Volume 53 | Number 5 | Year 2018 | Article Id. IJMTT-V53P547 | DOI : https://doi.org/10.14445/22315373/IJMTT-V53P547
The natural convection which is caused by combined effect of temperature buoyancy and concentration buoyancy is studied analytically in an inclined tall rectangular cavity with uniform heat flux and mass flux along the vertical sides. The analytical part is true to the boundary layer regime where the heat transfer and mass transfer rates are governed by convection. An Oseen-linearized solution is for tall rectangular cavity filled with the combination characterized by Lewis number Le which is equal to one and arbitrary buoyancy ratios. The influence of the angle of inclination for different Rayleigh number Ra, on velocity and temperature distributions is determined. It is found that Nusselt number Nu and Sherwood number Sh increases the angle of inclination, passes through an apex and then begins to fall down. The effect of inclination on Nu and Sh is more identified as the Ra is increased. The apex of the Nu and Sh occurs at a lesser inclination angle when Ra is raised. The effect of Le is recorded by a similarity solution valid for Le beyond one in heat transfer driven flow, and for Le less than one in mass transfer driven flow.
[1] Khair, K. R., and Bejan, A., "Mass Transfer to Natural Convection Boundary Layer Flow Driven by Heat Transfer," ASME JOURNAL OF HEAT TRANSFER, Vol. 107, 1985, pp. 979-981.
[2] Gill, A. E., "The Boundary Layer Regime for Convection in a Rectangular Cavity," J. Fluid Mech., Vol. 26, 1966, pp. 515-536.
[3] Ostrach, S., "Natural Convection in Enclosures," Adv. Heat Transfer Vol. 8, 1972, pp. 161-227.
[4] Kamotani, Y., Wang, L. W., Ostrach, S., and Jiang, H. D., "Experimental Study of Natural Convection in Shallow Enclosures With Horizontal Temperature and Concentration Gradients," Int. J. Heat Mass Transfer, Vol 28, 1985, pp. 165-173.
[5] Ostrach, S., "Natural Convection Heat Transfer in Cavities and Cells," 7th Int. Heat Transfer Conf., Munich, 1982, Vol. 1, 1983, pp. 365-379.
[6] Bejan, A., Convection Heat Transfer, Wiley, New York, 1984, Chap. 5.
[7] O. V. Trevisan., A. Bejan., "Combined Heat aand Mass Transfer by Natural Convection in a Vertical Enclosure", J.. Heat Transfer, 1987.
[8] Catton, I., "Natural Convection in Enclosures," 6th Int. heat Transfer Toronto, 1978, Vol. 6, 1979, pp. 13-43.
[9] Viskanta, R., Bergman, T. L., and Incropera, F. P., "Double-Diffusive Natural Convection," in: Natural Convection: Fundamentals and Applications S. Kakac, W. Aung, and R. Viskanta, eds., Hemisphere, Washington, DC 1985, pp. 1075-1099.
[10] Jaluria, Y., Natural Convection Heat and Mass Transfer, Pergamum, Oxford, 1980.
[11] Jhaveri, B. S., and Rosenberger, F., "Expansive Convection in Vapor Transport Across Horizontal Rectangular Enclosures, J. Crystal Growth, Vol 57, 1982, pp. 57-64.
[12] Bejan, A., "Note on Gill's Solution for Free Convection in a Vertical Enclosure," J. Fluid Mech., Vol. 90, 1979, pp. 561-568.
[13] Kimura, S., and Bejan, A., "The Boundary Layer Natural Convection Regime in a Rectangular Cavity With Uniform Heat Flux From the Side," ASME JOURNAL OF HEAT TRANSFER, Vol. 106, 1984, pp. 98-103.
[14] Bejan, A., "The Method of Scale Analysis: Natural Convection in Fluids," in: Natural Convection: Fundamentals and Applications, S. Kakac, W Aung, and R. Viskanta, eds., Hemisphere, Washington, DC, 1985, pp. 75-94.
Dr. Veena Jawali, D.R. Sasi Rekha, "Double Diffusive Convection in an Inclined Rectangular Cavity," International Journal of Mathematics Trends and Technology (IJMTT), vol. 53, no. 5, pp. 380-396, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V53P547