Volume 2 | Issue 3 | Year 2011 | Article Id. IJMTT-V2I3P502 | DOI : https://doi.org/10.14445/22315373/IJMTT-V2I3P502
S.S. Rajput, S.S. Yadav, "A Study of Verhulst’s Model with Gaussian Correlated Noise," International Journal of Mathematics Trends and Technology (IJMTT), vol. 2, no. 3, pp. 4-6, 2011. Crossref, https://doi.org/10.14445/22315373/IJMTT-V2I3P502
[1] Castro, F.; Wio, H.S.; Abramson, G. (1995): “Colored-noise problem: A Markovian interpolation procedure, Physical Review E, 52(1):159-164.
[2] Ali, B.Q.; Wang, X.J.; Liu, G.T.; Liu, L.G. (2003): “Correlated noise in a logistic model”, Physics Review E67, 022903(1-3).
[3] Zhong, W.R.; Shaho, Y.Z.; He, Z.H. (2006): “Influence of correlated noises on a growth of a tumor in a modified Verhulst’s model”, Scientific Journal on Random Processes in Physical, Biological and Technological systems, 6(4): L349-L358.
[4] Jin, S. and Qun, Z.S.: “Transitions in a logistic growth model induced by noise coupling and noise color”, Commun. Theor. Phys., 46: 175-182
[5] Liao, H.Y.; Ali, .Q.; Hu, L. (2007): “Effects of multiplicative colored noise on Bacteria growth”, Brazilian Journal of Physics, 37(3B): 1125-1128.
[6] Behera, A. and O’ Rourke, S.F.C. (2008): “The effect of correlated noise in a Gompertz tumor growth model”, Brazilian Journal of Physics, 38(2):272-278.
[7] Mei, D.C. and Du, L.C. (2009): “Effect of time delay in stationary properties of a logistic growth model with correlated noises”, Statistical Mechanics and its application, 389(6):1189-1196.
[8] Jing, T. AND Yong, C. (2010): “Effect of time delay on stochastic tumor growth”, CHN. PHYS. LETT. 27(3): 030502(1-4)