Volume 54 | Number 6 | Year 2018 | Article Id. IJMTT-V54P557 | DOI : https://doi.org/10.14445/22315373/IJMTT-V54P557
Molecular Dynamics Simulation has been used as the computational tool to investigate the mechanical properties and fracture mechanism of silver nanowire. Two types of nanowires have been chosen in this study- single crystal and polycrystal. Using two different strain rates (1 x 109 s-1 and 1 x 1010 s-1) the stress-strain behaviour has been shown for these nanowires. To study the temperature effect, the simulations have been performed under four different temperatures (0.01K, 300K, 600K, 900K). Embedded Atom Method (EAM) potentials have been used as the interatomic potential to perform the MD simulations. It has been found that the maximum value of stress reduces with the increase in temperature. The yield strength of the polycrystalline nanowire is lower than the single crystal nanowire but at the same time the polycrystalline nanowire shows significant amount of ductility.
[1] N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, “25th anniversary article: Semiconductor nanowires synthesis, characterization, and applications," Advanced Materials, vol. 26, no. 14, pp. 2137-2184, 2014.
[2] S. M. Mirvakili, A. Pazukha, W. Sikkema, C. W. Sinclair, G. M. Spinks, R. H. Baughman, and J. D. W. Madden, “Niobium nanowire yarns and their application as artificial muscles," Advanced Functional Materials, vol. 23, no. 35, pp. 4311-4316, 2013.
[3] Cai W, Bulatov VV, Chang J, Li J, Yip S. Dislocation core effects on mobility. In: Nabarro FRN, Hirth JP, editors. Dislocations in solids, vol. 12. Amsterdam: Elsevier; 2005. p. 1 [Chapter 64].
[4] Louchet, F., L. P. Kubin, and D. Vesely. "In situ deformation of bcc crystals at low temperatures in a high-voltage electron microscope Dislocation mechanisms and strain-rate equation." Philosophical Magazine A 39.4 (1979): 433-454.
[5] Duesbery, M. and-S., and V. Vitek. "Plastic anisotropy in bcc transition metals." Acta Materialia 46.5 (1998): 1481-1492.
[6] Vitek, V. "Core structure of screw dislocations in body-centred cubic metals: relation to symmetry and interatomic bonding." Philosophical Magazine 84.3-5 (2004): 415-428.
[7] Uchic, Michael D., et al. "Sample dimensions influence strength and crystal plasticity." Science 305.5686 (2004): 986-989.
[8] Greer, Julia R., Warren C. Oliver, and William D. Nix. "Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients." Acta Materialia 53.6 (2005): 1821-1830.
[9] Volkert, Cynthia Ann, and Erica T. Lilleodden. "Size effects in the deformation of sub-micron Au columns." Philosophical Magazine 86.33-35 (2006): 5567-5579.
[10] Dimiduk, D. M., M. D. Uchic, and T. A. Parthasarathy. "Size-affected single-slip behavior of pure nickel microcrystals." Acta Materialia 53.15 (2005): 4065-4077.
[11] Agrawal, R.; Peng, B.; Espinosa, H. D. Experimental Computational Investigation of ZnO nanowires Strength and Fracture. Nano Lett. 2009, 9 (12), 4177–4183.
[12] Li, S. Z.; Ding, X. D.; Li, J.; Ren, X. B.; Sun, J.; Ma, E.; Lookman, T. Inverse martensitic transformation in Zr nanowires. Phys. Rev. B 2010, 81 (24), 245433–245438.
[13] Kondo, Y.; Ru, Q.; Takayanagi, K. Thickness Induced Structural Phase Transition of Gold Nanofilm. Phys. Rev. Lett. 1999, 82 (4), 751–754.
[14] Wu, B., Heidelberg, A., & Boland, J. (2005). Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials, 4(7), 525-529. doi: 10.1038/nmat1403
[15] Landman U, Luedtke WD, Salisbury BE, Whetten RL (1996) Reversible manipulations of room temperature mechanical and quantum transport properties in nanowire junctions. Phys Rev Lett 77:1362–1365
[16] Diao J, Gall K, Dunn M. Yield strength asymmetry in metal nanowires [J]. Nano Letters, 2004, 4(10): 1863−1867.
[17] Park H S, Gall K, Zimmerman J A. Shape memory and pseudo elasticity in metal nanowires [J]. Physical Review Letters, 2005, 95(25): 255504.
[18] Liang W, Zhou M. Atomistic simulations reveal shape memory of FCC metal nanowires [J]. Physical Review, 2006, 73(11): 115409.
[19] Koh S J A, Lee H P, Lu C, Cheng Q H. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects [J]. Physical Review, 2005, 72(8): 5414.
[20] Wang, Wei-dong, Cheng-long Yi, and Kang-qi Fan. "Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires." Transactions of Nonferrous Metals Society of China 23.11 (2013): 3353-3361.
[21] Alam, Md Ferdous, and Muhammad Rubayat Bin Shahadat. "Temperature and Strain Rate Dependent Mechanical Properties of Ultrathin Metallic Nanowires: A Molecular Dynamics Study." 12th International Conference on Mechanical Engineering (ICME 2017)
[22] Wang, Fenying, et al. "Effect of size on fracture and tensile manipulation of gold nanowires." Journal of nanoparticle research 16.12 (2014): 2752.
[23] Wang, Baolin, et al. "Structures and electronic properties of ultrathin titanium nanowires." Journal of Physics: Condensed Matter 13.20 (2001): L403.
[24] Gall, Ken, Jiankuai Diao, and Martin L. Dunn. "The strength of gold nanowires." Nano Letters 4.12 (2004): 2431-2436.
[25] Gülseren, Oğuz, Furio Ercolessi, and Erio Tosatti. "Noncrystalline structures of ultrathin unsupported nanowires." Physical Review Letters 80.17 (1998): 3775.
[26] Plimpton, Steve. "Fast parallel algorithms for short-range molecular dynamics." Journal of computational physics 117.1 (1995): 1-19.
[27] Daw, Murray S., and M. Io Baskes. "Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals." Physical review letters 50.17 (1983): 1285.
[28] Daw, Murray S., and Michael I. Baskes. "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals." Physical Review B 29.12 (1984): 6443.
Md Ferdous Alam, Md.Shadmanur Rahman, "Fracture Mechanism of Single and Polycrystal Silver Nanowire: Computational Study," International Journal of Mathematics Trends and Technology (IJMTT), vol. 54, no. 6, pp. 471-476, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V54P557