Volume 65 | Issue 12 | Year 2019 | Article Id. IJMTT-V65I12P510 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I12P510

A mathematical model is formulated that incorporates the basic and important dynamics of Lassa fever disease transmission under the assumption of a homogeneously mixed population. We extended the model by introducing various control intervention measures, like external protection, isolation, treatment, and rodent control. The extended model called the multiple control intervention measure model, was analyzed and compared with the basic model by appropriate qualitative analysis and numerical simulation approach. We carried out sensitivity analysis of our multiple control model to investigate the impact of our parameters on the persistence or eradication of Lassa fever disease.

[1] M.L. Cohen, Changing patterns of infectious disease}, Nature, 406 (2000), 6797, 762.

[2] W.H. Fleming, and R.W. Rishel, Deterministic and stochastic optimal control}, Bulletin of the American Mathematical Society, 82(1976), 869-870.

[3] World Health Organisation (2018) (November, 2018).

[4] World Health Organisation (WHO) (November, 2018).

[5] R.A. Kenlyside, J.B. Mccormic, P.A. Webb, E. Smith, L. Elliot, K.L. Johnson, Case control study of mastomys natalensis and humans in Lassa virus-infected households in Sierra Lone}, Am. Trop. Med. Hyg. 32(1983), 829-37.

[6] M. Bawa, S. Abdulraham, and O.R. Jimoh, Stability Analysis of the Disease-free Equilibrium State of Lassa Fever Disease} Int. J. of Sci. and Math. Edu, 9(2)(2013), 115-123.

[7] A.J. Clayton, Lassa immune serum, Bull. W.H.O. 55(1977), 435-439.

[8] O. Diekmann, H. Heesterbeek, and T. Britton, Mathematical tools for understanding infectious disease dynamics, Princeton Uni. Press 7(2012).

[9] I.M. Longini Jr, E. Ackerman, and L.R. Elveback, An optimization model for influenza A epidemics, Math. Biosci., 38(1 -2)(1978), 141-157.

[10] M. Kretzschmar, Ring Vaccination and Smallpox Control Emerging Infectious Diseases, 10(5)(2004), 832-841.

[11] H.S. Rodrigues, M.T.T. Monteiro, and D.F. Torres, Vaccination models and optimal control strategies to dengue, Math. Biosci., 247(2014), 1-12.

[12] S. Lenhart, qnd J.T. Workman, Optimal control applied to biological models, Chapman and Hall/CRC, (2007).

[13] R.L. Miller Neilan, E. Schaefer, H. Gaff, K. Renee Fisher, and S. Lenhart, Modeling optimal intervention strategies for cholera, Bull. Math. Biol. 72(2010), 2004-2018.

[14] D. Omale, T.E. Edibo, Mathematical Models for Lassa Fever Transmission with Control Strategies, Computing Information Systems, Development Informatics and Allied Research J. 6(2017), (4).

[15] M. Bawa, S. Abdulraham, and O.R. Jimoh, Stability Analysis of the Disease-free Equilibrium State of Lassa Fever Disease, Int. J. of Sci. and Math. Edu., 9(2)(2013), 115-123.

[16] R. Okuonghae and D.A. Okuonghae, Mathematical model for Lassa fever, Journal of the Nigeria Association of Mathematical Physics, 10(2006), 457-464.

[17] M.O. Onuorah, M.S.S. Ojo, D.J. Usman, A. Ademu, Basic Reproduction Number for the Spread and Control of Lassa fever, Int. J. of Math. Trends and Tech., 30(1)(2016), 1-7.

[18] O.S. Obabiyi, and A.A. Onifade, Mathematical model for lassa fever transmission dynamics with variable human and reservoir population, Int. J. of Differential Equations and Appl., 16(1)(2017).

[19] M.B. Abdullahi, U.C. Doko, and M. Mamuda, Sensitivity analysis in a Lassa fever deterministic mathematical model, In AIP Conference Proceedings 1660(1)(2015), 050050. AIP Publishing.

[20] B.I. Eraikhuemen, and O. Eguasa, Lassa fever and its Control Measures, J. of Natural Sc. Research, 7(12)(2017).

[21] T.S. Faniran, A Mathematical Modelling of Lassa Fever Dynamics with Non-drug Compliance Rate, Int J. Math. Trends Technol, 47(5)(2017), 305-317.

[22] I.B. Sule, I.B. Wada, A.A. Abubakar, A.H. Adamu, H.S. Fagge, Y. Mohammed, and P. Nguku, Outbreak of a Highly Virulent Lassa Fever Virus in Kano State, Nigeria: An Investigation Report 2015-2016.

[23] X. Liao, L.Q. Wang, and P. Yu, Stability of dynamical systems 5(2007), Elsevier.

