Volume 43 | Number 3 | Year 2017 | Article Id. IJMTT-V43P526 | DOI : https://doi.org/10.14445/22315373/IJMTT-V43P526
Debashis Biswas, Samares Pal, "Stability Analysis of a delayed HIV/AIDS Epidemic Model with Saturated Incidence," International Journal of Mathematics Trends and Technology (IJMTT), vol. 43, no. 3, pp. 222-231, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V43P526
[1] Centers for Disease Control, (1981) Pneumocystis Pneumonia-Los Angeles Morbidity and Mortality Weekly Report. , 30, 250-252.
[2] H. Wei, X. Li, and M. Martchev, " An epidemic model of a vector-borne disease with direct transmission and time delay, " J. Math. Anal. Appl., 342, 895-908, (2008).
[3] Sepkowitz KA, ” AIDS-the first 20 years ” . N. Engl. J. Med. , 344(23), 2001, 1764-72.
[4] Alexander Kramer, Mirjam Kretzschmar, Klaus Krickeberg, Modern infection disease epidemiology concepts, methods,mathematical models, and publichealth. New. York. Springer. , 2010, p. 88.
[5] Wilhelm. Kirch. Encyclopedia of public health. New. York. Springer. , 2008, pp. 676-677.
[6] Y. H. Hsieh, C. H. Chen, Modeling the social dynamics of a sex industry: its implications for spread of HIV/AIDS, Bull. Math. Biol. , 66, 2004 , 143-166.
[7] Jack, H., Hale, K., Theory of Functional Differential Equations .2nd ed., Spinger Verlag, New York. , (1977).
[8] C. M. Kribs-Zaleta, M. Lee, C. Roman, S. Wiely, C. M. Hernandez-Suarez, The effect of the HIV/AIDS epidemic on Africa’s truck drivers, Math. Bios. Eng. 2(4), 2005, 771-788.
[9] A. S. R. Srinivasa Rao, Mathematical modeling of AIDS epidemic in India, Curr. Sci. , 84, 2003, 1192-1197.
10] S. Ruan and J. Wei, " On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, " Dyn. Contin. Discrete. Implus. Syst., Ser. A. Math. Anal., 10, 863-874, (2003).
[11] J. L. Willems, Stability Theory of Dynamical systems, New York: Nelson , (1988).
[12] A. Tripathi, R. Naresh, D. Sharma, Modelling the effect of screening of unaware infectives on the spread of HIV infection, Appl. Math. Comput. , 184, 2007, 1053-1068.
[13] Z. Mukandavire, W. Garia, C. Chiyaka, Asymptotic properties of an HIV/AIDS model with time delay, J. Math. Anal.Appl. , 330, 2007, 916-933.
[14] R. Naresh, A. Tripathi, J. M. Tchuenche, D. Sharma, Stability analysis of a time delay SIR epidemic model with nonlinear incidence rate, Comp. Math. Appl. 58, 2009, 348-359.
[15] S. Kovacs, Dynamics of HIV/AIDS model-The effect of time delay, Appl. Math. Comp. , 188(2), 2007, 1597-1609.
[16] Mukandavire, Z., Chiyaka, C., Garira, W., and Musuka, G. Mathematical analysis of a sex-structured HIV/AIDS model with a discrete time delay. Nonlinear Analysis,, 71, 2009, 1082-1093.
[17] R. Martin, Logarithmic norms and projections applied to linear differential systems, J. Math. Anal. Appl. , 45, 432-454, (1974).
[18] M. Y. Li, J. S. Muldowney, A geometric approach to global-stability problems, SIAM J. Math. Anal. , 27, 1070-1083, (1996).