Volume 4 | Issue 10 | Year 2013 | Article Id. IJMTT-V4I10P6 | DOI : https://doi.org/10.14445/22315373/IJMTT-V4I10P6
I.Elbatal , M. Elgarhy, "Statistical Properties of Kumaraswamy Quasi Lindley Distribution," International Journal of Mathematics Trends and Technology (IJMTT), vol. 4, no. 10, pp. 237-246, 2013. Crossref, https://doi.org/10.14445/22315373/IJMTT-V4I10P6
[1] Bakouch HS, Al-Zahrani BM, Al-Shomrani AA, Marchi VAA, Louzada F (2012). An extended Lindley distribution. J. Korean Stat. Soc. 41(1):75-85.
[2] Cordeiro. G. M and Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81,(2011), 883--898.
[3] Cordeiro, G. M, Ortega, E. M and Nadarajah, S. (2010). The Kumaraswamy Weibull distribution with application to failure data. Journal of the Franklin Institute, 347, 1399--1429.
[4] Cordeiro, G. M, Nadarajah, S. and Ortega, E. M (2012). The Kumaraswamy Gumbel distribution. Statistical Methods and Applications, to appear.Statistical Methods & Applications. 21(2), 139-168.
[5] Elbatal. I (2013) Kumaraswamy Generalized linear failure rate. Indian Journal of Computational and Applied Mathematics. V(1)1, 61-78
[6] Eugene, N., Lee, C., and Famoye, F. (2002). Beta-normal distribution and its applications, Communication in Statistics- Theory and Methods, 31, 497--512.
[7] Ghitany ME, Atieh B, and Nadarajah S (2008a). Lindley distribution and its Applications. Math. Comput. Simul. 78(4):493-506.
[8] Ghitany ME, and Al-Mutairi DK (2009). Estimation methods for the discrete Poisson- Lindley distribution. J. Stat. Comput. Simul. 79(1):1-9.
[9] Ghitany ME, and Al-Mutairi DK (2008b). Size-biased Poisson-Lindley distribution and its Applications. Metron- Int. J. Stat. LXVI(3): 299 - 311.
[10] Ghitany ME, Al-Mutairi DK, and Nadarajah S (2008c). Zero-truncated Poisson-Lindley distribution and its Applications. Math. Comput. Simul. 79(3):279-287.
[11] Ghitany ME, Al-qallaf F, Al-Mutairi DK, and Hussain H A (2011). A two parameter weighted Lindley distribution and its applications to survival data. Math. Comput. Simul. 81(6):1190-1201
[12] Jones, M. C. (2009). A beta-type distribution with some tractability advantages. Statistical Methodology, 6, 70–81
[13] Kumaraswamy,P (1980). Generalized probability density function for double bounded random-processes. Journal of Hydrology.