Volume 56 | Number 6 | Year 2018 | Article Id. IJMTT-V56P552 | DOI : https://doi.org/10.14445/22315373/IJMTT-V56P552
In this paper, we determine the homotopy perturbation method (HPM) and adomian de- composition method (ADM) to obtain a closed form solution of the (3+1)-dimensional Equal Width Wave equation with diffusivity term. These methods consider the use of the initial or boundary conditions and FInd the solution without any discretization, transformation or re- strictive conditions and avoid the round-off errors. Some numerical examples are provided to validate the reliability and efficiency of the three methods.
1. Z. Odibat, S. Momani, Chaos Solitons Fractals, in press.
2. J.H. He, Comput. Methods Appl. Mech. Engrg. 178,(1999),257.
3. J.H. He, Int. J. Non-Linear Mech., 35 (1), (2000), 37.
4. M. El-Shahed, Int. J. Nonlin. Sci. Numer. Simul., 6 (2),(2005),163.
5. J.H. He, Appl. Math. Comput., 151, (2004), 287.
6. J.H. He, Int. J. Nonlin. Sci. Numer. Simul., 6 (2),(2005),207.
7. J.H. He, Phys. Lett. A ,374, (4-6), (2005), 228.
8. J.H. He, Chaos Solitons Fractals, 26 (3), (2005), 695.
9. J.H. He, Phys. Lett. A, 350, (1-2), (2006), 87. v10. J.H. He,Appl. Math. Comput., 135, (2003), 73.
11. J.H. He, Appl. Math. Comput.,156, (2004), 527.
12. J.H. He, Appl. Math. Comput., 156,(2004), 591. 9
13. J.H. He, Chaos Solitons Fractals, 26, (3), (2005), 827.
14. A. Siddiqui, R. Mahmood, Q. Ghori, Int. J. Nonlin. Sci. Numer. Simul., 7 (1), (2006), 7.
15. A. Siddiqui, M. Ahmed, Q. Ghori, Int. J. Nonlin. Sci. Numer. Simul., 7 (1), (2006), 15.
16. J.H. He, Int. J. Mod. Phys. B, 20 (10), (2006), 1141.
17. S. Abbasbandy, Appl. Math. Comput., 172, (2006), 485.
18. S. Abbasbandy, Appl. Math. Comput., 173, (2006), 493.
19. S. Padmasekaran, S.Rajeswari and G. Sivagami,Similarity Solution of Semilinear Parabolic Equations with Variable Coefficients,IJMAA,Volume 4, Issue 3A (2016), 201209.
20. S.Padmasekaran and S.Rajeswari,Solitons and Exponential Solutions for a Nonlinear (2+1)dim PDE, IJPAM,Volume 115 No. 9 2017, 121-130.
21. S. Padmasekaran and S. Rajeswari, Lies Symmetries of (2+1)dim PDEIJMTT,Volume 51 No. 6,11-2017.
22. G. Adomian. A review of the decomposition method in applied mathematics., J Math Anal Appl, (1988), 135, 501-544.
23. F.J. Alexander, J.L. Lebowitz . Driven diffusive systems with a moving obstacle: a variation on the Brazil nuts problem. J Phys (1990), 23, 375-382.
24. F.J. Alexander, J.L. Lebowitz.,On the drift and diffusion of a rod in a lattice uid. J Phys, (1994), 27, 683-696.
25. J.D. Cole., On a quasilinear parabolic equation occurring in aerodynamics. J Math Appl, (1988), 135, 501-544.
26. He JH. Homotopy perturbation technique. Comput Methods Appl Mech Eng, (1999), 178, 257-262.
27. J.H. He.,Homotopy perturbation method: a new nonlinear analytical technique., Appl Math Comput, (2003), 13, (2-3), 73-79.
28. J.H. He.,A simple perturbation method to Blasius equation. Appl Math Comput, (2003), (2-3), 217-222.
R. Asokan, T. Shanmuga Priya, K. Azhagu Raja, "The Comparative Study on (3+1)-dimensional Equal Width Wave Equation with Diffusion by HPM ,ADM and DTM," International Journal of Mathematics Trends and Technology (IJMTT), vol. 56, no. 6, pp. 392-401, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V56P552