Volume 43 | Number 2 | Year 2017 | Article Id. IJMTT-V43P518 | DOI : https://doi.org/10.14445/22315373/IJMTT-V43P518
The object of this paper is to establish an general Eulerian integral involving the product of the multivariable A-function defined by Gautam et al [1], the general classes of multivariable polynomials and a generalized hypergeometric function which provide unification and extension of numerous results. We will study the particular case concerning the multivariable H-function defined by Srivastava et al [8] and the Srivastava-Daoust polynomial [5].
[1] Gautam B.P., Asgar A.S. and Goyal A.N. On the multivariable A-function. Vijnana Parishas Anusandhan Patrika Vol 29(4) 1986, page 67-81.
[2] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function I. J.Fractional Calculus 15 (1999), page 91-107.
[3] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function III. J.Fractional Calculus 20 (2001), page 45-68.
[4] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.
[5] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser A72 = Indag Math 31(1969) page 449-457.
[6] Srivastava H.M. And Garg M. Some integral involving a general class of polynomials and multivariable H-function. Rev. Roumaine Phys. 32(1987), page 685-692.
[7] Srivastava H.M. and Karlsson P.W. Multiple Gaussian Hypergeometric series. Ellis.Horwood. Limited. New-York, Chichester. Brisbane. Toronto , 1985.
[8] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
F.Y. Ayant, "On general Eulerian integral of certain product multivariable A-function, the classes of polynomials and generalized hypergeometric function," International Journal of Mathematics Trends and Technology (IJMTT), vol. 43, no. 2, pp. 124-134, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V43P518