Volume 65 | Issue 7 | Year 2019 | Article Id. IJMTT-V65I7P524 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I7P524
Ilija Barukčić, "The Interior Logic of Inequalities," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 7, pp. 171-199, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I7P524
[1] D. Hilbert, ―AxiomatischesDenken,‖ Math. Ann., vol. 78, no. 1, pp. 405–415, Dec. 1917.
[2] K. Gödel, ―Über formal unentscheidbareSätze der Principia Mathematica und verwandterSysteme I,‖ MonatshefteFür Math. Phys., vol. 38, no. 1, pp. 173–198, Dec. 1931.
[3] C.-L. Chang and R. C.-T. Lee, Symbolic logic and mechanical theorem proving. San Diego: Academic Press, 1987.
[4] S. C. Kleene, Mathematical logic, Dover ed. Mineola, N.Y: Dover Publications, 2002.
[5] A. S. Troelstra and H. Schwichtenberg, Basic proof theory. 2012.
[6] R. Bombelli, L‘ algebra : opera di Rafael Bombelli da Bologna, divisa in tre libri : con la quale ciascuno da se potrà venire in perfettacognitionedellateoricadell‘Aritmetica : con una tavola copiosadellematerie, che in essasicontengono. Bolgna (Italy): per Giovanni Rossi, 1579.
[7] R. Recorde, The whetstone of witte, whiche is the secondeparte of Arithmetike: containyngthextraction of Rootes: The Coßikepractise, with the rule of Equation: and the woorkes of SurdeNombers. London: JhonKyngstone, 1557.
[8] M. [1652-1719] Rolle, Traitéd‘algèbreouprincipesgénéraux pour résoudre les questions... Paris (France): chez Estienne Michallet, 1690.
[9] J. Widmann, Behende und hüpscheRechenungauffallenKauffmanschafft. Leipzig (Holy Roman Empire): Conrad Kachelofen, 1489.
[10] L. Pacioli, Summa de arithmetica, geometria, proportioni et proportionalità. Venice, 1494.
[11] T. Harriot, Artisanalyticae praxis, ad aequationesalgebraicasnoua, expedia, & generalimethodo, resoluendas :tractatus. Londini: Apud Robertum Barker, 1631.
[12] A. N. Whitehead and B. Russell, Principia mathematica (Reprint), 2. ed., reprint. Cambridge [Cambridgeshire] ; New York: Cambridge University Press, 1978.
[13] A. N. Whitehead and B. Russell, Principia Mathematica Volume 2, Second Edition., vol. 2. Cambridge: At the University press, 1927.
[14] S. Read, ―Logical consequence as truth-preservation,‖ Log. Anal., vol. 46, no. 183/184, pp. 479–493, 2003.
[15] V. McGee, ―A Counterexample to Modus Ponens,‖ J. Philos., vol. 82, no. 9, p. 462, Sep. 1985.
[16] S. Bobzien, ―The Development of Modus Ponens in Antiquity : From Aristotle to the 2nd Century AD,‖ Phronesis, vol. 47, no. 4, pp. 359–394, Aug. 2002.
[17] K. Popper, Conjectures and Refutations: The Growth of Scientific Knowledge, Überarb. A. London ; New York: Routledge, 2002.
[18] J. J. Toohey, An elementary handbook of logic. New York, Appleton-Century-Crofts, 1948.
[19] M. Dorolle, ―La valeur des conclusion par l‘absurde,‖ Révue Philos. Fr. LÉtranger, vol. 86, pp. 309–313, 1918.
[20] J. M. Lee, ―The form of Reductio ad Absurdum .,‖ Notre Dame J. Form. Log., vol. 14, no. 3, pp. 381–386, Jul. 1973.
[21] Aristotle and G. R. G. Mure, Posterior analytics. Whitefish, MT: Kessinger Publishing, 2004.
[22] G. H. Hardy, A mathematician‘s apology, Canto ed. Cambridge [England] ; New York: Cambridge University Press, 1992.
[23] W. A. Carnielli and J. Marcos, ―Ex contradictione non sequitur quodlibet,‖ Bull. Adv. Reason. Knowl., vol. 7, no. 1, pp. 89–109, 2001.
[24] F. M. Quesada, Ed., Heterodox logics and the problem of the unity of logic. In: Non-Classical Logics, Model Theory, and Computability: Proceedings of the Third Latin-American symposium on Mathematical Logic, Campinas, Brazil, July 11-17, 1976. Arruda, A. I., Costa, N. C. A. da, Chuaqui, R. (Eds.)., vol. 89. Amsterdam ; New York : New York: North-Holland, 1977.
[25] N. C. A. da Costa, ―Nota sobre o conceito de contradição,‖ Anuário Soc. Parana. Matemática, vol. 1, no. 2, pp. 6–8, 1958.
[26] I. Barukčić, ―Aristotle‘s law of contradiction and Einstein‘s special theory of relativity,‖ J. Drug Deliv. Ther., vol. 9, no. 2, pp. 125–143, Mar. 2019.
[27] D. Dubarle, Logique et dialectique. Paris (France): Librairie Larousse, 1972.
