Volume 44 | Number 3 | Year 2017 | Article Id. IJMTT-V44P524 | DOI : https://doi.org/10.14445/22315373/IJMTT-V44P524
In this paper, we study two important class of special (α, β)-metrics of scalar flag curvature in the form of and (where and are constants) are of scalar flag curvature. We prove that these metrics are weak Berwald if and only if they are Berwald and their flag curvature vanishes. Further, we show that the metrics are locally Minkowskian.
[1] S. Bacso, X. Cheng and Z. Shen, Curvature Properties of (α, β)-metrics, Adv. Stud. Pure Math. Soc., Japan (2007).
[2] S.S. Chern and Z. Shen, Riemann-Finsler geometry, World - Scientific Publishing Co., Singapore (2005).
[3] X. Cheng , X. Mo.,and Z. Shen, On the flag curvature of Finsler metrics of scalar curvature, J. London Math. Soc., 68 (2003), 762-780.
[4] X. Cheng and Z. Shen, A Class of Finsler metrics with isotropic S-curvature, Israel J. Math., 169 (2009), 317-340.
[5] X. Cheng, (α, β)-On metrics of Scalar flag curvature with constant S-curvature, J. Acta Math. Sinica, 26(2010), 1701- 1709.
[6] X. Cheng, H. Wang and M. Wang, (α, β)-metrics with relatively isotropic mean Landsberg curvature,, J. Publ. Math. Debrecen , 72 (2008), 475-485.
[7] X. Chun Huan and X. Cheng, On a Class of weak Landsberg (α, β)-metrics, J. Mathematical Research and Exposition., 29 (2009), 227-236.
[8] Li Benling and Z. Shen, On a Class of weak Landsberg metrics, J. Science China Series., 50 (2004), 573-589.
[9] C. Ningwei, On the S-curvature of (α, β)-metrics, J. Acta Math. Sci., 26 (2006), 1047-1056.
[10] Z. Shen, Finsler metrics with and , Canadian J. Math., 55 (2003), 112-132.
[11] Z. Shen, Differential Geometry of Spray and Finsler spaces, Kluwer Acad. Dordrecht, (2001).
[12] Z. Shen Lectures on Finsler Geometry, World - Scientific Publishing Co., Singapore (2001).
[13] Z. Shen, Landsberg curvature, S-curvature and Riemann curvature, In A Sample of Finsler Geometry, MSRI Series, Cambridge University Press, Cambridge (2004).
[14] Z. Shen, Volume Comparison and its applications in Riemann-Finsler Geometry, J. Adv. in Math., 128 (1997), 306-328.
[15] Z. Shen and Yildirim G.C, On a Class of Projectively flat metrics wtih constant flag curvature, Cana- dian J. Math., 60 (2008), 443-456.
[16] Z. Shen, Two-dimensional Finsler metrics wtih constant flag curvature, J. Manuscripta Mathamatica.,109 (2002), 349-366.
[17] A. Tayebi, Tayebeh Tabatabaeifar, and Esmaeil Peyghan , On The Second Approximate Matsumato Metric,, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 115-128.
[18] A. Tayebi and M. Rafie Rad, S-curvature of isotropic Berwald metrics,, Sci. China Ser. A 51 (2008), no. 12, 2198- 2204.
Thippeswamy K.R, Narasimhamurthy S.K, "Two Kinds of Weakly Berwald Special (α, β) - metrics of Scalar flag curvature," International Journal of Mathematics Trends and Technology (IJMTT), vol. 44, no. 3, pp. 123-128, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V44P524