Volume 65 | Issue 7 | Year 2019 | Article Id. IJMTT-V65I7P524 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I7P524
From a theoretical point of view, it is appropriate and necessary to distinguish science and (fantastical) pseudoscience for both practical and theoretical reasons. One specific nature of pseudoscience in relation to science and other categories of human reasoning is the resistance to facts. In this paper, several methods are analysed which may be of use to prevent that personal belief can be masqueraded genuinely as scientific knowledge. In particular, modus ponens, modus tollens and modus conversus are reanalysed. Modus sine, logically equivalent to modus ponens, is developed and modus inversus and modus juris are described in detail. In point of fact, in our striving for knowledge, there is still much more scientific work to be done on the demarcation line between science and pseudoscience.
[1] D. Hilbert, ―AxiomatischesDenken,‖ Math. Ann., vol. 78, no. 1, pp. 405–415, Dec. 1917.
[2] K. Gödel, ―Über formal unentscheidbareSätze der Principia Mathematica und verwandterSysteme I,‖ MonatshefteFür Math. Phys., vol. 38, no. 1, pp. 173–198, Dec. 1931.
[3] C.-L. Chang and R. C.-T. Lee, Symbolic logic and mechanical theorem proving. San Diego: Academic Press, 1987.
[4] S. C. Kleene, Mathematical logic, Dover ed. Mineola, N.Y: Dover Publications, 2002.
[5] A. S. Troelstra and H. Schwichtenberg, Basic proof theory. 2012.
[6] R. Bombelli, L‘ algebra : opera di Rafael Bombelli da Bologna, divisa in tre libri : con la quale ciascuno da se potrà venire in perfettacognitionedellateoricadell‘Aritmetica : con una tavola copiosadellematerie, che in essasicontengono. Bolgna (Italy): per Giovanni Rossi, 1579.
[7] R. Recorde, The whetstone of witte, whiche is the secondeparte of Arithmetike: containyngthextraction of Rootes: The Coßikepractise, with the rule of Equation: and the woorkes of SurdeNombers. London: JhonKyngstone, 1557.
[8] M. [1652-1719] Rolle, Traitéd‘algèbreouprincipesgénéraux pour résoudre les questions... Paris (France): chez Estienne Michallet, 1690.
[9] J. Widmann, Behende und hüpscheRechenungauffallenKauffmanschafft. Leipzig (Holy Roman Empire): Conrad Kachelofen, 1489.
[10] L. Pacioli, Summa de arithmetica, geometria, proportioni et proportionalità. Venice, 1494.
[11] T. Harriot, Artisanalyticae praxis, ad aequationesalgebraicasnoua, expedia, & generalimethodo, resoluendas :tractatus. Londini: Apud Robertum Barker, 1631.
[12] A. N. Whitehead and B. Russell, Principia mathematica (Reprint), 2. ed., reprint. Cambridge [Cambridgeshire] ; New York: Cambridge University Press, 1978.
[13] A. N. Whitehead and B. Russell, Principia Mathematica Volume 2, Second Edition., vol. 2. Cambridge: At the University press, 1927.
[14] S. Read, ―Logical consequence as truth-preservation,‖ Log. Anal., vol. 46, no. 183/184, pp. 479–493, 2003.
[15] V. McGee, ―A Counterexample to Modus Ponens,‖ J. Philos., vol. 82, no. 9, p. 462, Sep. 1985.
[16] S. Bobzien, ―The Development of Modus Ponens in Antiquity : From Aristotle to the 2nd Century AD,‖ Phronesis, vol. 47, no. 4, pp. 359–394, Aug. 2002.
[17] K. Popper, Conjectures and Refutations: The Growth of Scientific Knowledge, Überarb. A. London ; New York: Routledge, 2002.
[18] J. J. Toohey, An elementary handbook of logic. New York, Appleton-Century-Crofts, 1948.
[19] M. Dorolle, ―La valeur des conclusion par l‘absurde,‖ Révue Philos. Fr. LÉtranger, vol. 86, pp. 309–313, 1918.
[20] J. M. Lee, ―The form of Reductio ad Absurdum .,‖ Notre Dame J. Form. Log., vol. 14, no. 3, pp. 381–386, Jul. 1973.
[21] Aristotle and G. R. G. Mure, Posterior analytics. Whitefish, MT: Kessinger Publishing, 2004.
[22] G. H. Hardy, A mathematician‘s apology, Canto ed. Cambridge [England] ; New York: Cambridge University Press, 1992.
[23] W. A. Carnielli and J. Marcos, ―Ex contradictione non sequitur quodlibet,‖ Bull. Adv. Reason. Knowl., vol. 7, no. 1, pp. 89–109, 2001.
[24] F. M. Quesada, Ed., Heterodox logics and the problem of the unity of logic. In: Non-Classical Logics, Model Theory, and Computability: Proceedings of the Third Latin-American symposium on Mathematical Logic, Campinas, Brazil, July 11-17, 1976. Arruda, A. I., Costa, N. C. A. da, Chuaqui, R. (Eds.)., vol. 89. Amsterdam ; New York : New York: North-Holland, 1977.
[25] N. C. A. da Costa, ―Nota sobre o conceito de contradição,‖ Anuário Soc. Parana. Matemática, vol. 1, no. 2, pp. 6–8, 1958.
