Volume 36 | Number 2 | Year 2016 | Article Id. IJMTT-V36P515 | DOI : https://doi.org/10.14445/22315373/IJMTT-V36P515
Vidyadhar V. Nalawade, U. P. Dolhare, "Another Kannan Version of Suzuki Fixed Point Theorem," International Journal of Mathematics Trends and Technology (IJMTT), vol. 36, no. 2, pp. 111-115, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V36P515
[1] S. Banach, Sur les op´erationsdans les ensembles abstraitsetleur application aux equations int´egrales, Fund. Math., 3 (1922), 133–181.
[2] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241–251. MR0394329 (52:15132).
[3] J. Caristi and W. A. Kirk, Geometric fixed point theory and inwardness conditions, Lecture Notes in Math., Vol. 490, pp. 74–83, Springer, Berlin, 1975. MR0399968 (53:3806).
[4] Lj. B. ´Ciri´c,A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. MR0356011 (50:8484).
[5] I. Ekeland,On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. MR0346619 (49:11344).
[6] I. Ekeland,Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443 474. MR526967 (80h:49007).
[7] W. A. Kirk, Contraction mappings and extensions in Handbook of metric fixed point theory (W. A. Kirk and B. Sims, Eds.), 2001, pp. 1– 34, Kluwer Academic Publishers, Dordrecht. MR1904272 (2003f:54096).
[8] W. A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl., 277 (2003), 645–650. MR1961251 (2003k:47093).
[9] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math.Anal. Appl., 28 (1969), 326–329. MR0250291 (40:3530).
[10] S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488. MR0254828 (40:8035).
[11] P. V. Subrahmanyam, Remarks on some fixed point theorems related to Banach’s contraction principle, J. Math. Phys. Sci., 8 (1974), 445– 457. MR0358749 (50:11208).
[12] T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math.Anal. Appl., 253 (2001), 440–458. MR1808147 (2002f:49038).
[13] T. Suzuki, Several fixed point theorems concerning τ-distance, Fixed Point Theory Appl., 2004 (2004), 195–209. MR2096951.
[14] T. Suzuki, Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense, Comment. Math.Prace Mat., 45 (2005), 45–58. MR2199893 (2006m:54055).
[15] E. H. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc., 10 (1959), 974–979.MR0110093 (22:976).
[16] R. Kannan, Some results on fixed points – II, Amer. Math. Monthly, 76 (1969), 405–408. MR0257838 (41:2487).
[17] P. V. Subrahmanyam, Completeness and fixed-points, Monatsh. Math., 80 (1975), 325–330. MR0391065 (52:11887).
[18] Suzuki T., A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 2008, 136, 1861–1869.
[19] Kikkawa M., Suzuki T., Some similarity between contractions and Kannan mappings, Fixed Point Theory Appl., 2008, Article ID 649749, 1–8.