Volume 54 | Number 6 | Year 2018 | Article Id. IJMTT-V54P557 | DOI : https://doi.org/10.14445/22315373/IJMTT-V54P557
Md Ferdous Alam, Md.Shadmanur Rahman, "Fracture Mechanism of Single and Polycrystal Silver Nanowire: Computational Study," International Journal of Mathematics Trends and Technology (IJMTT), vol. 54, no. 6, pp. 471-476, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V54P557
[1] N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, “25th anniversary article: Semiconductor nanowires synthesis, characterization, and applications," Advanced Materials, vol. 26, no. 14, pp. 2137-2184, 2014.
[2] S. M. Mirvakili, A. Pazukha, W. Sikkema, C. W. Sinclair, G. M. Spinks, R. H. Baughman, and J. D. W. Madden, “Niobium nanowire yarns and their application as artificial muscles," Advanced Functional Materials, vol. 23, no. 35, pp. 4311-4316, 2013.
[3] Cai W, Bulatov VV, Chang J, Li J, Yip S. Dislocation core effects on mobility. In: Nabarro FRN, Hirth JP, editors. Dislocations in solids, vol. 12. Amsterdam: Elsevier; 2005. p. 1 [Chapter 64].
[4] Louchet, F., L. P. Kubin, and D. Vesely. "In situ deformation of bcc crystals at low temperatures in a high-voltage electron microscope Dislocation mechanisms and strain-rate equation." Philosophical Magazine A 39.4 (1979): 433-454.
[5] Duesbery, M. and-S., and V. Vitek. "Plastic anisotropy in bcc transition metals." Acta Materialia 46.5 (1998): 1481-1492.
[6] Vitek, V. "Core structure of screw dislocations in body-centred cubic metals: relation to symmetry and interatomic bonding." Philosophical Magazine 84.3-5 (2004): 415-428.
[7] Uchic, Michael D., et al. "Sample dimensions influence strength and crystal plasticity." Science 305.5686 (2004): 986-989.
[8] Greer, Julia R., Warren C. Oliver, and William D. Nix. "Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients." Acta Materialia 53.6 (2005): 1821-1830.
[9] Volkert, Cynthia Ann, and Erica T. Lilleodden. "Size effects in the deformation of sub-micron Au columns." Philosophical Magazine 86.33-35 (2006): 5567-5579.
[10] Dimiduk, D. M., M. D. Uchic, and T. A. Parthasarathy. "Size-affected single-slip behavior of pure nickel microcrystals." Acta Materialia 53.15 (2005): 4065-4077.
[11] Agrawal, R.; Peng, B.; Espinosa, H. D. Experimental Computational Investigation of ZnO nanowires Strength and Fracture. Nano Lett. 2009, 9 (12), 4177–4183.
[12] Li, S. Z.; Ding, X. D.; Li, J.; Ren, X. B.; Sun, J.; Ma, E.; Lookman, T. Inverse martensitic transformation in Zr nanowires. Phys. Rev. B 2010, 81 (24), 245433–245438.
[13] Kondo, Y.; Ru, Q.; Takayanagi, K. Thickness Induced Structural Phase Transition of Gold Nanofilm. Phys. Rev. Lett. 1999, 82 (4), 751–754.
[14] Wu, B., Heidelberg, A., & Boland, J. (2005). Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials, 4(7), 525-529. doi: 10.1038/nmat1403
[15] Landman U, Luedtke WD, Salisbury BE, Whetten RL (1996) Reversible manipulations of room temperature mechanical and quantum transport properties in nanowire junctions. Phys Rev Lett 77:1362–1365
[16] Diao J, Gall K, Dunn M. Yield strength asymmetry in metal nanowires [J]. Nano Letters, 2004, 4(10): 1863−1867.
[17] Park H S, Gall K, Zimmerman J A. Shape memory and pseudo elasticity in metal nanowires [J]. Physical Review Letters, 2005, 95(25): 255504.
[18] Liang W, Zhou M. Atomistic simulations reveal shape memory of FCC metal nanowires [J]. Physical Review, 2006, 73(11): 115409.
[19] Koh S J A, Lee H P, Lu C, Cheng Q H. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects [J]. Physical Review, 2005, 72(8): 5414.
[20] Wang, Wei-dong, Cheng-long Yi, and Kang-qi Fan. "Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires." Transactions of Nonferrous Metals Society of China 23.11 (2013): 3353-3361.
[21] Alam, Md Ferdous, and Muhammad Rubayat Bin Shahadat. "Temperature and Strain Rate Dependent Mechanical Properties of Ultrathin Metallic Nanowires: A Molecular Dynamics Study." 12th International Conference on Mechanical Engineering (ICME 2017)
[22] Wang, Fenying, et al. "Effect of size on fracture and tensile manipulation of gold nanowires." Journal of nanoparticle research 16.12 (2014): 2752.
[23] Wang, Baolin, et al. "Structures and electronic properties of ultrathin titanium nanowires." Journal of Physics: Condensed Matter 13.20 (2001): L403.
[24] Gall, Ken, Jiankuai Diao, and Martin L. Dunn. "The strength of gold nanowires." Nano Letters 4.12 (2004): 2431-2436.
[25] Gülseren, Oğuz, Furio Ercolessi, and Erio Tosatti. "Noncrystalline structures of ultrathin unsupported nanowires." Physical Review Letters 80.17 (1998): 3775.
[26] Plimpton, Steve. "Fast parallel algorithms for short-range molecular dynamics." Journal of computational physics 117.1 (1995): 1-19.
[27] Daw, Murray S., and M. Io Baskes. "Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals." Physical review letters 50.17 (1983): 1285.
[28] Daw, Murray S., and Michael I. Baskes. "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals." Physical Review B 29.12 (1984): 6443.