...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 44 | Number 4 | Year 2017 | Article Id. IJMTT-V44P540 | DOI : https://doi.org/10.14445/22315373/IJMTT-V44P540

Semi Global Cototal Domination upon Edge Addition Stable Graphs


T.Sheeba Helen, T.Nicholas
Abstract

Let G be a simple, finite and connected graph. A subset D of vertices of a connected graph G is called a semi global cototal dominating set if D is a dominating set for G and G sc and has no isolated vertices in G, where Gsc is the semi complementary graph of G. The semiglobal cototal domination number is the minimum cardinality of a semi global cototal dominating set of G and is denoted by γsgcot(G). A graph G is said to be semi global cototal domination edge addition stable, stable for short, if addition of any edge to G does not change the semi global cototal domination number. On the other hand, a graph G is said to be semi global cototal domination edge addition critical, if addition of any edge to G changes the semi global cototal domination number. In this paper, we study the concepts of semi global cototal domination upon edge addition stable property for cycle and path graphs. Subject Classification: 05C69

Keywords
Global cototal domination number, semi global cototal domination number, semi global cototal domination edge addition stable
References

[1] R.C.Brigham and R.D.Dutton, Factor domination in graphs, Discrete Math 86(1990)127-136.
[2] Harary, F. Graph Theory, Addison - Wesley, Reading, MA, 1972.
[3] T. W. Haynes, S. T. Hedetneimi, P. J. Slater, Fundamentals of Domination in Graphs, MarcelDekker, New York, 1988.
[4] K.Kavitha, N.G.David, Global Domination upon Edge Addition Stable Graphs, International Journal of Computer Applications(0975- 8887)volume 43-No 19, April 2012.
[5] V.R. Kulli and B.Janakiram,The Total Global Domination Number of a Graph, Indian J.Pureappl. Math, 27(6): 537– 542, June 1996.
[6] V.R.Kulli, B. Janakiram and R.R Iyer. The Cototal Domination Number of a graph J.Discrete Mathematical Sciences and Cryptography 2 (1999) 179-184.
[7] I. H. Naga Raja Rao, S. V. Siva Rama Raju, Semi Complementary Graphs, Thai Journal of Mathematics. Volume 12 (2014) number 1: 175 – 183.
[8] T.Nicholas, T.Sheeba Helen, Global Cototal Domination in Graphs, Preprint.
[9] T.Nicholas, T.Sheeba Helen, SemiGlobal Cototal Domination on Graphs, International Journal of Science and Research. Volume 6 Issue 1, Jan 2017, 2293-2295.
[10] D. F. Rall, Congr. Numer. , 80(1991), 89-95.
[11] E. SampathKumar, H. B. Walikar, The Connected Domination Number of a Graph, J. Math. Phy. Sci, 13(1979), 607 – 613.
[12] E. Sampathkumar, The Global Domination Number of a graph J.MathPhys.Sci 23 (1989) 377-385.
[13] S. V. Siva Rama Raju, S. S. V. R. Kumar Addagarla, Semiglobal Domination, International Journal of Mathematical Archive – 3(7), 2012, 2589 – 2593.

Citation :

T.Sheeba Helen, T.Nicholas, "Semi Global Cototal Domination upon Edge Addition Stable Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 44, no. 4, pp. 279-282, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V44P540

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved