two arbitrary function f and g. By suitably specializing the functions f and g occuring in the main integral relation, a number of multiple integrals are evaluated which are new and quit general in nature.
[1] Agarwal, R.K.,Pareek,R.S.,and Saigo,M.A., A general fractional integral formula.J. Fractional calculus,7(1995), 55-60.
[2] Agarwal, B.D.and Chaubey,J.P., Operational derivation of generating relations for generalized polynomials,Indian J. Pure Appl. Math., 11(1980), 1151-1157,ibid,11(1981) 357-379.
[3] Buschman,R.G. and Srivastava,H.M., The ¯H -function associated with a certain class of Feynman integrals , J.Phys. A;Math.Gen., 23(1990), 4707-4710.
[4] Chatterjee, S.K., Quelques fonctions generatrices des polynomes d’Hermite,du Point de vue de I’algebra de Lie, C.R. Acad. Sci. Paris Ser ., A-B 268( 1969), A 600- A602.
[5] Gupta, K.C.,Goyal, S.P. and SalimT.O., On theorems connecting the Laplace trans- form and a generaliged fractional integral operator, Tamkang J. Math, (1998), 323- 333.
[6] Gould, H.W. and Hooper,A.T., Operational formulas connected with two general- izations of Hermite polynomials., Duke.Math. J., (1962), 51-63
[7] Krall,H.L. and Frink,D., A new class of orthogonal polynomials :the Bessel polyno- mial., Trans. Amer. Math. Soc.65(1949),100-115.
[8] Kalla,S.L. Goyal,S.P. and Agarwal,R.K., On multiple integral transformation, Math. Notes. 142(1961) 450-452
[9] Mac Robert T.M., Beta Function formulas and integrals involving E-function., Math.Notes,28 (1981),440-452.
[10] Saigo,M.,Goyal,S.P. ,and Saxena,S. R.P. and Srivastava, K.N., A theorem relating a generalized Weyl fractional integral, Laplace and Verm transforms with applications,, J.Fractional Calculus,, 13 (1988),43-56.
[11] Srivastava, H.M., A contour integral involving Fox’s H-function India J. Math. 14 (1972), 1-6.
[12] Srivastava, H.M.,Goyal S.P. and Agarwal,R.K.: Some multiple integral relations for the H-function of several vriables Bull Inst Mth cad. Sinica, (1981),pp 261-277.
[13] Srivastava, H.M. and Manocha, H.L., A Treatise on Generating Function John Wiley and Sons (Halsted Press), New York, Ellis Horwood Chichester (1984).
[14] Srivastava, H.M.and Panda,R., On the unified presentation of certain classical poly- nomials., Boll.Un.Math 12 (4),(1971) 306-314
[15] Singh,R.P. and Srivastava, K.N., A note on generalization of Laguerre and Humber polynomials., Rieerca (Napoli), (2)14(1963),11-21 Errata,ibid,15 (1964) maggio- agorto,63.
Naseem A.Khan, Yashwant Singh, "SOME MULTIPLE INTEGRAL RELATIONS INVOLVING GENERAL CLASS OF POLYNOMIALS AND H¯ -FUNCTION WITH APPLICATION," International Journal of Mathematics Trends and Technology (IJMTT), vol. 16, no. 1, pp. 19-28, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V16P505