Volume 42 | Number 2 | Year 2017 | Article Id. IJMTT-V42P520 | DOI : https://doi.org/10.14445/22315373/IJMTT-V42P520
The present paper is evaluated a new Eulerian integral associated with the product of two multivariable I-functions defined by Nambisan et al [2] a generalized Lauricella function , a class of multivariable polynomials and multivariable Aleph-function with general arguments . We will study the case concerning the multivariable H-function defined by Srivastava et al [9] and Srivastava-Daoust polynomial [5].
[1] B. L. J. Braaksma, “Asymptotic expansions and analytic continuations for a class of Barnes integrals,”Compositio Mathematical, vol. 15, pp. 239–341, 1964.
[2] Prathima J. Nambisan V. and Kurumujji S.K. A Study of I-function of Several Complex Variables, International Journalof Engineering Mathematics Vol(2014) , 2014 page 1-12 [3] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function I. J.Fractional Calculus 15 (1999), page 91-107.
[4] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113- 116.
[5] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser A72 = Indag Math 31(1969) page 449-457.
[6] Srivastava H.M. And Garg M. Some integral involving a general class of polynomials and multivariable H-function. Rev. Roumaine Phys. 32(1987), page 685-692.
[7] Srivastava H.M. and Karlsson P.W. Multiple Gaussian Hypergeometric series. Ellis.Horwood. Limited. New-York, Chichester. Brisbane. Toronto , 1985.
[8] Srivastava H.M. and Manocha H.L : A treatise of generating functions. Ellis. Horwood.Series. Mathematics and Applications 1984, page 60.
[9] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
F.Y. Ayant, "Eulerian integral associated with product of two multivariable I-functions, a class of polynomials and the multivariable Aleph-function II," International Journal of Mathematics Trends and Technology (IJMTT), vol. 42, no. 2, pp. 173-187, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V42P520