[28] R. Routley and R. K. Meyer, ―Dialectical logic, classical logic, and the consistency of the world,‖ Stud. Sov. Thought, vol. 16, no. 1, pp. 1–25, Jun. 1976.
[29] R. Routley, ―Dialectical logic, semantics and metamathematics,‖ Erkenntnis, vol. 14, no. 3, pp. 301–331, Nov. 1979.
[30] J. F. A. K. van Benthem, ―What is dialectical logic?,‖ Erkenntnis, vol. 14, no. 3, pp. 333–347, Nov. 1979.
[31] I. Lakatos, ―The role of crucial experiments in science,‖ Stud. Hist. Philos. Sci. Part A, vol. 4, no. 4, pp. 309–325, Feb. 1974.
[32] S. Bağçe and C. Başkent, ―An Examination of Counterexamples in Proofs and Refutations,‖ Philos. Sci., no. 13–2, pp. 3–20, Oct. 2009.
[33] J. Corcoran, ―Counterexamples and Proexamples,‖ Bull. Symb. Log., vol. 11, p. 460, 2005.
[34] J. P. Romano and A. F. Siegel, Counterexamples in Probability And Statistics. New York (USA): Chapman & Hall., 1986.
[35] J. M. Stoyanov, Counterexamples in Probability, Third Edition. Mineola, New York: DOVER PUBN INC, 2013.
[36] Plato and L. Campbell, The Theaetetus of Plato. New York, Arno Press, 1973.
[37] B. Russell, The Problems of Philosophy. New Yor (USA): Henry Holt and company, 1912.
[38] G. W. Leibniz Freiherr von, Oeuvres philosophiqueslatines&françoises de feu Mr. de Leibnitz. Amsterdam; Leipzig: Chez Jean Schreuder, 1765.
[39] G. Boole, An investigation of the laws of thought, on which are founded mathematical theories of logic and probabilities. New York, Dover, 1854.
[40] B. Bennett, Logically Fallacious: The Ultimate Collection of Over 300 Logical Fallacies. EBOOKIT COM, 2014.
[41] J. Łukasiewicz, ―O zasadziesprzeczności u Arystotelesa (Über den Satz des Widerspruchsbei Aristoteles),‖ Bull. Int. L‘Académie Sci. Crac. Cl. Philol. Cl. D‘histoire Philos., pp. 15–38, 1910.
[42] N. A. Vasil‘ev, ―O chastnykhsuzhdeniiakh, o treugol‘nikeprotivopolozhnostei, o zakoneiskliuchennogochetvertogo (English: On Particular Judgments, the Triangle of Oppositions, and the Law of Excluded Fourth),‖ Uchenye Zap. Imperatorskogo Kazan. Univ. Sci. Mem. Imp. Univ. Kazan, vol. 10, pp. 1–47, 1910.
[43] G. Priest, ―The logic of paradox,‖ J. Philos. Log., vol. 8, no. 1, Jan. 1979.
[44] V. Raspa, ―Non-Aristotelian Logic,‖ in Thinking about Contradictions, Cham: Springer International Publishing, 2017, pp. 53–73.
[45] (Syria ca. 60 – ca. 120 AD) Nicomachus of Gerasa, Introduction to Arithmetic. Translated into English by Mathin Luther D‘Ooge. New York: The Macmillan Company, 1926.
[46] I. Barukčić, ―Zero Divided by Zero Equals One,‖ J. Appl. Math. Phys., vol. 06, no. 04, pp. 836–853, 2018.
[47] C. Kramp, Élémensd‘arithmétiqueuniverselle. Cologne: De l‘imprimerie de Th. F. Thiriart, et se vend chez Hansen, libraire, 1808.
[48] J. A. D. W. Anderson, N. Völker, and A. A. Adams, ―Perspex Machine VIII: axioms of transreal arithmetic,‖ presented at the Electronic Imaging 2007, San Jose, CA, USA, 2007, p. 649902.
[49] W. Carnielli and M. E. Coniglio, Paraconsistent logic: consistency, contradiction and negation. New York, NY: Springer Berlin Heidelberg, 2016.
[50] F. G. Asenjo, ―A calculus of antinomies.,‖ Notre Dame J. Form. Log., vol. 7, no. 1, pp. 103–105, 1966.
[51] N. C. A. da Costa, ―On the theory of inconsistent formal systems.,‖ Notre Dame J. Form. Log., vol. 15, no. 4, pp. 497–510, Oct. 1974.
[52] W. Heisenberg, ―Über den anschaulichenInhalt der quantentheoretischenKinematik und Mechanik,‖ Z. Für Phys., vol. 43, no. 3, pp. 172–198, Mar. 1927.
[53] J. S. Bell, ―On the Einstein Podolsky Rosen paradox,‖ Physics, vol. 1, no. 3, pp. 195–200, Nov. 1964.
[54] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, ―Proposed Experiment to Test Local Hidden-Variable Theories,‖ Phys. Rev. Lett., vol. 23, no. 15, pp. 880–884, Oct. 1969.