[24] R. Reiszig, J. LaSalle and S. Lefschetz, Stability by Liapunov's Direct Method with Applications, VII+ 134 S. New York/London 1961. Academic Press. Preis geb. \$5.50. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 42(10-11)(1962), 514-514.

[25] P. Van den Driessche, and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission}, Math. Biosci., 180(1-2)(2002), 29-48.

[26] M.B. Abdullahi, U.C. Doko, and M. Mamuda, Sensitivity analysis in a Lassa fever deterministic mathematical model, In AIP Conference Proceedings 1660(1)(2015), 050050. AIP Publishing.

[27] C. Castillo-Chavez, S. Blower, P. van den Driessche, D. Kirschner, and A.A. Yakubu, Mathematical approaches for emerging and reemerging infectious diseases: an introduction, 1(2002), Springer Science and Business Media.

[28] J.H. Tien and D.J. Earn, "Multiple Transmission pathways and disease dynamics in a waterborne pathogen model", Bulletin of Math. Biol., 72(6)(2010), 1506-1533.

[29] O.C. Collins, and K.J. Duffy, Analysis and Optimal Control Intervention Strategies of a Waterborne Disease Model: A Realistic Case Study, J. of Applied Math. (2018).

[30] J. Ma and D.J.D. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol. 68(2006), 679-702.

[31] J.M. Tchuenche, S.A. Khamis, F.B. Agusto, and S.C. Mpeshe, Optimal control and sensitivity analysis of an influenza model with treatment and vaccination, Acta biotheoretica, 59(1)(2011), 1-28.

[32] P.B. Jahrling, R.A. Hesse, G.A. Eddy, K.M. Johnson, R.T. Callis, and E.L. Stephen, Lassa virus infection of rhesus monkeys: pathogenesis and treatment with ribavirin, J. of Infectious Diseases, 141(5)(1980), 580-589.

[33] T.P. Monath, Lassa fever and Marburg virus disease, (1974).

[34] CDC, Imported Lassa fever, New Jersey, Centres for disease control and prevention 2004, MMWR Morb Mortal WKly Rep 2004, 53(38)(2004), 894-897.

[35] O.C. Collins, and K.S. Govinder, Stability analysis and optimal vaccination of a waterborne disease model with multiple water sources, Natural Resource Modeling, 29(3)(2016), 426-447.

[36] G. Zaman, Y.H. Kang, and I.H. Jung, Stability analysis and optimal vaccination of an SIR epidemic model, BioSystems, 93(3)(2008), 240-249.

[37] T.K. Kar and A. Batabyal, Stability analysis and optimal control of an SIR epidemic model with vaccination, Biosystems, 104(2- 3)(2011), 127-135.

[38] K.W. Blayneh, A.B. Gumel, S. Lenhart, and T. Clayton, Backward bifurcation and optimal control in transmission dynamics of West Nile virus, Bull. of Math. Biol., 72(4)(2010), 1006-1028.

[39] F.B. Agusto, Optimal chemoprophylaxis and treatment control strategies of a tuberculosis transmission model, World J. Model Simul, 5(3)(2009), 163-173.

[40] H.R. Joshi, Optimal control of an HIV immunology model, Optimal control applications and methods, 23(4)(2002), 199-213.

[41] O.C. Collins, and K.J. Duffy, Optimal control of maize foliar diseases using the plants population dynamics, Acta Agriculturae Scandinavica, Section B—Soil and Plant Science, 66(1)(2016), 20-26.

[42] W.H. Fleming, and R.W. Rishel, Deterministic and stochastic optimal control, Bull. of the American Math. Society, 82(1976), 869- 870.

[43] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko [1961], Math. Theory of Optimal Processes {in Russian}.

[44] S.L. Robertson, M.C. Elsenberg and J.H. Tien, Heterogeneity in multiple transmission pathways: modeling the spread of cholera and other waterborne disease in networks with a common water source, J. Biol. Dynam 7(2013), 254-275.

[45] O.C. Collins, and K.S. Govinder, Stability analysis and optimal vaccination of a waterborne disease model with multiple water sources, Natural Resource Modeling, 29(3)(2016), 426-447.

[46] S. M. Garba, and A. B. Gumel, Mathematical recipe for HIV elimination in Nigeria, Journal of the Nigerian Mathematical Society, 29(2010), 1-66.

I. S. Onah, R. A. Adewoye, G. C. E. Mbah, "Sensitivity Analysis of Multiple Control Intervention Measures of Lassa fever Disease Model," *International Journal of Mathematics Trends and Technology (IJMTT)*, vol. 65, no. 12, pp. 94-104, 2019. *Crossref*, https://doi.org/10.14445/22315373/IJMTT-V65I12P510