Volume 56 | Number 2 | Year 2018 | Article Id. IJMTT-V56P511 | DOI : https://doi.org/10.14445/22315373/IJMTT-V56P511
In this paper, first we introduce the notion of intimate mappings in digital metric spaces analogue to the notion of intimate mappings in metric spaces. Secondly, we prove a common fixed point theorem for pairs of intimate mappings in setting of digital metric spaces.
[1] G. Bertrand, Simple points, topological numbers and geodesic neighborhoods in cubic grids, Pattern Recognition Letters, 15 (1994), 1003-1011.
[2] L. Boxer, Digitally continuous functions, Pattern Recognition Letters, 15 (1994), 833-839.
[3] L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vis., 10 (1999), 51-62.
[4] L. Boxer, Digital products, wedges and covering spaces, J. Math. Imaging Vis., 25(2006), 159-171.
[5] L. Boxer, O. Ege, I. Karaca, J. Lopez and J. Louwsma, Digital fixed points, approximate fixed points, and universal functions, Applied General Topology, 17(2016), 159-172.
[6] O. Ege and I. Karaca, Lefschetz fixed point theorem for digital images, Fixed Point Theory and Applications, 253(2013), 1-13.
[7] O. Ege and I. Karaca, Banach fixed point theorem for digital images, J. Nonlinear Sci. Appl., 8 (2015), 237-245.
[8] O. Ege and I. Karaca, Digital homotopy fixed point theory, Comptes Rendus Mathematique, 353(11) (2015), 1029-1033.
[9] O. Ege and I. Karaca, Nielsen fixed point theory for digital images, Journal of Computational Analysis and Applications, 22(5) (2017), 874-880.
[10] S.E. Han, Banach fixed point theorem from the viewpoint of digital topology, J. Nonlinear Sci. Appl., 9 (2015), 895-905.
[11] G.T. Herman, Oriented surfaces in digital spaces, CVGIP: Graphical Models and Image Processing, 55 (1993), 381-396.
[12] T. Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Sci., Amsterdam, (1996).
[13] C.Park, O. Ege, S. Kumar and D. Jain, Fixed point of various contraction condition in digital metric spaces, Journal of Computational Analysis and Applications (submitted).
[14] C.Park, D. Jain and S. Kumar, weakly compatible mappings in digital metric spaces, J. Math. Imaging Vis. (Submitted).
[15] A. Rosenfeld, Digital topology, Amer. Math. Monthly, 86 (1979), 76-87.
[16] A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters, 4(1986), 177-184.
[17] D.R. Sahu, V.B. Dhagat and M. Srivastava, Fixed points with intimate mappings I, Bull.Calcutta Math. Soc. 93 (2001), 107-114.
Deepak Jain, "Common Fixed Point Theorem for Intimate Mappings in Digital Metric Spaces," International Journal of Mathematics Trends and Technology (IJMTT), vol. 56, no. 2, pp. 91-94, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V56P511