Volume 62 | Number 1 | Year 2018 | Article Id. IJMTT-V62P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V62P507
Rajesh Kumar Pal, "Numerical Solution of Irrotational Fluid Flow Problem Using Finite Element Method," International Journal of Mathematics Trends and Technology (IJMTT), vol. 62, no. 1, pp. 36-45, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V62P507
[1] Barrett, K.E. and Diminish, G., Finite Element solutions of convective diffusion problems, Int. J. Num. Meth. Eng., 14, 1511-1524, 1979.
[2] Bennour, H. and Said, M. J., Finite Element solutions of convective diffusion problems, Int. J. Num. Meth. Eng., 14, 1511-1524, 1979.
[3] Bercovier, M. and Engelman,M., Numerical Solution of Poisson‟s equation with Dirichlet Boundary conditions, Int. J. open problems compt. Math.,Vol. 5, No. 4, 2012.
[4] Bramble, J.H., Pasciak, J.E. and Schatz, A.H., „The construction of preconditioners for elliptic problems‟, Mathematics of Computation, Vol. 53, No.187, pp.1-24, 1989.
[5] Burggraf, O.R., Analytical and Numerical studies of the structure of steady separated flows, J.Fluid Mech., 24, 113-151,1966.
[6] Cai, Z., Kim, S. and Kong, S., A finite element method using singular function for Poisson equation: mixed boundary conditions, Comput. Methods Appl. Mech. Engrg., 195, pp 2635-2648, 2006.
[7] Chang , S.C., Solution of Elliptic Partial Differential Equations by fast Poisson solvers using a Local Relaxation Factor. I. One step method‟ NSA technical paper 2529, 1986.
[8] Chaudhary, T.U. and Patel, D.M., Finite Element Solution of Poisson‟s equation in a Homogeneous Medium, International Research Journal of Engineering and Tech. (IRJET), Vol. 02, Issue 09, 2015.
[9] Girault,V. and Raviart, P.A ., Finite element approximation of the Navier-Stokes equations, Lecture notes in Mathematics 749, Springer, Berlin, 1979.
[10] Hockney, R.W., A fast direct solution of Poisson‟s equation using Fourier analysis, J. assoc. Comput. Mach., 12,95-113,1965.
[11] Hyman, J.M. and Manteuffel, T.A., High order sparse factorization methods for elliptic boundary value problems in R. Vichneretsky and R.S.Stepleman. Eds. Advances in computer methods for partial differential equations. V(IMACS, New Brunswick . NS. 1984) 551-555.
[12] Kikuchi, F. and Saito, H., Remarks on a posteriori error estimation for finite element solutions, J. Comput. Appl. Meth., 199(2), pp 329-336, 2007.
[13] Liniger, W, Odeh,F. And Hara, V., A second order sparse factorization method for Poisson‟s equation with mixed boundary conditions, J. Comp. And App. Math., 44,201-218,1992.
[14] Macormic,S.F., „Multigrid methods for variational problems: Further results‟ SIAM J. Numer. Anal., Vol.21 ,1984,PP.255-263.
[15] Mills, R.D., On the closed motion of a fluid in a square cavity, J. Roy. Aero. Soc., 69,116-120,1965.
[16] Sharma,P.K. and Agarwal , M.K., Fast finite difference direct solver for Poisson‟s equation, Indian J. Phy. Nat. Sci. Vol.10, Sec. B, 1989.
[17] Taylor, C and Hughes, T.G., Finite Element Programming of N-S equations, Pineridge Press Limited, Swansea, U.K., 1981.
[18] Tuann, S.Y. and Olson, M.D., Review of computing methods for recirculating flows, J. Comp. Phys. 29,1-17,1978.
[19] Zienkiewicz, O.C., The Finite Element Method, Tata McGraw-Hill, New Delhi.