Volume 63 | Number 1 | Year 2018 | Article Id. IJMTT-V63P506 | DOI : https://doi.org/10.14445/22315373/IJMTT-V63P506
Oleena S H, "Trajectory of Particle Motion by Particle – Particle Contact Using Discrete Element Method," International Journal of Mathematics Trends and Technology (IJMTT), vol. 63, no. 1, pp. 47-53, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V63P506
[1] Behringer R. P., (1993) “The Dynamics of flowing sand”, Nonlinear Science Today.
[2] Behringer R. P., (1995) “Mixed Predictions”, Nature 374, 15.
[3] Bideau D. and A. Hansen, Eds., (1993) “Disorder and Granular Media”, Random Materials and Processes Series, Elsevier Science Publishers B. V., Amsterdam, North-Holland.
[4] Coulomb C. (1773), in Memoir de Mathematique et de Phy-sique 7, Academie des.
[5] Cundall P. A. and O. D. L. Strack, (1979) "A discrete numerical model for granular assemblies", Geotechnique 29, 47.
[6] Cundall, P.A., (1971). A computer model for simulating progressive large-scale movements in blocky rock systems. Proceedings of Symposium International Society of Rock Mechanics 2, 129.
[7] Dippel, S., Batrouni, G.G., Wolf, D.E., (1996). Collision-induced friction in the motion of a single particle on a bumpy inclined line. Physical Review E 54, 6845.
[8] Dippel, S., Batrouni, G.G., Wolf, D.E., (1996). Collision-induced friction in the motion of a single particle on a bumpy inclined line. Physical Review E 54, 6845.
[9] Faraday M. (1831), “On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces”, Phil. Trans. R. Soc. London 52, 299
[10] Hayakawa H., H. Nishimori, S. Sasa, and Y. H. Taguchi, (1995) “Dynamics of granular matter”, Jpn. J. Appl. Phys. 34, 397.
[11] Jaeger H. M. and S. R. Nagel, (1995) “The physics of the granular state”, Science 255, 1523.
[12] Jaeger H. M., S. R. Nagel and R. P. Behringer., (1996b). “Granular solids, liquids and glasses”, Rev. Mod. Phys. 68, 1259.
[13] Jaeger H. M., S. R. Nagel, and R. P. Behringer, (1996a) "The Physics of Granular Materials", Physics Today 4, 32.
[14] Jaeger, H. M., J. B. Knight, C. H. Liu, and S. R. Nagel, (1994) “What is shaking in the sand box”, Mater. Res. Bull. 19, 25.
[15] Kantor, A. L.; Long, L. N.; Micci, M. M. (2000) Molecular dynamics simulation of dissociation kinetics. In: AIAA Aersospace Science Meeting, AIAA Paper 2000-0213.
[16] Luding, S., (1997). Stress distribution in static two-dimensional granular model media in the absence of friction. Physical Review E 55, 4720.
[17] Mehta, A., Ed., “Granular Matter: An Interdisciplinary Approach”, Springer, New York, 1994.
[18] Moakher, M., Shinbrot, T., Muzzio, F.J., (2000). Experimentally validated computations of flow, mixing and segregation of non-cohesive grains in 3D tumbling blenders. Powder Technology 109, 58.
[19] Reynolds (1885)., on the dilatancy of media composed of rigid particles in contact with-experimental illustrations", Philos. Mag. 20, 469
[20] Ristow, G.H., (1996). Dynamics of granular material in a rotating drum. Euro physics Letters 34, 263.
[21] Ristow, G.H., Herrmann, H.J., (1994). Density patterns in two-dimensional hoppers. Physical Review E 50, R5.
[22] Shinbrot, T., Alexander, A., Moakher, M., Muzzio, F.J., 1999. Chaotic granular mixing. Chaos 9, 611.
[23] Thompson, P.S., Grest, G.S., (1991). Granular flow: friction and the dilatancy transition. Physical Review Letters 67, 1751.
[24] Wightman, C., Moakher, M., Muzzio, F.J., Walton, O.R., (1998). Simulation of flow and mixing of particles in a rotating and rocking cylinder. A.I.Ch.E.Journal 44, 1226.