Volume 41 | Number 1 | Year 2017 | Article Id. IJMTT-V41P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V41P507
The object of this paper is to establish an general Eulerian integral involving the product of two multivariable Aleph-functions, a general class of multivariable polynomials and a generalized hypergeometric function which provide unification and extension of numerous results. We will study the particular case concerning the multivariable I-function defined by Sharma et al [3] and the Srivastava-Daoust polynomial [4].
[1] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function I. J.Fractional Calculus 15 (1999), page 91-107.
[2] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function III. J.Fractional Calculus 20 (2001), page 45-68.
[3] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113- 116.
[4] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser A72 = Indag Math 31(1969) page 449-457.
[5] Srivastava H.M. And Garg M. Some integral involving a general class of polynomials and multivariable H-function. Rev. Roumaine Phys. 32(1987), page 685-692.
[6] Srivastava H.M. and Karlsson P.W. Multiple Gaussian Hypergeometric series. Ellis.Horwood. Limited. New-York, Chichester. Brisbane. Toronto , 1985.
[7] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
F.Y. AY ANT, "On general Eulerian integral of certain products of Aleph-functions, a class of polynomials and generalized hypergeometric function," International Journal of Mathematics Trends and Technology (IJMTT), vol. 41, no. 1, pp. 75-88, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V41P507