Volume 63 | Number 1 | Year 2018 | Article Id. IJMTT-V63P506 | DOI : https://doi.org/10.14445/22315373/IJMTT-V63P506
The objective of this contribution is to exist a numerical simulation technique to model the collision of particles in a plane using object-oriented procedures. This approach is based on the second law of Newton for the translational motion of each particle in the granular material. This comprises a possession track of all forces acting on each particle at every time-step. The back-ground version of DEM and time integration algorithm are established and executed into C++ code. A simple test is regarding the application of timeintegration algorithm by particle-particle interaction for which analytical expression exist. In this paper effect of elastic, elastic damping and elastic damping gravitational effect are studied and the trajectory of particle motion for different time integration scheme verses time step for particle – particle contact are calculated.
[1] Behringer R. P., (1993) “The Dynamics of flowing sand”, Nonlinear Science Today.
[2] Behringer R. P., (1995) “Mixed Predictions”, Nature 374, 15.
[3] Bideau D. and A. Hansen, Eds., (1993) “Disorder and Granular Media”, Random Materials and Processes Series, Elsevier Science Publishers B. V., Amsterdam, North-Holland.
[4] Coulomb C. (1773), in Memoir de Mathematique et de Phy-sique 7, Academie des.
[5] Cundall P. A. and O. D. L. Strack, (1979) "A discrete numerical model for granular assemblies", Geotechnique 29, 47.
[6] Cundall, P.A., (1971). A computer model for simulating progressive large-scale movements in blocky rock systems. Proceedings of Symposium International Society of Rock Mechanics 2, 129.
[7] Dippel, S., Batrouni, G.G., Wolf, D.E., (1996). Collision-induced friction in the motion of a single particle on a bumpy inclined line. Physical Review E 54, 6845.
[8] Dippel, S., Batrouni, G.G., Wolf, D.E., (1996). Collision-induced friction in the motion of a single particle on a bumpy inclined line. Physical Review E 54, 6845.
[9] Faraday M. (1831), “On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces”, Phil. Trans. R. Soc. London 52, 299
[10] Hayakawa H., H. Nishimori, S. Sasa, and Y. H. Taguchi, (1995) “Dynamics of granular matter”, Jpn. J. Appl. Phys. 34, 397.
[11] Jaeger H. M. and S. R. Nagel, (1995) “The physics of the granular state”, Science 255, 1523.
[12] Jaeger H. M., S. R. Nagel and R. P. Behringer., (1996b). “Granular solids, liquids and glasses”, Rev. Mod. Phys. 68, 1259.
[13] Jaeger H. M., S. R. Nagel, and R. P. Behringer, (1996a) "The Physics of Granular Materials", Physics Today 4, 32.
[14] Jaeger, H. M., J. B. Knight, C. H. Liu, and S. R. Nagel, (1994) “What is shaking in the sand box”, Mater. Res. Bull. 19, 25.
[15] Kantor, A. L.; Long, L. N.; Micci, M. M. (2000) Molecular dynamics simulation of dissociation kinetics. In: AIAA Aersospace Science Meeting, AIAA Paper 2000-0213.
[16] Luding, S., (1997). Stress distribution in static two-dimensional granular model media in the absence of friction. Physical Review E 55, 4720.
[17] Mehta, A., Ed., “Granular Matter: An Interdisciplinary Approach”, Springer, New York, 1994.
[18] Moakher, M., Shinbrot, T., Muzzio, F.J., (2000). Experimentally validated computations of flow, mixing and segregation of non-cohesive grains in 3D tumbling blenders. Powder Technology 109, 58.
[19] Reynolds (1885)., on the dilatancy of media composed of rigid particles in contact with-experimental illustrations", Philos. Mag. 20, 469
[20] Ristow, G.H., (1996). Dynamics of granular material in a rotating drum. Euro physics Letters 34, 263.
[21] Ristow, G.H., Herrmann, H.J., (1994). Density patterns in two-dimensional hoppers. Physical Review E 50, R5.
[22] Shinbrot, T., Alexander, A., Moakher, M., Muzzio, F.J., 1999. Chaotic granular mixing. Chaos 9, 611.
[23] Thompson, P.S., Grest, G.S., (1991). Granular flow: friction and the dilatancy transition. Physical Review Letters 67, 1751.
[24] Wightman, C., Moakher, M., Muzzio, F.J., Walton, O.R., (1998). Simulation of flow and mixing of particles in a rotating and rocking cylinder. A.I.Ch.E.Journal 44, 1226.
Oleena S H, "Trajectory of Particle Motion by Particle – Particle Contact Using Discrete Element Method," International Journal of Mathematics Trends and Technology (IJMTT), vol. 63, no. 1, pp. 47-53, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V63P506