[26] I. Barukčić, ―Aristotle‘s law of contradiction and Einstein‘s special theory of relativity,‖ J. Drug Deliv. Ther., vol. 9, no. 2, pp. 125–143, Mar. 2019.
[27] D. Dubarle, Logique et dialectique. Paris (France): Librairie Larousse, 1972.
[28] R. Routley and R. K. Meyer, ―Dialectical logic, classical logic, and the consistency of the world,‖ Stud. Sov. Thought, vol. 16, no. 1, pp. 1–25, Jun. 1976.
[29] R. Routley, ―Dialectical logic, semantics and metamathematics,‖ Erkenntnis, vol. 14, no. 3, pp. 301–331, Nov. 1979.
[30] J. F. A. K. van Benthem, ―What is dialectical logic?,‖ Erkenntnis, vol. 14, no. 3, pp. 333–347, Nov. 1979.
[31] I. Lakatos, ―The role of crucial experiments in science,‖ Stud. Hist. Philos. Sci. Part A, vol. 4, no. 4, pp. 309–325, Feb. 1974.
[32] S. Bağçe and C. Başkent, ―An Examination of Counterexamples in Proofs and Refutations,‖ Philos. Sci., no. 13–2, pp. 3–20, Oct. 2009.
[33] J. Corcoran, ―Counterexamples and Proexamples,‖ Bull. Symb. Log., vol. 11, p. 460, 2005.
[34] J. P. Romano and A. F. Siegel, Counterexamples in Probability And Statistics. New York (USA): Chapman & Hall., 1986.
[35] J. M. Stoyanov, Counterexamples in Probability, Third Edition. Mineola, New York: DOVER PUBN INC, 2013.
[36] Plato and L. Campbell, The Theaetetus of Plato. New York, Arno Press, 1973.
[37] B. Russell, The Problems of Philosophy. New Yor (USA): Henry Holt and company, 1912.
[38] G. W. Leibniz Freiherr von, Oeuvres philosophiqueslatines&françoises de feu Mr. de Leibnitz. Amsterdam; Leipzig: Chez Jean Schreuder, 1765.
[39] G. Boole, An investigation of the laws of thought, on which are founded mathematical theories of logic and probabilities. New York, Dover, 1854.
[40] B. Bennett, Logically Fallacious: The Ultimate Collection of Over 300 Logical Fallacies. EBOOKIT COM, 2014.
[41] J. Łukasiewicz, ―O zasadziesprzeczności u Arystotelesa (Über den Satz des Widerspruchsbei Aristoteles),‖ Bull. Int. L‘Académie Sci. Crac. Cl. Philol. Cl. D‘histoire Philos., pp. 15–38, 1910.
[42] N. A. Vasil‘ev, ―O chastnykhsuzhdeniiakh, o treugol‘nikeprotivopolozhnostei, o zakoneiskliuchennogochetvertogo (English: On Particular Judgments, the Triangle of Oppositions, and the Law of Excluded Fourth),‖ Uchenye Zap. Imperatorskogo Kazan. Univ. Sci. Mem. Imp. Univ. Kazan, vol. 10, pp. 1–47, 1910.
[43] G. Priest, ―The logic of paradox,‖ J. Philos. Log., vol. 8, no. 1, Jan. 1979.
[44] V. Raspa, ―Non-Aristotelian Logic,‖ in Thinking about Contradictions, Cham: Springer International Publishing, 2017, pp. 53–73.
[45] (Syria ca. 60 – ca. 120 AD) Nicomachus of Gerasa, Introduction to Arithmetic. Translated into English by Mathin Luther D‘Ooge. New York: The Macmillan Company, 1926.
[46] I. Barukčić, ―Zero Divided by Zero Equals One,‖ J. Appl. Math. Phys., vol. 06, no. 04, pp. 836–853, 2018.
[47] C. Kramp, Élémensd‘arithmétiqueuniverselle. Cologne: De l‘imprimerie de Th. F. Thiriart, et se vend chez Hansen, libraire, 1808.
[48] J. A. D. W. Anderson, N. Völker, and A. A. Adams, ―Perspex Machine VIII: axioms of transreal arithmetic,‖ presented at the Electronic Imaging 2007, San Jose, CA, USA, 2007, p. 649902.
[49] W. Carnielli and M. E. Coniglio, Paraconsistent logic: consistency, contradiction and negation. New York, NY: Springer Berlin Heidelberg, 2016.
[50] F. G. Asenjo, ―A calculus of antinomies.,‖ Notre Dame J. Form. Log., vol. 7, no. 1, pp. 103–105, 1966.
[51] N. C. A. da Costa, ―On the theory of inconsistent formal systems.,‖ Notre Dame J. Form. Log., vol. 15, no. 4, pp. 497–510, Oct. 1974.
[52] W. Heisenberg, ―Über den anschaulichenInhalt der quantentheoretischenKinematik und Mechanik,‖ Z. Für Phys., vol. 43, no. 3, pp. 172–198, Mar. 1927.
[53] J. S. Bell, ―On the Einstein Podolsky Rosen paradox,‖ Physics, vol. 1, no. 3, pp. 195–200, Nov. 1964.
[54] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, ―Proposed Experiment to Test Local Hidden-Variable Theories,‖ Phys. Rev. Lett., vol. 23, no. 15, pp. 880–884, Oct. 1969.
Ilija Barukčić, "The Interior Logic of Inequalities," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 7, pp. 171-199, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I7P524