Volume 55 | Number 4 | Year 2018 | Article Id. IJMTT-V55P536 | DOI : https://doi.org/10.14445/22315373/IJMTT-V55P536
We have considered a detritus-based ecosystem in Sunderban Mangrove area. The ecosystem is rich with detritus, detritivores and predators of detritivores. We have formulated a three-dimensional model by general functional responses. Several dynamical properties, namely, equilibria, boundedness, persistence and stability are analyzed in terms of general functional responses. The system is then analyzed for the same dynamical characteristic using Holling type-II and ivlev-type functional responses. The analytical results are verified by numerical results.
1. F. Charles, Utilisation of fresh detritus derived from cystoseira mediterranea and Posidonia Oceania by deposit-feeding bivalve Abra ovata, J. Exp. Mar. Biol., Ecol. 174(1993), 43-64.
2. I. R. Joint, Microbial production of an estuarine mudflat, Estuarine Coastal and Marine Science 7 (1978), no. 2, 185195.
3. S. E. Jorgensen, Energy and ecological system analysis, Complex Ecosystems (B. C. Pattern and S. E. Jorgensen, eds.), Prentice Hall, New York, 1994.
4. Ruan, S., 2001. Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays, Quart. Appl. Math. 59, 159-173.
5. E.W., 1998. Population Dynamics of a dense assemblage of marine detritivores, J. of Exp. Mar. Biol. Ecol. 226, 131-161.
6. M.A.Faust, R.A.Gulledge, Associations of microalgae and meiofauna in floating detritus at a mangrove Island, Twin Cays, Belize. J. Exp. Mar. Biol. and Ecol. 197(1996), 159–175.
7. J. R. Linley and G. M. Adams, Ecology and behaviour of immature Culicoides melleus(Coq.) (Diptera: Ceratogonidae), Bulletin of Entomological Research 62 (1972), no. 1, 113-127.
8. M. Rosenzweig and R. MacArthur, Graphical representation and stability conditions of predator-prey interaction, American Naturalist (1963) 97, 209–223.
9. G. Birkhoff and G. C. Rota, Ordinary Differential Equation, Ginn, Massachusetts, 1982.
10. RM, May, Stability and Complexity in Model Ecosystems, Princeton University Press, New Jersey, 2001.
11. J. D. Murray, Mathematical Biology, Biomathematics, vol. 19, Springer, Berlin, 1993.
12. M. Bandyopadhyay and R. Bhattacharya, Non–linear bifurcation analysis of a detritus based ecosystem, Nonlinear Studies 10 (2003), no. 4, 357-372.
M.R. Mandal, N.H.Gazi, "Study of a Detritus-Based Ecosystem Model for Generalized Functional Responses," International Journal of Mathematics Trends and Technology (IJMTT), vol. 55, no. 4, pp. 279-288, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V55P536